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Exercise 4.1 (Quasi-isomorphisms)

Let t: A — B be the inclusion of a subcomplex A of a chain complex B. Assume the following:

For each n and any b € B,, there exists some a € A,, and some b/ € B, 41 such that t(a) = b+ O(V').
Show that ¢ induces an ismorphism in homology ¢, = H,(¢): H,(A) — H,(B) for all n.

Remark: A chain map which induces isomorphisms in all homology groups is called a quasi-isomorphism.

Exercise 4.2 (Free and projective modules)

Let K be a commutative ring with unit. A K-module M is called free if it has a basis 6 C K, this means, each z € M
can be expressed as * = K1b1 + . .. + K, b, for finitely many uniquely determined basis elements by, ..., b, € B and
coefficients k1, ..., Kk, € K.

1. A free module is projective.

2. Any module is a quotient of a free (and thus of a projective) module.

3. Any submodule L C M with a projective quotient M[/L is a direct summand.
Let ¢: K — K’ be a ring-homomorphism; it makes K’ into a K-module.

4. If M is a K-module, then M’ := M ®k K’ is a K’-module.

5. If M is free over K, then M’ := M ®k K’ is free over K'.

Let K=2Z and let ¢,,: Z — Z/n be the obvious epimorphism. Clearly, any Z/n-module is also a Z-module, but a
Z-module is a a Z/n-module if and only if nz = 0 holds for any module element x.



6. M =Z/n is free over Z/n, but not over Z and not over any Z/nm for m > 1.

Exercise 4.3 (Acyclic vs. contractible chain complexes)
a) Let K be a commutative ring, and let P be a non-negatively graded chain complex of projective K-modules P,.
Assume that P is acyclic, i.e., all its homology groups are trivial. Show that P is contractible.

b) Give an example of a non-negatively graded chain complex of abelian groups, which is acyclic, but not contractible.

c¢) Show that the unbounded chain complex of projective Z/4-modules
A YRy JU R FV R

is acyclic, but not contractible.

L’opérateur bord.

Soit % un cube singulier de dimension #; nous allons définir certaines faces
particuliéres de w.

Soit H une partie & p éléments de 'ensemble {1, --- | n} et soit ¢ = n — p;
soit K le complémentaire de H, et ¢x l'application strictement croissante de K
sur l’ensemble {1, --- ¢}. 8i ¢ = 0 ou 1, nous définirons un nouveau cube singu-
lier Ayu, de dimension ¢, en posant:

Auw) (1, -+, %) = (Y1, -, yn)
ot les y; sont donnés par:
siteH, Ye= &
siteK, Yi = Tor(d-
Si H est réduit & un seul élément ¢, on écrit AT w au lieu de N{;yu.
On a done:
()\gu)(lu Sl ) =SB e A O k)
N1, ooy Tan) = (T, v, Bea, LT, s o ).

Ceci étant, nous appellerons bord du cube u de dimension n I’élément de

Q,1(X) défini par:

du = 2 (=D 0u — ).
i=1
La formule évidente:
Ao )\j’ = 7\;;; o A} < j)

entraine que ddu = 0. En outre, d applique D,(X) dans D, 1(X), car si u est
un cube dégénéré, Nu lest aussi pour? < n — 1, et Ao = A\w. I en résulte
que D(X) est un sous-groupe permis du groupe différentiel Q(X).

J.-P.Serre: Homologie singuliere des espaces fibres. Applications. Ann. Math. 54 (1951), 425-505, here page 440.
This is one of the most important articles in algebraic topology, by one of its greatest masters.

Exercise 4.4 (Wrong cubic homology)

We consider continuous maps c¢: I — X from the n-cube I" =1 x --- x I, and T = [0, 1] being the interval, to a
space X and call them singular n-cubes in X. They form the basis for the free Z-module K,,(X). For n < 0 we set
K, (X) = 0; and I° is just a point. Define face maps d?,d}: I""1 — 1" by

d?(to, LR 7tn71) - (t07 CIEIR 7ti71707ti7 R 7tn71)

and

d(to, .. vtno1) = (toy. . tict, Lits, ...ty 1).
They induce face operators 95,0} : K,(X) — K, _1(X) by setting 87(c) := c o d resp. 9; (c) := cod} for a basis
element ¢ € K, (X).

(i) Prove the following cubical identities:



1. 0% _100f=0{0d} for0<i<j<nandabe{0,1}

where the dots mean: if you like, define degeneracy maps s?, s} : I" — I"~! and prove relations between any two of
them and with the face maps.
Define a boundary operator 9: K, (X) — K,,_1(X) by

n

0=3"(~1) (8} - ).

=0

(i) Prove 900 =0.
So we have a chain complex K,(X). Its homology we call wrong cubical homology WHY(X) := H, (K.(X)).
What is wrong about it 7 — Well, see yourself:

(ii) Prove for X a point: WHY,(X) = Z for each n > 0.
(Hint: Do the computation similarly to the simplicial case: What are all singular cubes ? What is their
boundary ?) The result is not what we expected, since the dimension axiom is not satisfied; we will see later
how to correct this.

(iii) Show that any continuous map f: X — Y induces a chain map K,(f): K,(X) — K,(Y) and thus a
homomorphism WH,(f): WH5(X) — WH}(Y) between homology groups.

(iv) Show further, that WHY, is a functor from the category of topological spaces to the category of K-modules.

(v) Prove: If f ~ g: X — Y are homotopic, then K, (f) ~ K, (g) are chain homotopic.
Conclude that WH,(f) = WH5 (g).

Exercise 4.5 (The chain complex of chain functions)

Let C and D be two chain complexes over the ring K, with boundary operators 9° resp. OP. We define a chain
function f of degree k to be a collection of homomorphisms f,: C,, — D,4. Note that we do not assume any
compatibility with the boundary operators; also note that k& can be negative. Obviously, the chain functions of
degree k form a K-module Fj, := ChFuncy(C, D).

Furthermore, by declaring d(f) to be the chain function with

d(f)n =0 ofy — (=1)F f_1 009 for all n,

we obtain a homomorphism
d: Frp, — Fr_4

a) Show that d o d = 0, so that F' with this boundary operator is a chain complex.

b) Show that Zy(F'), the cycles of degree 0, are the chain maps (i.e., they satisfy P ofy = fa_10 80).
c¢) Show that By(F), the boundaries of degree 0, are all chain maps homotopic to zero.

d) Show that Hy(F') are the chain homotopy classes of chain maps C — D.

e*) What are Z,(F), B, (F) and H,(F) forn>07?

Exercise 4.6 (Cycles and geometric intuition)

Let X be a space and ¢ = ) ftaCq an n-cycle. The index « is in some finite index set A. The coefficients p, are
integers and we can assume g, 7 0. Written out in basic chains with sign £1, we have altogether r := > 4 [1al
terms.

We take, for each o € A, exactly |pq| copies of an n-simplex and denote it by A(a, k), where k = 1,..., |l
Altogether there are 7 such simplices and we put them together to form a space P (c) = | |A(a, k). We can regard ¢



as a continuous map f,: P(c) = X, defined by ¢, on each A(a, k). Each simplex has n + 1 faces, which we denote
by A;(e, k), where i =0,1,...,n.

From the cycle condition
0=0(a) =Y (1) 0i(ca) =Y > (~1)"(caody) (1)

A i=0 A =0
we conclude that for all these r(n 4 1) faces this sum must, via their signs, cancel in S,,_1(X). This means for any
basic (n-1)-chain b € B,,_1(X) the following: Set J(b) := {(«a,7) € A X [n]|cq © d; = b}, where [n] denotes the set
{0,1,...,n}. For almost all b the set J(b) must be empty. For all others

Y. (Dpa=0 (2)

(e,1)€J(b)

must hold. In other words, for each b, we have

Z lal = lthal (3)

(e, 1)€J(b), (—1)*pa>0 (e, 1) €J(b), (—1)*pa <0

when we split the sum in positive and negative coefficients (—1)*p,. So the two sets KT (b) resp. K~ (b) of triples
(a, k,i) with b = co 0d;, k = 1,..., |pa| and (=1)%sign(pe) = +1 resp. with b = ¢, 0d;, k = 1,..., |ua| and
(—1)"sign(ja) = —1 have the same size and we can choose a bijection m,: K+ (b) — K~ (b) with the property

(—1)"sign(ua) di(ca) = (=1)7 sign(up) 9;(cs), if my(a,k,i) = (B,1,5) (4)

Note that k£ and [ do not occur in the equation. And note that there are many choices for such a bijection or pairing.
We take the disjoint union of all K*(b) resp. of all K~ (b) and call them K™ resp. K~. The obvious bijection we
call m: KT — K.

Now recall P(c) = | |A(a, k). On each simplex we took the continous map co: A(a, k) — X. It follows from the
equation above, that ¢, and cg agree on their faces A;(«, k) resp. Aj(e, 1), if mp(a, k, i) = (8,1, 7).

Thus in P(c) we can identify the two faces A;(a, k) and A;(5,1) by declaring

Ai(Oé, k) = (to, ey tio1, 00, . ,tnfl) = (to, Ce ,tjfl, O,tj, C ,tnfl) S Aj(ﬂ, k) (5)
Call this space P(c, ) the tautological complex of the cycle ¢ with pairing 7. We have a well-defined map
fer Ple,m) — X,

which is ¢, on each A(«, k).
Now we want to investigate this space and this map.

(1) Show by an example with n =1 that P(c,7) depends on the choice of the pairing 7.

(2) Show that ¢ gives rise to a canonical n-cycle w, in P(c, ). Its homology class [w.] € H,(P(c, 7)) we call the
tautological class of P(c, ).

(3) Show that f.,([w.]) = [¢] in H,(X).

Remarks: (1) P(c, ) is a space for which one can define simplicial homology, as we did in Exercise 2.4. Obviously,
we can regards w,. as a simplicial cycle; and in H2(P(c,m)) the class [w,] is non-zero, because there are no
simplicial (n+1)-chains to kill it. Later we will see that the natural transformation H2 — H,, from simplicial
to singular homology is an isomorphism; thus [w,] is non-zero in H, (P(c, 7). But of course, this does not mean,
that f.[w—c] = [c], is non-zero.

(2) The space P(c,7) is the union of n-simplices and each (n-1)-simplex is in exactly two n-simples (related by the
pairing 7). One might think that P(c,7) is a manifold; but this is not the case. Nevertheless, it has many features
of a manifold and is called a pseudo-manifold.

(3) What about Z/2 as coefficients 7 What about Z/3 ?



