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Example 6. Let f(x, y) be a real valued function of class C* (i.e.,
with continuous partial derivatives of all orders) defined in a connected
open set D of points (x, y) in the Cartesian plane. For fixed D, the set 4
of all such functions is an abelian group under the operation of addition
of function values. Take C tobethe directsum AD AP AD 4 ;anelement
of C is then a quadruple (f, g, %, k) of such functions, which we denote
more suggestively as a formal “‘differential”’:

(g h k)=f+gdx+hdy+kdxdy.
Define d: C— C by setting

alf g b B= o dat dy+(—~—)dxdy

a1 *f
%0y 3y ox "
Cis a sum of the following three types: a constant f=a; an expression

That d?=01is a consequence of the fact that Any cycle in

From S.MacLane: Homology, p. 37.

Exercise 2.1(K-modules)

Let K be a commutative ring with unit 1. The rings we will consider are mainly from the following list of examples:
Z, the ring of integers; Z/n = Z/nZ, the ring of integers mod n; Q < R < C, the fields of rational, real resp. complex
numbers. Note that, for a prime p, the ring Z/p = F,, is also a field.

A K-module (or a module over K) is an abelian group A with an associative, bilinear and unital scalar action
K x A — A (in analogy with the axioms of the scalar multiplication of a field on a vector space). So if K is a field,
then A is a vector space.

Show for the other examples:

(1) Any abelian Group A is a Z-module.

(2) An abelian group A is a Z/n-module iff all elements a € A satisfy the equation na = a+...4a (n summands) =
0.

Let Fx(B) be the free K-module generated by the set B. Any K-module of this form, i.e., with a basis, is called
free. For free modules, show the following:

Fx(0) =

Fx(B;1 U Bs) & Fx(B1) ® Fk(Bsz). Thus Fx(B) 2 K" for a finite B with r elements.
(B)/Fk(B') = Fg(B — B')

Fx(B; x Bg) = Fg(B1) ®k Fk(Bs), in case you are familiar with the tensor product.
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(Universal property) For any function ¢: B — A from a set B to a K-module A there is exactly one homomor-
phism f: Fg(B) — A of K-modules, such that f(b) = ¢(b) for all b € B. In other words, there is a bijection
between the set of functions Func(B, A) and the of homomorphisms Homg (Fx (B), A).



Exercise 2.2 (Images and Kernels)
Let f: A — B be a homomorphism of K-modules.
(a) Show that f factors into a surjection 7 followed by an injection ¢ over the image J := im(f):

N A

J

(b) Show that there is an isomorphism ker(f @ g) = ker(f) @ ker(g) for the direct sum f @ g: A® B — A’ ® B’ of
two homomorphisms f: A — B and g: A’ — B'.

(¢) Show that there is an isomorphism im(f @ ¢) = im(f) @ im(g) for the direct sum f®g: A® B — A’ @ B’ of
two homomorphisms f: A — B and g: A’ — B’.

Exercise 2.3 (Simplicial identities)

For each natural number n > 0 let [n] denote the set {0,1,...,n} with the natural order 0 < 1 < ... < n. For
any two m,n we consider all weakly monotone functions f: [m] — [n]. In particular, we have for ¢ = 0,1,...,n the
face maps d;: [n — 1] — [n] defined by the properties (1) injective and (2) omitting ¢ in the image. And there are
for j = 0,1,...n — 1 likewise degeneracy maps s;j: [n] — [n — 1] defined by the properties (3) surjective and (4)
repeating j in the image.

Comment: The geometric interpretation explains the names: if we regard k € [n] as the vertex ey of an n-simplex
A", then a monotone function f: [m] — [n] as above determines an affine map |f|: A™ — A™ by affine extension.
Then |d;| is the inclusion of the i-th face and |s;| is the projection onto the j-th face.

(1) Show the following identities (of which we have seen (a) in the lecture course):
(a) dj od; :diodj,1 fOTi<j
(b) sjos; =s;08j41 fori<j

diOSj_1 for i < j,
(c) sjodi= {idpy, fori=jori=j+1,
diq10s; fori>j+1.

(2) Show that for any monotone function f: [m] — [n] there is a unique decomposition into face maps and degeneracy
maps
f=di odiy, o...0d; 055 05j,0...08j,

forindices 0 <1 <ig<ip<nand 0<j1 <1 <...<js<mandn=m—s—+r.

(Hint: First reduce to the special cases where f is either injective or surjective.)

Exercise 2.4 (Simplicial homology)

Let us consider a space X which is made up of vertices, edges, triangles, tetrahedra, and so on. We will not define
the concept of a triangulated space (or polehedron) here; our examples are easy and the drawings are clear. They
show the torus T = S' x S!, the Klein Bottle KB and the real projective plane RP2.

They show vertices, edges (to be identified) and triangles with their names; the vertices have with respect to each
triangle they lie in a number 0, 1 or 2; this means: the edge opposite the vertex with the number ¢ is the ¢-th face.
For example, in the figure for the Klein Bottle the 0-th face of A is b, the 1-st face is ¢ and the 2-nd face is a. But
with respect to B the edge c is the 0-th face. Likewise, the 0-th face of an edge is its endpoint, i.e., the vertex with
the larger number (note that the numbering is chosen so that each edge has a well-defined direction, the same one
with respect to both of the triangles it lies in), and the 1-st face is its starting point.

To compute the (singular) homology groups of a space we need to consider the horribly large chain groups, their
cycles and boundaries given by all continuous maps A™ — X. But is this really necessary ? — The answer is no,
we can do these computations with a much smaller chain complex. Namely, it is enough to consider only the chain



complex given in degree 0 by the free K-module on the set of vertices, in degree 1 by the free K-module on the set
of edges, and in degree 2 by the free K-module on the set of triangles. The boundary operator is defined as in the
singular world, using the face maps described above. We call this chain complex the simplicial chain complex S5 (X)
of X and its homology groups we denote by H2 (X ;K). We will later establish an isomorphism H2(X) = H,,(X),
if X can be triangulated. But for our instant satisfaction we can do some computations already here and now.

(a) Compute the simplicial homology of the torus T , first with coefficients K = Z and then with K = Z/2.

(b) Compute the simplicial homology of the Klein Bottle KB, first with K = Z and then with K = Z/2.

(c) Compute the simplicial homology of the projektive Plane RP?, first with K = Z and then with K = Z/2.
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Simplicial presentation of a torus, the Klein Bottle and the projective plane.

Exercise 2.5 (Five-Lemma)
Consider the commutative diagrame of K-modules with exact rows:

A5 A4 A3 A2 Al
fsl f4l fsi f2l f1i
Bs By Bs By Ay

Prove:

(a) If f5 and fy are epimorphisms and f; a monomorphism, then f3 is an epimorphism.
(b) If f5 and f4 are monomorphisms and f5 an epimorphism, then f5 is a monomorphism.

Exercise 2.6* (Grad, rot and div)
(1) We consider for an open subset X of R? real vector spaces defined as



Co(X) = C(X), the space of all real smooth functions f(x,y) on X,

C_1(X) = C=(X) x C*(X), to be interpreted as the space of all vector fields v(z,y) = (vi(x,y),v2(x,y)) on X,
C_5(X) = C>*(X), now to be thought as the space of all volume forms on X.

There are linear maps

of o

grad: Co(X) > C1(X), grad() = (52, 50)

and 5 )
rot: C_1(X) = C_o(X), rot(vy,vs) = (’TQ;Q _ 871;1.

Show with the help of formulas from vector calculus:
rot o grad = 0.

Interpret this as a boundary operator, define chains, cycles and boundaries and homology groups Ho(X) and
H_1(X). For arbitrary X, find the dimension of Hy(X), i.e., the dimension of the kernel of grad. When X is not
simply-connected, give an example of a vector field with zero rotation which is not the gradient of a function, thus

showing that H_1(X) is non-zero.

(2) Now consider an open subset X of R3. Set up the vector spaces of O-forms (funtions), of 1-forms (vector fields),
of 2-forms (again vector fields) and 3-forms (volume forms) and define the linear map grad, rot and now also the
divergence div of a vector field. Show that

rotograd =0 and divorot =0.

So we have again a chain complex. Can you compute some homology groups 7
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gdx+hdy with 0g/0y=0h/ox (in other words, an exact differential);
an expression k& dx dy. If the domain D of definition is, say, the interior’
of the square we can write the function £ as 9hdx for a suitable %, while
any exact differential can be expressed (by suitable integration) as the
differential of a function f. Hence, for this [ the only homology classes
are those yielded by the constant functions, and I ZC) is the additive
group of real numbers, The same conclusion holds if D is the interior ofa
circle, but fails if D ig, say, the interior of a circle with the origin deleted.
In this latter case an exact differential need not be the differential of a
function f. For example (—y dxL x dy)[(%24 y?) is not such.
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.... continued, ibidem, p.38.



