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Exercise 13.1 (Additivity of the Euler characteristic)

Let K be a principal ideal domain. Using the Elementary Divisor Theorem we know for M any finitely generated
K-module that M /tors(M) is free and of finite rank, i.e. isomorphic to K" for some well-defined number r € N; We
call this number r = rankg (M) the rank of M (over K).

Prove for A and B two finitely generated K-modules:

e tors(A @ B) = tors(A) @ tors(B).
e (A® B)/tors(A® B) = A/tors(A) @ B/tors(B).
e rankg (A @ B) = rankg(A4) + rankg(B).

Conclude for two graded K-modules A, and B, of finite type the following formulas for the Euler characteristic and
the Poincaré polynomial (wher we suppress K in the notation):

® x(Ae @ Bs) = x(As) + Xx(Bs).
o Byi(Ae @ Bs) = Pi(As) +Pi(Bo).



Exercise 13.2 (Mayer, Vietoris and Euler, or the additivity of the Euler characteristic for spaces.)
Let a space X be the union X = X; U X5 of two open subspaces and assume X7, Xo and Xy = X; N Xy are of
finite type over the principal ideal domain K. We want to prove the following formula:

X(X1UXz) = x(X1)+x(X2) — x(X1 N Xa).

Clearly, we will use the long exact Mayer-Vietoris sequence.

(1) First, prove the following trick:

Let Eq: ... —> E;1 — E; — E;11 — ... be a long exact sequence of finite type (that means: all modules are
finitely generated and almost all are trivial), we can regard it as a chain complex, whose homology is trivial in each
degree. Thus x(E,) = 0. Therefore, if we set A; := E3;, B; := F3;41 and C; := E3;1 for all i € Z, and consider the
graded modules A,, B, and C, separately, we obtain

X(Ae) = x(Bs) + x(Cs) = 0.

(2) Now apply this to the Mayer-Vietoris sequence.
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Figure 12. Examples of plane vector fields

J.Milnor: Topology from a Differentiable Viewpoint, p. 33.
The figures show vector fields in the plane and the indices of isolated zeroes.

Exercise 13.3 (Ham Sandwich Theorem)
Let By,...,B, be bounded and Lebesgue measurable subsets of R™. There exists an affine (n-1)-plane A in R",
which cuts each B; into two pieces of equal measure.

Prove this statement in five steps.

(1) Regard R™ as R™ x {1} C R"*!. Every affine (n-1)-plane A in R™ x {1} determines a linear n-plane L in R"*!
by L = Span(A).

(2) Every linear n-plane L in R™"*! determines an affine (n-1)-plane A in R™ x {1} by A := LNR" x {1}.

(3) A unit vector ¢ € R"*! determines a linear n-plane in R"*! by L(¢) := Span(¢{)* = {z € R"*! | (x,() = 0}.
Denote by H(() the positive half-space of ¢, namely H(¢) = {z € R"*!|(z,¢) > 0}.

(4) Use (without proof) from analysis: For a bounded set B C R™ x {1} the function ¢ — p(H(¢)NB) is continuous.
(Here p is the Lebesgue measure in R™ x {1}.)



(5) Consider the map f: S — R™ defined by f({) := (f1(C),- .., fn(¢)) with f;({) := p(H(¢) N B;) and apply the

Borsuk-Ulam Theorem.

Exercise 13.4 (Equivalent versions of the Borsuk-Ulam Theorem)
Consider the two statements:

() If f: S™ — S™ satisfies f(—x) = —f(x), then m < n.
(IT) For any f:S™ — R™ there is an x € S™ such that f(z) = f(—x).

In the lecture we derived (IT) from (I). Show that one can vice versa derive (I) from (II).

Exercise 13.5 (Maps between real projective spaces)

Let f: RP™ — RP™ any based map. If 0 < m < n, the f.: m1(RP") — 71 (RP™) is trivial.

Conclude: RP™ C RP"™ is not a retract for 0 < m < n.
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A 2-fold covering of a surface of genus 2 by a surface of genus 3.

Exercise 13.6* (Exact transfer sequence)

Consider the 2-fold covering m: F3 — F5 shown in the figure above; Fy; denotes a connected, orientable and closed
surface of genus g. Study the exact transfer sequence of 7 in homology with coefficients in Z,:
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0— H2<F2) —(>) HQ(F3) — HQ(FQ) — Hl(Fg) —(>) Hl(F3) — Hl(FQ) — H()(F2) —>) Ho(Fg) — H()(FQ) — 0.

Compute all homology groups, give generators, and compute all homomorphisms in the sequence.



