Aufgaben zur Topologie I

Prof. Dr. C.-F. Bödigheimer Wintersemester 2019/20

Blatt 5

due by: 13.11.2019

Witold Hurewicz (1904 - 1956), polish-american mathematician, one of the pioniers of homotopy theory. He studied in Warsaw, Vienna, Amsterdam and became a professor at the MIT.

Exercise 5.1 (Snake Lemma)

Consider the following commutative diagrame of modules and homomorphisms over K.

$$\begin{array}{c|c} 0 \longrightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} C \longrightarrow 0 \\ & \alpha & \beta & \gamma & \gamma \\ 0 \longrightarrow A' \xrightarrow{\iota'} B' \xrightarrow{\pi'} C' \longrightarrow 0 \end{array}$$

We assume that the upper and lower sequence is exact.

- (1) Show that there is a connecting homomorphism $d: \ker(\gamma) \longrightarrow \operatorname{coker}(\alpha)$.
- (2) Show that there is an exact sequence

$$0 \to \ker(\alpha) \to \ker(\beta) \to \ker(\gamma) \stackrel{d}{\longrightarrow} \operatorname{coker}(\alpha) \to \operatorname{coker}(\beta) \to \operatorname{coker}(\gamma) \to 0$$

where all unnamed maps are induced by ι and π resp. by ι' and π' .

1

Exercise 5.2 (Normalized chains)

In the singular chain complex S(X) of a space X we call a singular simplex c degenerate, if it is of the form $c = c' \circ s_i$ for a degeneracy map $s_i \colon \Delta^n \to \Delta^{n-1}$ and some (n-1)-chain c'.

- (1) Show that the degenerate chains generate a subcomplex $D(X) \subset S(X)$.
- (2) Show that the subcomplex is *natural*, i.e., for any continuous map $f: X \to Y$ the chain map S(f) sends the subcomplex D(X) to the subcomplex D(Y).

We call the quotient complex S(X)/D(X) the normalized chain complex $\bar{S}(X)$.

(3) We will see on the next exercise sheet that D(X) is contractible. Use this and the long exact homology sequence to prove: there is an isomorphism $H_n(X) = H_n(S(X)) \longrightarrow H_n(\bar{S}(X))$ for each $n \ge 0$.

Exercise 5.3 (Basic category theory)

Find and state the definitions of (1) a category, (2) of a functor, and (3) of a natural transformation betwen two functors. When is a morphism called isomorphism, when are two objects in a category called isomorphic? What is an automorphism (and the group of automorphisms) of an object in a category? What is a covariant functor, what is a contravariant functor? What is an equivalence of categories?

You can consult, for example, the following books:

S. MacLane: Categories for the working mathematician.¹

A. Dold: Lectures on Algebraic Topology, Chap. I, §1.

A. Hatcher: Algebraic Topology, Chap. 2, inside Sect. 2.3. p. 162-165.

C. Weibel: An introduction to homological algebra, Appendix A.

P. J. Hilton - U. Stammbach: A Course in Homological Algebra, chap. II.

S. Lang: Algebra, chap. I §11.

Saunders MacLane (1909-2005), US-american mathematician. He was a Ph.D. student in Göttingen and later became professor in Chicago; jointly with Samual Eilenberg he is the founder of homological algebra and of category theory.

Examples: Spaces and continuous maps form a category TOP; based spaces and based maps form a category TOP_0 . Forgetting the basepoint and sending (X, x_0) to X is a functor (called forgetful functor).

¹Or — imitating a famous joke by J. F. Adams in *Infinite Loop Spaces*, p. 204 — consult J. MacNab: *Categories for the idle mathematician - all you need to know*, Proc. Philharmonic Soc. Zanzibar 17 (1976), pp. 10-9.

Modules and homomorphisms over a ring \mathbb{K} form a category MOD – \mathbb{K} ; chain complexes over \mathbb{K} together with chain maps form a category ChMOD – \mathbb{K} ; they are a subcategory inside the category of all chain functions.

Exact sequences of modules or of chain complexes can be considered a category.

All coverings $p: X \to B$ of a fixed spaces B can be considered as a category COV(B), the morphisms being all commutative triangles:

Show the following:

- (1) The Hurewicz homomorphism hur: $\pi_1(X, x_0) \to H_1(X)$ is a natural transformation between which functors from which category to which ?
- (2) Sending a group G to its abelianization G^{ab} is a functor from the category GRP of groups to the category AbGRP of abelian groups. The Hurewicz isomorphism is a natural equivalence between which functors ?
- (3) The connecting homomorphism $\partial_* \colon H_n(C) \to H_{n-1}(A)$ is a natural transformation between which functors from which category to which ?
- (4) The automorphism group of an object $p: X \to B$ in the category COV(B) is the group of deck transformations of p.

Exercise 5.4 (Cones and suspensions of chain complexes)

First, recall what the cone and the suspension of a space X is. The quotient $CX := X \times [0,1]/X \times \{1\}$ is called the *cone* of X. The top layer $X \times \{1\}$ of the product becomes the tip point of the cone; call it N like north pole. Obviously, CX is always contractible; do you see the contraction ?

The bottom layer of the product is X, via the embedding $\iota: x \mapsto (x, 0)$. If we identify this bottom to a point S, like south pole, we get the suspension $\Sigma X := CX/X = (X \times [0, 1])/X \times \{1\} \sim N, X \times \{0\} \sim S$. It contains X as the equator $x \mapsto (x, \frac{1}{2})$.

Examples: $C\mathbb{S}^{n-1} \cong \mathbb{D}^n$ and $\Sigma\mathbb{S}^{n-1} \cong \mathbb{S}^n$

Remark: The sequence of spaces $X \to CX \to \Sigma X$ is called a *cofibration sequence* in homotopy theory; it is something like a 'short exact sequence of spaces' and thus one of the basic notions of homotopy theory.

(1) Now let A be a chain complex over some ring K. Its cone C(A) is constructed as follows: We set $C(A)_n := A_n \oplus A_{n-1}$ for all n and as differential ∂ we take

$$\partial = \begin{pmatrix} \partial^A & (-1)^n \operatorname{id} \\ 0 & \partial^A \end{pmatrix} : A_n \oplus A_{n-1} \longrightarrow A_{n-1} \oplus A_{n-2}$$

in matrix block form. So for $a \in A_n$ and $a' \in A_{n-1}$ we have $\partial(a, a') = (\partial(a) + (-1)^n a', \partial(a'))$. Show that this is a chain complex and find a contraction.

- (2) The suspension ΣA of A is the shifted chain complex, so $(\Sigma A)_n := A_{n-1}$ with the obvious shifted differential. Obviously, $H_n(\Sigma A) = H_{n-1}(A)$ for all n.
- (3) Show: There is an obvious inclusion of A into C(A) with $C(A)/A \cong \Sigma A$.
- (4) So there is a short exact sequence

$$\mathcal{E}: 0 \to A \to C(A) \to \Sigma A \to 0$$

of chain complexes. Conclude that the connecting homomorphisms in the long exact homology sequence of \mathcal{E} are isomorphisms for all n.

Exercise 5.5 (Naturality of the connecting homomorphism)

Formulate and prove the naturality of the connecting homomorphisms in the long exact homology sequence of a short exact sequence of chain complexes.

Exercise 5.6^{*} (Cubical homology) Recall the definitions of Exercise 4.4. We call a cubic *n*-chain $c: \mathbb{I}^n \to X$ degenerate, if *c* factors, for some i = 1, ..., n, through the projection

$$p_i: \mathbb{I}^n \to \mathbb{I}^{n-1}, p_i(t_1, \dots, t_n) = (t_1, \dots, t_{i-1}, \hat{t_i}, t_{i+1}, \dots, t_n)$$

onto all variables except the *i*-th variable, so $c = c' \circ p_i$ for some cubic (n-1)-chain c'.

a) Show: the degenerate cubic chains form a subcomplex $D(X) \subset K(X)$.

We call the quotient complex $K^{\Box}(X) := K(X)/D(X)$ the cubical homology complex and call its homology $H_n^{\Box}(X)$ the cubical homology of X.

- b) Compute the cubical homology of a point. Ah !!!! See, how wonderful, it has the homology we expect !
- c) How can we compare the singular with the cubical homology ? in other words, is there a transformation $T: H_n(X) \longrightarrow H_n^{\square}(X)$? Use the functions $\theta_n: \mathbb{I}^n \to \Delta^n, (t_1, \ldots, t_n) \mapsto (s_0, s_1, \ldots, s_n)$ with $s_0 = 1 t_1, s_1 = t_1(1 t_2), \ldots, s_{n-1} = t_1t_2 \cdots t_{n-1}(1 t_n), s_n = t_1t_2 \cdots t_{n-1}t_n$ to find a chain map $\Theta: S(X) \to K^{\square}(X)$, which induces a natural transformation T.

[If you want to see, why T is an isomorphism for all X, see F. Toenniessen: Topologie, p. 248-260.]

d)* The tensor product $C := A \otimes B$ of two chain complexes over a ring \mathbb{K} is defined by $C_n := \bigoplus_{i+j=n} A_i \otimes B_j$. The differential on the summand $A_i \otimes B_j$ of C_n is

$$\partial^C(a \otimes b) = \partial^A(a) \otimes b + (-1)^j a \otimes \partial^B(b)$$

for an elementary tensor. (This is a kind of Leibniz rule.)

Show that this is indeed a chain complex, i.e., $\partial \circ \partial = 0$ holds.

e)** For any two spaces we define a product

$$\times \colon K_p(X) \otimes K_q(Y) \longrightarrow K_{p+q}(X \times Y),$$

by sending the elementary tensor $a \otimes b$ with $a: \mathbb{I}^p \to X$ and $b: \mathbb{I}^q \to Y$ to the cartesian product $a \times b: \mathbb{I}^p \times \mathbb{I}^q \to X \times Y$. Show that this is a chain map $\times: K(X) \otimes K(Y) \to K(X \times Y)$. It does descend to a chain map of quotient complexes

$$\times \colon K_p^{\Box}(X) \otimes K_q^{\Box}(Y) \longrightarrow K_{p+q}^{\Box}(X \times Y),$$

and so it induces a product in cubical homology

$$\times \colon H_p^{\square}(X) \otimes H_q^{\square}(Y) \longrightarrow H_{p+q}^{\square}(X \times Y).$$

Is this product associative ? Does it have a unit ? Is it commutative ?