Aufgaben zur Topologie I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2019/20

Blatt 10

due by: 18.12.2019

The first four curves of a sequence of curves, which converges to a Peano curve; this is a continuous and surjective curve from an interval onto a square. The first such curve was found by Guiseppe Peano (1858-1932). It made all naive ideas of dimension obsolete.

Exercise 10.1 (Products of spheres)

a) Assume $M = \mathbb{S}^{m_1} \times \mathbb{S}^{m_2}$ and $N = \mathbb{S}^{n_1} \times \mathbb{S}^{n_2}$. Show that if $M \cong N$, then $\{m_1, m_2\} = \{n_1, n_2\}$. b) Assume $M = \mathbb{S}^{m_1} \times \ldots \times \mathbb{S}^{m_k}$, and $N = \mathbb{S}^{n_1} \times \ldots \times \mathbb{S}^{n_k}$. Show that if $M \cong N$, then $\{m_1, \ldots, m_k\} = \{n_1, \ldots, n_k\}$.

Exercise 10.2 (Complements of disks in \mathbb{R}^n) Deduce from the Theorem on Complements of Disks in \mathbb{S}^n : If $f: \mathbb{D}^r \to \mathbb{R}^n$ is an embedding, then $\widetilde{H}_k(\mathbb{R}^n - f(\mathbb{D}^r)) = \mathbb{Z}$ for k = n - 1 and $\widetilde{H}_k(\mathbb{R}^n - f(\mathbb{D}^r)) = 0$ else.

Exercise 10.3 (Union of disks and their complement in \mathbb{S}^n)

Let $K = A \cup B$ be a subset of \mathbb{S}^n and assume that A, B and the intersection $A \cap B$ are homeomorphic to disks. Show that $\mathbb{S}^n - K$ is acyclic. **Exercise 10.4** (General Jordan Curve Theorem in \mathbb{R}^n .) Let $f: \mathbb{S}^r \to \mathbb{R}^n$ be an embedding. What can we say about the homology of its complement $\mathbb{R}^n - f(\mathbb{S}^r)$?

Camille Jordan (1838-1922), french mathematician, not only famous for the Jordan normal form of matrices.

Exercise 10.5 (Complements of two spheres)

Let $A, B \subset \mathbb{S}^n$ be disjoint subsets and assume A is an embedded p-sphere and B an embedded q-sphere. Compute the homology of the complement $\mathbb{S}^n - (A \cup B)$.

Exercise 10.6^{*} (Acyclic complement property)

For any space X we consider a compact space K and all its possible embeddings $f: K \to X$. If these complements X - f(K) are always acyclic, we say K has the acyclic complement property for X, and write ACP for short. Are the following statements true ?

- a) If K has the ACP for X, then also for any $X' \cong X$.
- b) If K has the ACP for X, then also any $K' \cong K$.
- c) If $K = K_1 \cup K_2$ for two compact subspaces K_1 and K_2 , and all of K_1 , K_2 and $K_1 \cap K_2$ have the ACP for X, then K also has the ACP for X.
- d) If K_1, K_2 and $K = K_1 \cup K_2$ have the ACP for X, then also $K_1 \cap K_2$.
- e) If $K_1 \supset K_2 \supset \ldots$ is a descending chain of spaces, all having the ACP for X, then also $K = \bigcap K_i$.