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Exercise 6.1 (A surface and a curve)
Let F be a surface of genus 2 and let A and B the subspaces as indicated in the two drawings. Both subspaces are
curves, so homoemorphic to S1; but A is separating and B is non-separating. Consider the long exact sequence of
the pair (F,A) resp. of (F,B) and compute as many homology groups as possible. (Note: In the lecture we did this
already for the subspace A; use your notes as a warm-up.)

A surface of genus 2 and two curves A and B.

Exercise 6.2 (Elementary Divisor Theorem for abelian groups)
The Elementary Divisor Theorem (or Smith Normal Form) says: Any finitely generated abelian group C is
isomorphic to a direct sum of cyclic groups.

The summands are isomorphic to Z or to Z/n for some n > 1. By the Chinese Remainder Theorem, any Z/n is
isomorphic to

Z/n ∼= Z/p1k1 ⊕ . . .⊕ Z/prkr , if n = p1
k1 · . . . · prkr

is the prime decomposition of n. Therefore A decomposes into a direct sum of infinite cyclic modules and finite
modules of prime power order. If we denote the first number by R0(C) and the second numbers by Rpk(C), then
theses numbers form a complete set of invariants.
You can find the proof in many books, i.e., in Hilton-Wylie, pp. 158 - 160. (The theorem is true for finitely generated
modules over any principal domain.) The proof uses the Stacked Bases Theorem: If A is a submodule of a free module
B of rank n, then A is also free of rank m ≤ n and there is a basis a1, . . . , am of A and a basis b1, . . . , bn of B and
positive numbers λ1, . . . , λm, such that
(1) ai = λibi for i = 1, . . . ,m, and
(2) λi divides λi+1 for i = 1, . . . ,m− 1.
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An exampe of the Elementary Divisor Theorem, from Hilton-Wylie: Homology Theory, p. 163.
Peter Hilton (1923 - 2010) was a british mathematician. As a young man he worked during World War II in the
british decoding department in Bletchley park; he occurs in the movie The Imitation Game on Alan Turing. Hilton
is famous for his contributions to homotopy theory. Shaun Wylie, although less famous, was the PhD supervisor of
Frank Adams.

a) Learn the above.
b) Read the example.

c) Then compute the simplicial homology H41 (X) of the space X we obtain by attaching three 2-cells to a figure-eight
S1 ∨ S1 (with one sphere denoted a, the other b) in the way the following drawing determines:

A space obtained by gluing a 5-gon, a 2-gon and 9-gon together.

Exercise 6.3 (Long exact sequence of a triple )
Let X ⊃ Y ⊃ Z be a triple of spaces. Find a short exact sequence of chain complexes such that its long exact
homology sequence is

. . . −→ Hn+1(X,Y ) −→ Hn(Y, Z) −→ Hn(X,Z) −→ Hn(X,Y ) −→ Hn−1(Y, Z) −→ . . .
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The last (and the first) arrow is called the connecting homomorphism of the triple. Show that it factors as
Hn(X,Y ) → Hn−1(Y ) → Hn−1(Y, Z), where the first map is the connecting homomorphism of the pair (X,Y )
and the second map is induced by the inclusion (Y, ∅)→ (Y, Z).

Exercise 6.4 (Testing a cycle)
Assume A is a chain complex over Z and a ∈ An is a cycle. We want to test, if a is a boundary or not. Consider
the chain complex B obtained from A by attaching a new element b in degree n + 1, to be precise: with Bn+1 =
An+1 ⊕ Z〈b〉 and Bk = Ak for all k 6= n+ 1 and ∂(b) = a. We set C = B/A.

(1) Read off from the long exact homology sequence associated to E : 0 → A → B → C → 0, if a is a boundary
or not.

(2) Assume Hn(B) and Hn(A) are finitely generated and free. How can we conclude from the ranks of Hn(A)
and Hn(B), whether a is a boundary ?

(3) Assume Hn(B) is finitely generated. Show that Hn(A) is finitely generated.

(4)∗ Still under the assumptions of (3), assume furthermore we know all the numbers R0 and Rpk for H∗(A) and
H∗(B). Can we conclude, which multiples of a are boundaries ?

Exercise 6.5 (Tensor products of K-modules)
Let A and B be two modules over a commutative ring K with unit. Their tensor product A ⊗ B is the K-module
defined as follows. We consider A×B, the direct sum (or product); in the free K-module FK(A×B) generated by
this set we consider the relations:

• (a1 + a2, b) ∼ (a1, b) + (a2, b) for a1, a2 ∈ A and b ∈ B;

• (a, b1 + b2) ∼ (a, b1) + (a, b2) for a ∈ A and b1, b1 ∈ B;

• λ(a, b) ∼ (λa, b) ∼ (a, λb) for λ ∈ K, a ∈ A and b ∈ B.

Then we define A⊗K B := FK(A× B)/∼ . The equivalence class of (a, b) is denoted by a⊗ b and is called a basic
tensor.

The following properties (1) - (4) are obvious; prove only (5) und (6):

(1) A⊗K (B ⊗K C) ∼= (A⊗K B)⊗K C

(2) A⊗K B ∼= B ⊗K A

(3) A⊗K (
⊕

iBi) ∼=
⊕

i(A⊗K Bi)

(4) 0⊗K B ∼= 0 ∼= A⊗K 0

(5) A⊗K K ∼= A

(6) HomK(A⊗K B,C) ∼= HomK(A,HomK(B,C))

This last property (6) is the universal property of the tensor product: For any K-bi-linear function f : A×B → C
there is exactly one K-linear map F : A⊗B → C such that F (a⊗ b) = f(a, b).

For the case K = Z and n > 1 prove the following:

(7) Z⊗Z Z/n ∼= Z/n, — well, this is a special case of (5).

(8) Z/n⊗Z Z/m ∼= Z/k, where k = gcd(n,m) is the greatest common divisor of n and m.

(9) Z/n⊗Z Q ∼= 0.
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The properties (3), (7) and (8) allow us to compute A⊗B for any two finitely generated abelian groups.

For the case K = F a field, prove the following:
If {a1, . . . , an} is a basis for the vector space A, and {b1, . . . , bm} a basis for the vector space B, then the basic
tensors ai ⊗ bj for all i and j forms a basis for A⊗F B. Thus dim(A⊗F B) = dimA · dimB.

Exercise 6.6∗ (Decomposition of chain complexes)
(1) Let

C : 0← C0 ← C1 ← · · · ← CN−1 ← CN ← 0

be a bounded chain complex of finitely generated free abelian groups. Show that it splits as a direct sum of finitely
many subcomplexes, each of which is of the form

0← Z← 0 or 0← Z k←− Z← 0

for some non-zero k ∈ Z, up to shifts to the left and right.
(Hint: Use the Elementy Divisor Theorem (Smith normal form) for integer matrices. But do this carefully: start
with ∂ : C1 → C0, then ∂ : C2 → C1 and so on up to ∂ : CN → CN−1. )
(2) Show that, if we had started with a bounded chain complex of finite-dimensional vector spaces over a field F
instead, then it splits as a direct sum of finitely many subcomplexes of just two types, namely 0 ← F ← 0 and

0← F id←− F← 0.

(3) Thus any bounded chain complex of finite-dimensional vector spaces is isomorphic to one with chain modules of
the form Cn = Bn ⊕An ⊕Bn−1, where Bn denotes the boundaries of degree n, and where the boundary operator

∂ : Cn = Bn ⊕An ⊕Bn−1 � Bn−1 ↪→ Bn−1 ⊕An−1 ⊕Bn−2 = Cn−1

is the projection of Cn onto Bn−1 composed with the inclusion of Bn−1 into Cn−1. It follows that the homology is
Hn(C) ∼= An for all n.
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