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Exercise 9.1 (Suspension isomorphism for a homology theory)
Let h∗ denote a homology theory. Prove from the Eilenberg-Steenrod axioms alone that there is for every space X
and all n ∈ Z a suspension isomorphism

σ : hn(X, ∗) −→ hn+1(ΣX, ∗)

where ΣX is the unreduced suspension and h∗(−, ∗) denotes the relative homology with respect to a point.
Assume that h∗ satisfies the dimension axiom with coefficient group h0(pt) = G. Conclude that hn(Sm, ∗) ∼= G if
n = m, and hn(Sm, ∗) = 0 else.

A non-orientable surface of genus g ≥ 1.

Exercise 9.2 (Homology of non-orientable surfaces)
A non-orientable surface N = Ng of genus g ≥ 1 is a connected sum of projective planes; see the figure above, the
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notation of which we use throughout. We have the decomposition N = A ∪B and C = A ∩B:

N

A

κA

>>

B

κB

``

C

ιA

``

ιB

>>

First, compute the homology of the three parts:

(1) A ' S1 and [a] ∈ H1(A) ∼= Z is a generator.

(2) B ' S1 ∨ . . . ∨ S1 (with g − 1 copies of S1) and [b1], . . . , [bg−1] ∈ H1(B) are generators.

(3) C ∼= S1 and [s] ∈ H1(C) is a generator.

Let us write sA := ιA(s) and sB := ιB(s). Next prove the following statements, using a triangulation of the spaces
A and B.

(4) There is a 2-chain α ∈ S2(A) with boundary ∂(α) = sA + 2a and there is 2-chain β ∈ S2(B) with boundary
∂(β) = sB + 2b1 + . . . bg−1.

(5) Thus for the homology classes we have ιA∗([s]) = 2[a] in H1(A) and ιB∗([s]) = [sB ] = 2[b1] + . . . 2[bg−1].
Conclude that J1 = (ιA∗, ιB∗) is injective.

Now we look at the Mayer-Vietoris sequence:

... ... ...
∂∗

ss
H3(C)

J3

// H3(A)⊕H3(B)
K3 // H3(N)

∂∗

ss
H2(C)

J2

// H2(A)⊕H2(B)
K2 // H2(N)

∂∗

ss
H1(C)

J1

// H1(A)⊕H1(B)
K1 // H1(N)

∂∗

ss
H0(C)

J0

// H0(A)⊕H0(B)
K0 // H0(N) // 0

The diagonal arrows are the connecting homomorphism in the Mayer Vietoris sequence; and recall that Ji =
(ιA∗, ιB∗) and Ki = κA∗ − κB∗ in degree i. Strike out all terms which are trivial. Write down all non-trivial terms
we already know. Then prove the following:

(6) Hn(Ng) = 0 for n ≥ 3.

(7) J0 is mono and thus the connecting homomorphism ∂∗ : H1(N) → H0(C) is trivial. So the last three terms
form a short exact sequence

0→ H0(C)→ H0(A)⊕H0(B)→ H0(N)→ 0.

of free groups of rank 1, 2 and 1, resp.. Clearly H0(N) = Z.

(8) K1 is epi.
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(9) J1([s]) = (2[a], 2[b1] + . . .+ 2[bg−1]). Thus it is mono.

(10) Conclude H2(N) = 0.

(11) There is a short exact sequence

0 −→ Z J1−→ Z⊕ Zg−1 K1−→ H1(N) −→ 0

from which you can compute H1(N), remembering the Elementary Divisor Theorem. Beware, — it is not
(Z/2Z)g.

Exercise 9.3 (Self-maps of the torus)
Let T = S1 × S1 denote the torus, the homology of which we know: Refering to the figure below:
(0) H0(T) = Z;
(1) H1(T) ∼= Z⊕ Z with generators [a], [b] represented by the curves a, b; and
(2) H2(T) ∼= Z with generator represented by the 2-chain α− β given by the two triangles.

Let f : T→ T be the self-map as in the figure: it is determined by f(a) = a, f(b) = b′ and f(c) = b. Thus it fixes the
bottom side a of the shaded triangle and slides its top point to the left, and it fixes the top side a of the unshaded
triangle and slides its bottom point to the right. It seems prima vista not continuous along c, but it is continuous.

Compute f∗ : Hi(T)→ Hi(T) in all degrees i.

Remark: Such a map is called a Dehn-twist. They generate the mapping class group of any surface, which is the
group of isotopy classes of orientation-preserving homeomorphisms.

A Dehn-twist f on a torus.

Exercise 9.4 (Invariance of the boundary)
Let M and N denote manifolds of the same dimension; we allow both to have non-empty boundary ∂M resp.
∂ N . Prove: Any homeomorphism f : M → N must send the boundary of M to the boundary of N ; furthermore, f
restricts to a homeomorphism g = f | : ∂M → ∂ N .

Exercise 9.5 (Brouwer Fix Point Theorem)
Use homology groups to prove: Every continuous self-map f : Dn → Dn has at least one fixed point.

Exercise 9.6* (Mapping tori)
Let ϕ : F → F be any map. Its mapping torus is the space T (ϕ) = (F × [0, 1])/ ∼, where (x, 0) ∼ (ϕ(x), 1). There
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is an obvious map π : T (ϕ) → [0, 1]/(0 ∼ 1) = S1. The inverse image of each point t ∈ S1 is homeomorphic to F .
If the map ϕ is a homeomorphism, T (ϕ) is a so-called fibre bundle over S1 with fiber F .
Decompose S1 = S1+ ∪ S1− into an upper and lower hemisphere and correspondingly E = T (ϕ) into E+ = π−1(S1+)
and E− = π−1(S1−).
(a) Use the Mayer-Vietoris sequence to show that there is a long exact sequence of the form

. . .→ Hn(F )
id−ϕ∗−−−−→ Hn(F )→ Hn(E)→ Hn−1(F )→ . . .

Examples:
(1) If ϕ = idF , then T (ϕ) ∼= F × S1.

(2) If F = [0, 1] and ϕ(t) = 1− t, then T (ϕ) is a Möbius band.

(3) If F is discrete with n points and ϕ some permutation, then T (ϕ) is an n-fold covering of S1 with as many
components as ϕ has cycles (counting the fixed points as 1-cycles).

(4) If F = S1 and ϕ(x, y) = (−x, y), then T (ϕ) is the Klein bottle.

(b) Determine the homology of two of theses examples.

Max Dehn (1878 - 1952) made important contributions in low-dimensional topology.
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