Aufgaben zur Topologie I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2019/20

Blatt 13

due by: 22. January 2020

A. Granas, J. Dugundji: Fixed Point Theory, p. 105.

Exercise 13.1 (Additivity of the Euler characteristic)

Let \mathbb{K} be a principal ideal domain. Using the Elementary Divisor Theorem we know for M any finitely generated \mathbb{K} -module that $M/\operatorname{tors}(M)$ is free and of finite rank, i.e. isomorphic to \mathbb{K}^r for some well-defined number $r \in \mathbb{N}$; We call this number $r = \operatorname{rank}_{\mathbb{K}}(M)$ the rank of M (over \mathbb{K}).

Prove for A and B two finitely generated $\mathbbm{K}\text{-modules:}$

- $\operatorname{tors}(A \oplus B) = \operatorname{tors}(A) \oplus \operatorname{tors}(B)$.
- $(A \oplus B)/\operatorname{tors}(A \oplus B) \cong A/\operatorname{tors}(A) \oplus B/\operatorname{tors}(B)$.
- $\operatorname{rank}_{\mathbb{K}}(A \oplus B) = \operatorname{rank}_{\mathbb{K}}(A) + \operatorname{rank}_{\mathbb{K}}(B).$

Conclude for two graded K-modules A_{\bullet} and B_{\bullet} of finite type the following formulas for the Euler characteristic and the Poincaré polynomial (wher we suppress K in the notation):

- $\chi(A_{\bullet} \oplus B_{\bullet}) = \chi(A_{\bullet}) + \chi(B_{\bullet}).$
- $\mathfrak{P}_t(A_{\bullet} \oplus B_{\bullet}) = \mathfrak{P}_t(A_{\bullet}) + \mathfrak{P}_t(B_{\bullet}).$

Exercise 13.2 (Mayer, Vietoris and Euler, or the additivity of the Euler characteristic for spaces.) Let a space X be the union $X = X_1 \cup X_2$ of two open subspaces and assume X_1 , X_2 and $X_0 = X_1 \cap X_2$ are of finite type over the principal ideal domain \mathbb{K} . We want to prove the following formula:

$$\chi(X_1 \cup X_2) = \chi(X_1) + \chi(X_2) - \chi(X_1 \cap X_2).$$

Clearly, we will use the long exact Mayer-Vietoris sequence.

(1) First, prove the following trick:

Let $E_{\bullet}: \ldots \to E_{i-1} \to E_i \to E_{i+1} \to \ldots$ be a long exact sequence of finite type (that means: all modules are finitely generated and almost all are trivial), we can regard it as a chain complex, whose homology is trivial in each degree. Thus $\chi(E_{\bullet}) = 0$. Therefore, if we set $A_i := E_{3i}, B_i := E_{3i+1}$ and $C_i := E_{3i+2}$ for all $i \in \mathbb{Z}$, and consider the graded modules A_{\bullet}, B_{\bullet} and C_{\bullet} separately, we obtain

$$\chi(A_{\bullet}) - \chi(B_{\bullet}) + \chi(C_{\bullet}) = 0$$

(2) Now apply this to the Mayer-Vietoris sequence.

J. Milnor: *Topology from a Differentiable Viewpoint*, p. 33. The figures show vector fields in the plane and the indices of isolated zeroes.

Exercise 13.3 (Ham Sandwich Theorem)

Let B_1, \ldots, B_n be bounded and Lebesgue measurable subsets of \mathbb{R}^n . There exists an affine (n-1)-plane A in \mathbb{R}^n , which cuts each B_i into two pieces of equal measure.

Prove this statement in five steps.

(1) Regard \mathbb{R}^n as $\mathbb{R}^n \times \{1\} \subset \mathbb{R}^{n+1}$. Every affine (n-1)-plane A in $\mathbb{R}^n \times \{1\}$ determines a linear n-plane L in \mathbb{R}^{n+1} by L = Span(A).

(2) Every linear n-plane L in \mathbb{R}^{n+1} determines an affine (n-1)-plane A in $\mathbb{R}^n \times \{1\}$ by $A := L \cap \mathbb{R}^n \times \{1\}$.

(3) A unit vector $\zeta \in \mathbb{R}^{n+1}$ determines a linear n-plane in \mathbb{R}^{n+1} by $L(\zeta) := \operatorname{Span}(\zeta)^{\perp} = \{x \in \mathbb{R}^{n+1} | \langle x, \zeta \rangle = 0\}.$ Denote by $H(\zeta)$ the positive half-space of ζ , namely $H(\zeta) = \{x \in \mathbb{R}^{n+1} | \langle x, \zeta \rangle \ge 0\}.$

(4) Use (without proof) from analysis: For a bounded set $B \subset \mathbb{R}^n \times \{1\}$ the function $\zeta \mapsto \mu(H(\zeta) \cap B)$ is continuous. (Here μ is the Lebesgue measure in $\mathbb{R}^n \times \{1\}$.) (5) Consider the map $f: \mathbb{S}^n \to \mathbb{R}^n$ defined by $f(\zeta) := (f_1(\zeta), \ldots, f_n(\zeta))$ with $f_i(\zeta) := \mu(H(\zeta) \cap B_i)$ and apply the Borsuk-Ulam Theorem.

Exercise 13.4 (Equivalent versions of the Borsuk-Ulam Theorem)

Consider the two statements:

(I) If $f: \mathbb{S}^m \to \mathbb{S}^n$ satisfies f(-x) = -f(x), then $m \leq n$.

(II) For any $f: \mathbb{S}^n \to \mathbb{R}^n$ there is an $x \in \mathbb{S}^n$ such that f(x) = f(-x).

In the lecture we derived (II) from (I). Show that one can vice versa derive (I) from (II).

Exercise 13.5 (Maps between real projective spaces)

Let $f: \mathbb{R}P^n \to \mathbb{R}P^m$ any based map. If 0 < m < n, the $f_*: \pi_1(\mathbb{R}P^n) \to \pi_1(\mathbb{R}P^m)$ is trivial. Conclude: $\mathbb{R}P^m \subset \mathbb{R}P^n$ is not a retract for 0 < m < n.

A 2-fold covering of a surface of genus 2 by a surface of genus 3.

Exercise 13.6 * (Exact transfer sequence)

Consider the 2-fold covering $\pi: F_3 \to F_2$ shown in the figure above; F_g denotes a connected, orientable and closed surface of genus g. Study the exact transfer sequence of π in homology with coefficients in \mathbb{Z}_2 :

$$0 \to H_2(F_2) \xrightarrow{\operatorname{Tr}(\pi)} H_2(F_3) \xrightarrow{\pi_*} H_2(F_2) \xrightarrow{\partial_*^T} H_1(F_2) \xrightarrow{\operatorname{Tr}(\pi)} H_1(F_3) \xrightarrow{\pi_*} H_1(F_2) \xrightarrow{\partial_*^T} H_0(F_2) \xrightarrow{\operatorname{Tr}(\pi)} H_0(F_3) \xrightarrow{\pi_*} H_0(F_2) \to 0.$$

Compute all homology groups, give generators, and compute all homomorphisms in the sequence.