Aufgaben zur Topologie I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2019/20

Blatt 14

no due date !

J.H.C. Whitehead (1904-1960), known for many contributions in algebraic topology, in particular in homotopy theory. His CW complexes are a very suitable category of spaces, both for homology theory and for homotopy theory.

Exercise 14.1 (Curve complexes)

Let $F = F_{g,r}$ be an orientable, compact, connected surface of genus g and r boundary curves. We consider homotopy classes of closed curves c on F; we suppose the curves are without self-intersections, and they are not null-homotopic, they are not homotopic to a bounary curve, and that F - c is connected. By [c] we denote their homotopy classes. We denote the set of these homotopy classes by C(F). A *cut system* is a set $S = \{[c_0], \ldots, [c_{n+1}]\}$ of homotopy classes of such curves, which have representatives c_i such that they are (1) disjoint, (2) not homotopic, and (3) the complement $F - \bigcup_{i=0}^{n} c_i$ is connected.

- Show that the set cut systems form an abstract simplicial scheme $S_{\bullet}(F)$: obviously, C(F) is the set of vertices and the cut systems with n + 1 elements are the n-simplices.
- Show that the group $\Gamma_{g,n} = \operatorname{Aut}(F)$ of homotopy classes of homotopy equivalences of F acts simplicially on $\mathcal{S}_{\bullet}(F)$.
- What is the isotropy subgroup of a vertex [c]?

Exercise 14.2 (CW complexes and coverings) Let $\pi: \tilde{X} \to X$ be a covering. If X is a CW complex, then so is \tilde{X} . Exercise 14.3 (Subcomplexes and quotient complexes of CW complexes)

A subcomplex Y of a CW complex X is a subspace, which is the union of closures \bar{X}_{σ} of cells X_{σ} of X, such that theyform a CW complex. In other words: $Y = \bigcup_{\sigma \in S'} X_{\sigma}$ is determined by a subset $S' \subset S$ of the cells of X with the property: If $\sigma \in S'$ and $\bar{X}_{\sigma} \cap X_{\tau} \neq \emptyset$, then $\tau \in S'$.

- a) Show that Y is a CW complex in its own right.
- b) Show that Z = X/Y is a CW complex.

Exercise 14.4 (Weak topology on CW complexes)

In the definition of a CW complex X we characterized closed subsets $B \subset X$. We can equally well characterize open subset of X. Show the equivalence:

 $B \subset X$ is closed (resp. open) in $X \iff$ For each $\sigma \in S$ the intersection $B \cap \overline{X}_{\sigma}$ is closed (resp. open) in \overline{X}_{σ} .

Exercise 14.5 (Spaces with prescribed homology)

- (a) For any natural number k and $n \ge 1$ let $f: \mathbb{S}^n \to \mathbb{S}^n$ of degree k. The space $M = M(\mathbb{Z}/k, n) := \mathbb{S}^n \cup_f \mathbb{D}^{n+1}$ is called a *Moore space*. Show that the reduced homology of M is \mathbb{Z}/k in degree n and zero in all other degrees.
- (b) Let A be a finitely generated abelian group. Construct a connected space M = M(A, n) such that its reduced homology is A in degree n and zero in all other degrees. (Use (a) and the Elementary Divisor Theorem.)
- (c) Let A be an arbitrary abelian group. Construct a connected space M = M(A, n) such that its reduced homology is A in degree n and zero in all other degrees. (Use (b) and a limit argument.)
- (d) Let $\mathbb{A}_1, \mathbb{A}_2, \ldots$ be a sequence of abelian groups. Construct a connected space M such that $H_n(M) \cong \mathbb{A}_n$ for all $n \ge 1$.

Galileo Galileis Grabmal in der Kirche Santa Croce in Florenz.

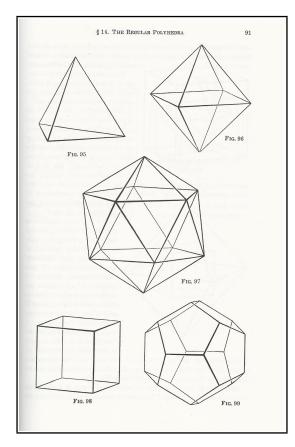
Exercise 14.6^{*} (Platonic solids)

Already in ancient time it was known that there are only five Platonic solids. By this we mean a convex and compact subset of \mathbb{R}^3 , whose boundary consists of regular *n*-polygons such that the intersection of any two is either empty or an edge, and at any vertex *m* edges meet.

Assume that the Euler characteristic (of the boundary) can be calculated as E - K + F = 2, where E, K, F denote the number of vertices, of edges and of polygons.

Show: There are only five Platonic solids, namely tetrahedron, octahedron, hexahedron (or cube), dodecahedron and icosahedron.

Hint: We have three equation: E - K + F = 2, and mE = 2K, and nF = 2K. And there are just five pairs (m, n) of solutions.



The five platonic solids, from D. Hilbert & S. Cohn-Vossen: Geometry and the Imagination, p. 92.