Aufgaben zur Topologie I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2019/20

Blatt 9

due by: 11. 12. 2019

Exercise 9.1 (Suspension isomorphism for a homology theory) Let h_* denote a homology theory. Prove from the Eilenberg-Steenrod axioms alone that there is for every space X and all $n \in \mathbb{Z}$ a suspension isomorphism

$$\sigma \colon h_n(X, *) \longrightarrow h_{n+1}(\Sigma X, *)$$

where ΣX is the unreduced suspension and $h_*(-,*)$ denotes the relative homology with respect to a point. Assume that h_* satisfies the dimension axiom with coefficient group $h_0(pt) = G$. Conclude that $h_n(\mathbb{S}^m,*) \cong G$ if n = m, and $h_n(\mathbb{S}^m,*) = 0$ else.

A non-orientable surface of genus $g \ge 1$.

Exercise 9.2 (Homology of non-orientable surfaces)

A non-orientable surface $N = N_g$ of genus $g \ge 1$ is a connected sum of projective planes; see the figure above, the

notation of which we use throughout. We have the decomposition $N = A \cup B$ and $C = A \cap B$:

First, compute the homology of the three parts:

- (1) $A \simeq \mathbb{S}^1$ and $[a] \in H_1(A) \cong \mathbb{Z}$ is a generator.
- (2) $B \simeq \mathbb{S}^1 \lor \ldots \lor \mathbb{S}^1$ (with g 1 copies of \mathbb{S}^1) and $[b_1], \ldots, [b_{g-1}] \in H_1(B)$ are generators.
- (3) $C \cong \mathbb{S}^1$ and $[s] \in H_1(C)$ is a generator.

Let us write $s_A := \iota_A(s)$ and $s_B := \iota_B(s)$. Next prove the following statements, using a triangulation of the spaces A and B.

- (4) There is a 2-chain $\alpha \in S_2(A)$ with boundary $\partial(\alpha) = s_A + 2a$ and there is 2-chain $\beta \in S_2(B)$ with boundary $\partial(\beta) = s_B + 2b_1 + \dots + b_{g-1}$.
- (5) Thus for the homology classes we have $\iota_{A*}([s]) = 2[a]$ in $H_1(A)$ and $\iota_{B*}([s]) = [s_B] = 2[b_1] + \dots 2[b_{g-1}]$. Conclude that $J_1 = (\iota_{A*}, \iota_{B*})$ is injective.

Now we look at the Mayer-Vietoris sequence:

$$H_{3}(C) \xrightarrow[J_{3}]{} H_{3}(A) \oplus H_{3}(B) \xrightarrow[K_{3}]{} H_{3}(N)$$

$$\xrightarrow{\partial_{*}} H_{2}(C) \xrightarrow[J_{2}]{} H_{2}(A) \oplus H_{2}(B) \xrightarrow[K_{2}]{} H_{2}(N)$$

$$\xrightarrow{\partial_{*}} H_{1}(C) \xrightarrow[J_{1}]{} H_{1}(A) \oplus H_{1}(B) \xrightarrow[K_{1}]{} H_{1}(N)$$

$$\xrightarrow{\partial_{*}} H_{0}(C) \xleftarrow[J_{2}]{} H_{0}(A) \oplus H_{0}(B) \xrightarrow[K_{0}]{} H_{0}(N) \longrightarrow 0$$

The diagonal arrows are the connecting homomorphism in the Mayer Vietoris sequence; and recall that $J_i = (\iota_{A*}, \iota_{B*})$ and $K_i = \kappa_{A*} - \kappa_{B*}$ in degree *i*. Strike out all terms which are trivial. Write down all non-trivial terms we already know. Then prove the following:

- (6) $H_n(N_g) = 0$ for $n \ge 3$.
- (7) J_0 is mono and thus the connecting homomorphism $\partial_* : H_1(N) \to H_0(C)$ is trivial. So the last three terms form a short exact sequence

$$0 \to H_0(C) \to H_0(A) \oplus H_0(B) \to H_0(N) \to 0.$$

of free groups of rank 1, 2 and 1, resp.. Clearly $H_0(N) = \mathbb{Z}$.

(8) K_1 is epi.

- (9) $J_1([s]) = (2[a], 2[b_1] + \ldots + 2[b_{g-1}])$. Thus it is mono.
- (10) Conclude $H_2(N) = 0$.
- (11) There is a short exact sequence

$$0 \longrightarrow \mathbb{Z} \xrightarrow{J_1} \mathbb{Z} \oplus \mathbb{Z}^{g-1} \xrightarrow{K_1} H_1(N) \longrightarrow 0$$

from which you can compute $H_1(N)$, remembering the Elementary Divisor Theorem. Beware, — it is not $(\mathbb{Z}/2\mathbb{Z})^g$.

Exercise 9.3 (Self-maps of the torus)

Let $\mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$ denote the torus, the homology of which we know: Referring to the figure below: (0) $H_0(\mathbb{T}) = \mathbb{Z}$;

(1) $H_1(\mathbb{T}) \cong \mathbb{Z} \oplus \mathbb{Z}$ with generators [a], [b] represented by the curves a, b; and

(2) $H_2(\mathbb{T}) \cong \mathbb{Z}$ with generator represented by the 2-chain $\alpha - \beta$ given by the two triangles.

Let $f: \mathbb{T} \to \mathbb{T}$ be the self-map as in the figure: it is determined by f(a) = a, f(b) = b' and f(c) = b. Thus it fixes the bottom side a of the shaded triangle and slides its top point to the left, and it fixes the top side a of the unshaded triangle and slides its bottom point to the right. It seems prima vista not continuous along c, but it is continuous. Compute $f_*: H_i(\mathbb{T}) \to H_i(\mathbb{T})$ in all degrees i.

Remark: Such a map is called a Dehn-twist. They generate the mapping class group of any surface, which is the group of isotopy classes of orientation-preserving homeomorphisms.

A Dehn-twist f on a torus.

Exercise 9.4 (Invariance of the boundary)

Let M and N denote manifolds of the same dimension; we allow both to have non-empty boundary ∂M resp. ∂N . Prove: Any homeomorphism $f: M \to N$ must send the boundary of M to the boundary of N; furthermore, f restricts to a homeomorphism $g = f |: \partial M \to \partial N$.

Exercise 9.5 (Brouwer Fix Point Theorem) Use homology groups to prove: **Every continuous self-map** $f: \mathbb{D}^n \to \mathbb{D}^n$ has at least one fixed point.

Exercise 9.6* (Mapping tori)

Let $\varphi: F \to F$ be any map. Its mapping torus is the space $T(\varphi) = (F \times [0,1]) / \sim$, where $(x,0) \sim (\varphi(x),1)$. There

is an obvious map $\pi: T(\varphi) \to [0,1]/(0 \sim 1) = \mathbb{S}^1$. The inverse image of each point $t \in \mathbb{S}^1$ is homeomorphic to F. If the map φ is a homeomorphism, $T(\varphi)$ is a so-called fibre bundle over \mathbb{S}^1 with fiber F.

Decompose $\mathbb{S}^1 = \mathbb{S}^1_+ \cup \mathbb{S}^1_-$ into an upper and lower hemisphere and correspondingly $E = T(\varphi)$ into $E_+ = \pi^{-1}(\mathbb{S}^1_+)$ and $E_- = \pi^{-1}(\mathbb{S}^1_-)$.

(a) Use the Mayer-Vietoris sequence to show that there is a long exact sequence of the form

$$\dots \to H_n(F) \xrightarrow{\mathrm{id} -\varphi_*} H_n(F) \to H_n(E) \to H_{n-1}(F) \to \dots$$

Examples:

- (1) If $\varphi = \mathrm{id}_F$, then $T(\varphi) \cong F \times \mathbb{S}^1$.
- (2) If F = [0, 1] and $\varphi(t) = 1 t$, then $T(\varphi)$ is a Möbius band.

(3) If F is discrete with n points and φ some permutation, then $T(\varphi)$ is an n-fold covering of \mathbb{S}^1 with as many components as φ has cycles (counting the fixed points as 1-cycles).

(4) If $F = \mathbb{S}^1$ and $\varphi(x, y) = (-x, y)$, then $T(\varphi)$ is the Klein bottle.

(b) Determine the homology of two of theses examples.

Max Dehn (1878-1952) made important contributions in low-dimensional topology.