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A. Granas, J. Dugundji: Fixed Point Theory, p. 105.

Exercise 13.1 (Additivity of the Euler characteristic)
Let K be a principal ideal domain. Using the Elementary Divisor Theorem we know for M any finitely generated
K-module that M/tors(M) is free and of finite rank, i.e. isomorphic to Kr for some well-defined number r ∈ N; We
call this number r = rankK(M) the rank of M (over K).
Prove for A and B two finitely generated K-modules:

• tors(A⊕B) = tors(A)⊕ tors(B).

• (A⊕B)/tors(A⊕B) ∼= A/tors(A)⊕B/tors(B).

• rankK(A⊕B) = rankK(A) + rankK(B).

Conclude for two graded K-modules A• and B• of finite type the following formulas for the Euler characteristic and
the Poincaré polynomial (wher we suppress K in the notation):

• χ(A• ⊕B•) = χ(A•) + χ(B•).

• Pt(A• ⊕B•) = Pt(A•) + Pt(B•).
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Exercise 13.2 (Mayer, Vietoris and Euler, or the additivity of the Euler characteristic for spaces.)
Let a space X be the union X = X1 ∪ X2 of two open subspaces and assume X1, X2 and X0 = X1 ∩ X2 are of
finite type over the principal ideal domain K. We want to prove the following formula:

χ(X1 ∪X2) = χ(X1) + χ(X2)− χ(X1 ∩X2).

Clearly, we will use the long exact Mayer-Vietoris sequence.

(1) First, prove the following trick:
Let E• : . . . → Ei−1 → Ei → Ei+1 → . . . be a long exact sequence of finite type (that means: all modules are
finitely generated and almost all are trivial), we can regard it as a chain complex, whose homology is trivial in each
degree. Thus χ(E•) = 0. Therefore, if we set Ai := E3i, Bi := E3i+1 and Ci := E3i+2 for all i ∈ Z, and consider the
graded modules A•, B• and C• separately, we obtain

χ(A•)− χ(B•) + χ(C•) = 0.

(2) Now apply this to the Mayer-Vietoris sequence.

J. Milnor: Topology from a Differentiable Viewpoint, p. 33.
The figures show vector fields in the plane and the indices of isolated zeroes.

Exercise 13.3 (Ham Sandwich Theorem)
Let B1, . . . , Bn be bounded and Lebesgue measurable subsets of Rn. There exists an affine (n-1)-plane A in Rn,
which cuts each Bi into two pieces of equal measure.

Prove this statement in five steps.

(1) Regard Rn as Rn × {1} ⊂ Rn+1. Every affine (n-1)-plane A in Rn × {1} determines a linear n-plane L in Rn+1

by L = Span(A).

(2) Every linear n-plane L in Rn+1 determines an affine (n-1)-plane A in Rn × {1} by A := L ∩ Rn × {1}.
(3) A unit vector ζ ∈ Rn+1 determines a linear n-plane in Rn+1 by L(ζ) := Span(ζ)⊥ = {x ∈ Rn+1 | 〈x, ζ〉 = 0}.
Denote by H(ζ) the positive half-space of ζ, namely H(ζ) = {x ∈ Rn+1 | 〈x, ζ〉 ≥ 0}.
(4) Use (without proof) from analysis: For a bounded set B ⊂ Rn×{1} the function ζ 7→ µ(H(ζ)∩B) is continuous.
(Here µ is the Lebesgue measure in Rn × {1}.)
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(5) Consider the map f : Sn → Rn defined by f(ζ) := (f1(ζ), . . . , fn(ζ)) with fi(ζ) := µ(H(ζ) ∩ Bi) and apply the
Borsuk-Ulam Theorem.

Exercise 13.4 (Equivalent versions of the Borsuk-Ulam Theorem)
Consider the two statements:

(I) If f : Sm → Sn satisfies f(−x) = −f(x), then m ≤ n.

(II) For any f : Sn → Rn there is an x ∈ Sn such that f(x) = f(−x).

In the lecture we derived (II) from (I). Show that one can vice versa derive (I) from (II).

Exercise 13.5 (Maps between real projective spaces)
Let f : RPn → RPm any based map. If 0 < m < n, the f∗ : π1(RPn)→ π1(RPm) is trivial.
Conclude: RPm ⊂ RPn is not a retract for 0 < m < n.

A 2-fold covering of a surface of genus 2 by a surface of genus 3.

Exercise 13.6∗ (Exact transfer sequence)

Consider the 2-fold covering π : F3 → F2 shown in the figure above; Fg denotes a connected, orientable and closed
surface of genus g. Study the exact transfer sequence of π in homology with coefficients in Z2:

0→ H2(F2)
Tr(π)−→ H2(F3)

π∗−→ H2(F2)
∂T
∗−→ H1(F2)

Tr(π)−→ H1(F3)
π∗−→ H1(F2)

∂T
∗−→ H0(F2)

Tr(π)−→ H0(F3)
π∗−→ H0(F2)→ 0 .

Compute all homology groups, give generators, and compute all homomorphisms in the sequence.
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