Exercise 9.1 (Suspension isomorphism for a homology theory)
Let h_\ast denote a homology theory. Prove from the Eilenberg-Steenrod axioms alone that there is for every space X and all $n \in \mathbb{Z}$ a suspension isomorphism

$$\sigma : h_n(X, \ast) \rightarrow h_{n+1}(\Sigma X, \ast)$$

where ΣX is the unreduced suspension and $h_\ast(-, \ast)$ denotes the relative homology with respect to a point. Assume that h_\ast satisfies the dimension axiom with coefficient group $h_0(pt) = G$. Conclude that $h_n(S^m, \ast) \cong G$ if $n = m$, and $h_n(S^m, \ast) = 0$ else.

Exercise 9.2 (Homology of non-orientable surfaces)
A non-orientable surface $N = N_g$ of genus $g \geq 1$ is a connected sum of projective planes; see the figure above, the

A non-orientable surface of genus $g \geq 1$.
notation of which we use throughout. We have the decomposition $N = A \cup B$ and $C = A \cap B$:

$$
\begin{array}{c}
N \\
\kappa_A \\
A \\
\uparrow \\
\kappa_B \\
B \\
\downarrow \\
\downarrow \\
C \\
i_A \\
\uparrow \\
i_B \\
\end{array}
$$

First, compute the homology of the three parts:

1. $A \simeq \mathbb{S}^1$ and $[a] \in H_1(A) \cong \mathbb{Z}$ is a generator.

2. $B \simeq \mathbb{S}^1 \vee \ldots \vee \mathbb{S}^1$ (with $g - 1$ copies of \mathbb{S}^1) and $[b_1], \ldots, [b_{g-1}] \in H_1(B)$ are generators.

3. $C \cong \mathbb{S}^1$ and $[s] \in H_1(C)$ is a generator.

Let us write $s_A := \iota_A(s)$ and $s_B := \iota_B(s)$. Next prove the following statements, using a triangulation of the spaces A and B.

4. There is a 2-chain $\alpha \in S_2(A)$ with boundary $\partial(\alpha) = s_A + 2a$ and there is 2-chain $\beta \in S_2(B)$ with boundary $\partial(\beta) = s_B + 2b_1 + \ldots b_{g-1}$.

5. Thus for the homology classes we have $\iota_A([s]) = 2[a]$ in $H_1(A)$ and $\iota_B([s]) = [s_B] = 2[b_1] + \ldots 2[b_{g-1}]$. Conclude that $J_1 = (\iota_A, \iota_B)$ is injective.

Now we look at the Mayer-Vietoris sequence:

$$
\begin{array}{ccccccccc}
\cdots & \cdots & \cdots & \cdots & H_3(C) & \xrightarrow{J_3} & H_3(A) \oplus H_3(B) & \xrightarrow{K_3} & H_3(N) \\
& & & & \downarrow \partial_3 & & \downarrow \partial_3 & & \\
& & & & H_2(C) & \xrightarrow{J_2} & H_2(A) \oplus H_2(B) & \xrightarrow{K_2} & H_2(N) \\
& & & & \downarrow \partial_2 & & \downarrow \partial_2 & & \\
& & & & H_1(C) & \xrightarrow{J_1} & H_1(A) \oplus H_1(B) & \xrightarrow{K_1} & H_1(N) \\
& & & & \downarrow \partial_1 & & \downarrow \partial_1 & & \\
& & & & H_0(C) & \xrightarrow{J_0} & H_0(A) \oplus H_0(B) & \xrightarrow{K_0} & H_0(N) & \rightarrow 0
\end{array}
$$

The diagonal arrows are the connecting homomorphism in the Mayer Vietoris sequence; and recall that $J_i = (\iota_{A*}, \iota_{B*})$ and $K_i = \kappa_{A*} - \kappa_{B*}$ in degree i. Strike out all terms which are trivial. Write down all non-trivial terms we already know. Then prove the following:

6. $H_n(N_g) = 0$ for $n \geq 3$.

7. J_0 is mono and thus the connecting homomorphism $\partial_* : H_1(N) \rightarrow H_0(C)$ is trivial. So the last three terms form a short exact sequence

$$
0 \rightarrow H_0(C) \rightarrow H_0(A) \oplus H_0(B) \rightarrow H_0(N) \rightarrow 0.
$$

of free groups of rank 1, 2 and 1, resp.. Clearly $H_0(N) = \mathbb{Z}$.

8. K_1 is epi.
(9) \(J_1([s]) = (2[a], 2[b_1] + \ldots + 2[b_{g-1}]). \) Thus it is mono.

(10) Conclude \(H_2(N) = 0. \)

(11) There is a short exact sequence

\[
0 \rightarrow \mathbb{Z} \xrightarrow{J_1} \mathbb{Z} \oplus \mathbb{Z}^{g-1} \xrightarrow{K_1} H_1(N) \rightarrow 0
\]

from which you can compute \(H_1(N) \), remembering the Elementary Divisor Theorem. Beware, — it is not \((\mathbb{Z}/2\mathbb{Z})^g\).

Exercise 9.3 (Self-maps of the torus)

Let \(\mathbb{T} = S^1 \times S^1 \) denote the torus, the homology of which we know: Refering to the figure below:

(0) \(H_0(\mathbb{T}) = \mathbb{Z}; \)

(1) \(H_1(\mathbb{T}) \cong \mathbb{Z} \oplus \mathbb{Z} \) with generators \([a], [b]\) represented by the curves \(a, b \); and

(2) \(H_2(\mathbb{T}) \cong \mathbb{Z} \) with generator represented by the 2-chain \(\alpha - \beta \) given by the two triangles.

Let \(f : \mathbb{T} \rightarrow \mathbb{T} \) be the self-map as in the figure: it is determined by \(f(a) = a, f(b) = b' \) and \(f(c) = b \). Thus it fixes the bottom side \(a \) of the shaded triangle and slides its top point to the left, and it fixes the top side \(a \) of the unshaded triangle and slides its bottom point to the right. It seems prima vista not continuous along \(c \), but it is continuous.

Compute \(f^* : H_i(\mathbb{T}) \rightarrow H_i(\mathbb{T}) \) in all degrees \(i \).

Remark: Such a map is called a Dehn-twist. They generate the mapping class group of any surface, which is the group of isotopy classes of orientation-preserving homeomorphisms.

A Dehn-twist \(f \) on a torus.

Exercise 9.4 (Invariance of the boundary)

Let \(M \) and \(N \) denote manifolds of the same dimension; we allow both to have non-empty boundary \(\partial M \) resp. \(\partial N \). Prove: Any homeomorphism \(f : M \rightarrow N \) must send the boundary of \(M \) to the boundary of \(N \); furthermore, \(f \) restricts to a homeomorphism \(g = f| : \partial M \rightarrow \partial N \).

Exercise 9.5 (Brouwer Fix Point Theorem)

Use homology groups to prove: **Every continuous self-map** \(f : \mathbb{D}^n \rightarrow \mathbb{D}^n \) **has at least one fixed point.**

Exercise 9.6 (Mapping tori)

Let \(\varphi : F \rightarrow F \) be any map. Its **mapping torus** is the space \(T(\varphi) = (F \times [0,1])/\sim \), where \((x, 0) \sim (\varphi(x), 1) \). There
is an obvious map \(\pi: T(\varphi) \to [0,1]/(0 \sim 1) = S^1 \). The inverse image of each point \(t \in S^1 \) is homeomorphic to \(F \).
If the map \(\varphi \) is a homeomorphism, \(T(\varphi) \) is a so-called fibre bundle over \(S^1 \) with fiber \(F \).
Decompose \(S^1 = S^1_+ \cup S^1_- \) into an upper and lower hemisphere and correspondingly \(E = T(\varphi) \) into \(E_+ = \pi^{-1}(S^1_+) \) and \(E_- = \pi^{-1}(S^1_-) \).
(a) Use the Mayer-Vietoris sequence to show that there is a long exact sequence of the form

\[
\cdots \to H_n(F) \xrightarrow{id - \varphi_*} H_n(F) \to H_n(E) \to H_{n-1}(F) \to \cdots
\]

Examples:
(1) If \(\varphi = id_F \), then \(T(\varphi) \cong F \times S^1 \).
(2) If \(F = [0,1] \) and \(\varphi(t) = 1 - t \), then \(T(\varphi) \) is a Möbius band.
(3) If \(F \) is discrete with \(n \) points and \(\varphi \) some permutation, then \(T(\varphi) \) is an \(n \)-fold covering of \(S^1 \) with as many components as \(\varphi \) has cycles (counting the fixed points as 1-cycles).
(4) If \(F = S^1 \) and \(\varphi(x,y) = (-x,y) \), then \(T(\varphi) \) is the Klein bottle.

(b) Determine the homology of two of these examples.

Max Dehn (1878 - 1952) made important contributions in low-dimensional topology.