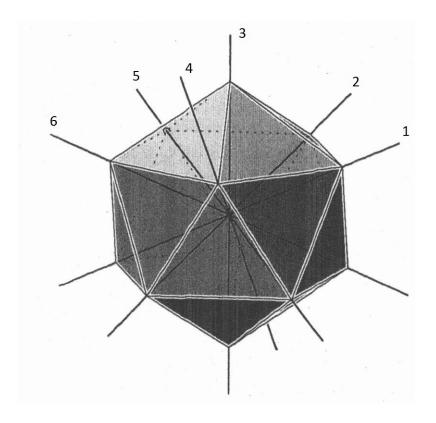
Aufgaben zur Linearen Algebra I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2014/15

Blatt 10

Abgabetermin: Freitag, 9.1.2015, 10:00 Uhr (vor der Vorlesung)



Ikosaeder mit 6 gleichwinkligen Diagonalen

Aufgabe 46 (Komplexe Zahlen als reelle Matrizen)

Es sei $\mathcal C$ die Menge der reellen 2 × 2-Matrizen der Form

$$A = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right).$$

Zeigen Sie:

- (i) \mathcal{C} ist ein reeller Vektorraum der Dimension 2; geben Sie eine Basis an.
- (ii) $\mathcal C$ ist abgeschlossen unter der Multiplikation; jedes $A\in\mathcal C$ ist invertierbar; also ist $\mathcal C$ ein Körper.

- (iii) Die Matrizengleichung $X^2 + \mathbb{1} = 0$ besitzt eine Lösung $X \in \mathcal{C}$.
- (iv) Es gibt einen Körperisomorphismus $\Phi: \mathcal{C} \to \mathbb{C}$. (Also besitzt sogar jede polynomiale Matrizengleichung

$$a_0 \mathbb{1} + a_1 X + a_2 X^2 + \ldots + a_n X^n = 0$$

mit $a_i \in \mathbb{C}$ eine Lösung $X \in \mathcal{C}$, nach dem Fundamentalsatz der Algebra, welchen wir noch beweisen werden.)

Aufgabe 47 (Links- und Rechtsinverse)

- (i) Für ein festes $A \in \operatorname{Mat}_{m,k}(\mathbb{K})$ betrachte man die Abbildung $\Phi_A : \operatorname{Mat}_{k,n}(\mathbb{K}) \to \operatorname{Mat}_{m,n}(\mathbb{K})$, $\Phi_A(X) = AX$. Man beweise:
 - (1) Φ_A ist linear.
 - (2) A besitzt genau dann ein Rechtsinverses, wenn Φ_A surjektiv ist.
 - (3) Was kann man aus der Injektivität von Φ_A folgern?
- (ii) Für ein festes $B \in \operatorname{Mat}_{k,n}(\mathbb{K})$ betrachte man die Abbildung $\Psi_B : \operatorname{Mat}_{m,k}(\mathbb{K}) \to \operatorname{Mat}_{m,n}(\mathbb{K})$ $\Psi_B(Y) = YB$. Man beweise:
 - (1) Φ_B ist linear.
 - (2) B besitzt genau dann ein Linksinverses, wenn Ψ_B surjektiv ist.
 - (3) Was kann man aus der Injektivität von Ψ_B folgern?
- (iii) Es sei nun k = m = n, dann sind äquivalent:
 - (1) $C \in \operatorname{Mat}_n(\mathbb{K})$ ist invertierbar.
 - (2) Φ_C ist ein Isomorphismus.
 - (3) Ψ_C ist ein Isomorphismus.

Aufgabe 48 (Isomorphismen endlich-dimensionaler Vektorräume)

Es sei $f:V\to W$ eine lineare Abbildung zwischen zwei endlich-dimensionalen \mathbb{K} -Vektorräumen gleicher Dimension. Dann ist äquivalent:

- (i) f ist Monomorphismus.
- (ii) f ist Epimorphismus.
- (iii) f ist Isomorphismus.

Zeigen Sie durch Beispiele, daß keine zwei der Aussagen mehr äquivalent sind, wenn V und W unendliche Dimension haben.

Aufgabe 49 (Drehungen, in verschiedenen Basen geschrieben)

Es sei $f: \mathbb{R}^3 \to \mathbb{R}^3$ die Linksdrehung um die von v=(1,1,1) aufgespannte Achse mit dem Winkel $\alpha=120^\circ$.

(i) Schreiben Sie die Matrix $M_{SS}(f)$ von f zunächst in der Standardbasis $S = (e_1, e_2, e_3)$ auf.

(ii) Finden Sie eine Basis \mathcal{B} des \mathbb{R}^3 , so daß jetzt die Matrix $M_{\mathcal{BB}}(f)$ die Blockgestalt

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix}$$

hat.

(iii) Und finden Sie nun zwei Basen \mathcal{A} und \mathcal{A}' des \mathbb{R}^3 , so daß $M_{\mathcal{A}\mathcal{A}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ gilt.

*-Aufgabe 50 (Gleichwinklige Vektoren in \mathbb{R}^n)

Im \mathbb{R}^3 z.B. kann man nicht mehr als 3 Geraden finden, die paarweise senkrecht aufeinander stehen. Läßt man andere Winkel zu, so kann man bis zu 6 Vektoren (oder Geraden) gleichwinklig verteilen, -wie wir an dem Bild des Ikosaeders sehen.

Es seien also v_1, \ldots, v_m Vektoren in \mathbb{R}^n der Länge 1, und $0 < \alpha \leq \frac{\pi}{2}$ ein vorgebener Winkel; wir verlangen, daß

$$|\langle v_i, v_j \rangle| = \cos \alpha \text{ für } 1 \le i \ne j \le m.$$

Zeigen Sie: Dann ist

$$m \le \frac{(n+1)n}{2}.$$

(Hinweis: Schreiben wir v_i als Spaltenvektor, so ist $A_i = v_i v_i^{\top}$ eine symmetrische $n \times n$ -Matrix. Der Untervektorraum der symmetrischen Matrizen hat exakt die Dimension $\binom{n+1}{2}$. Wir behaupten, daß die $A_1, \ldots A_m$ linear-unabhängig sind: Aus einer Relation

$$\sum_{i=1}^{m} \lambda_i A_i = 0$$

mit $\lambda_i \in \mathbb{R}$ erhält man durch geschickte Multiplikation mit v_j und v_j^{\top} (für jedes j) ein homogenes LGS für die $\lambda_1, \ldots, \lambda_m$.)

Computing the maximum number of equiangular lines in *n*-dimensional Euclidean space is a difficult problem, and unsolved in general, though bounds are known. The maximal number of equiangular lines in 2-dimensional Euclidean space is 3: we can take the lines through opposite vertices of a regular hexagon, each at an angle 120 degrees from the other two. The maximum in 3 dimensions is 6: we can take lines through opposite vertices of an icosahedron. The maximum in dimensions 1 through 18 is listed in The On-Line Encyclopedia of Integer Sequences as follows:

1, 3, 6, 6, 10, 16, 28, 28, 28, 28, 28, 28, 28, 28, 36, 40, 48, 48, ...

In particular, the maximum number of equiangular lines in 7 dimensions is 28. We can obtain these lines as follows. Take the vector (-3,-3,1,1,1,1,1,1) in \mathbb{R}^8 , and form all 28 vectors obtained by permuting the components of this. The dot product of two of these vectors is 8 if both have a component 3 in the same place or -8 otherwise. Thus, the lines through the origin containing these vectors are equiangular. Moreoever, all 28 vectors are orthogonal to the vector (1,1,1,1,1,1,1) in \mathbb{R}^8 , so they lie in a 7-dimensional space. In fact, these 28 vectors and their negatives are, up to rotation and dilation, the 56 vertices of the 3_{21} polytope. In other words, they are the weight vectors of the 56-dimensional representation of the Lie group \mathbb{E}_7 .

Aus: Equiangular lines, Wikipedia