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Themen für Bachelorarbeiten

C. - F. Bödigheimer

1 Cubical Homology

The singular chain complex S•(X) of a space X has as a basis in degree n all
continouous map a : ∆n → X, the so-called singular simplices. If we replace
these by singular cubes c : In → X, where In = [0, 1]n, we get the cubical
chains; we have seen in Exercises 4.4 and 5.6 that we need to divide out the
degenerate cubes; in the end we have the cubical complex K•(X) with the
appropriate differential ∂ : Kn(X)→ Kn−1(X). Thus we can define cubical
homology groups HKn(X) := Hn(K•(X), ∂) as the homology of the chain
complex K•(X).

The goal of this bachelor thesis is the Theorem: HK∗(X) is a homology
theory. Furthermore, there is a natural equivalence Ψ: H∗(X)→ HK∗(X).
One needs to prove the Eilenberg-Steenrod axioms and establish such an
equivalence. A prominent place in the literaure is [Serre, Chap. II.1]; for a
textbook see [Toe, 7.5 ].
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2 Transfer

For a continous map f : X → Y we have we have in each degree k an induced
map in homology f∗ : Hk(X)→ Hk(Y ). But for finite coverings ξ : (̃X)→ X
with n sheets we have in addition a homomorphism Tξ : Hk(X) → Hk(X̃),
defined as follows: to any singular simplex a : ∆k → X in Sk(X) we associate
ã := ã1 + . . . + ãn in Sk(X̃), where the ãi are the lifts of a, so a = ξ ◦ ãi.
There are exactly n such lifts. This association a 7→ ã is a chain map
Sk(X) → Sk(X̃) and we call the induced homomorphism Tξ : Hk(X) →
Hk(X̃) the transfer homomorphism of ξ. It is natural with respect to maps
of coverings; and it has the important property

ξ∗ ◦ Tξ = n : Hk(X) −→ Hk(X) ,

the multiplication with n ∈ Z on Hk(X). This has important consequences,
for example: If X̃ is acyclic, then the reduced homology of X is all torsion
of order prime to n.

The goal of the bachelor thesis is to develop this theory in homology and
cohomology and apply it to several examples. A good reference is [Ha, 3.G].
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3 Generalized Borsuk-Ulam Theorem

The classical Borsuk-Ulam Theorem says, that for any map f : Sn → Rn
there must be a point x ∈ Sn with f(x) = f(−x). There are certain gener-
alisations for manifolds M instead of Sn with an involution instead of the
antipodal map of the sphere.

The goal of this bachelor thesis is to work out the first sections of [G-G].
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4 Combinatorics of Steenrod Squares

In the cohomology theory H∗(X;Z/2) with mod 2 coefficients there are
important operations

Sqi : Hn(X;Z/2) −→ Hn+i(X;Z/2) ,

called the Steenrod operation. They are natural homomorphism and satisfy
certain axioms, e.g. Sqi(α) = α · α for i = |α|; the multiplication in this
formula is the cup-product, which turns H(X) :=

⊕
k≥0H

k(X;Z/2) into a
graded, associative and graded-commutative ring with unit. [We will learn
this cup product in the summer term.] The definition of the Steenrod squares
is somewhat involved; there are homological constructions as in [Bre, VI.15
+ 16] and homotopical constructions as in [Ha, 4.L].

The goal of the bachelor thesis is to go back to the original article of Steenrod
[Ste] and understand the combinatorial background in Part I. Then one
follows the homological path and constructs these operations.
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5 Homology with local coefficients

In the definition of the homology Hk(X) the coefficients are in a fixed ring,
say the ring Z. There are geometric applications which suggest that it
might be a good idea to let the coefficients vary, i.e., the coefficient of a
singular simplex a : ∆k → X shall be in a ring Ax associated to the point
x ∈ X, where x = a( 1

n+1 , . . . ,
1

n+1) is the image under a of the barycenter
of the simplex ∆n. We assume that each Ax is isomorphic to Z, but it does
not make sense to say that all Ax are equal to Z. And we need to move
coefficients from Ax to Ay along a path w with w(0) = x and w(1) = y.

3



D
RA
FT

In fashionable words: A is a functor from the fundamental gruppoid Π0(X)
to the the categorie of commutative rings. The definition of the differential
∂ : Sn(X;A) → Sn−1(X;A) is a bit intricate. We call the homology of this
sinular chain complex the singular homology of X with coefficients in A.

The goal of this bachelor thesis is to develop this theory and give many
applications. A good introduction is [Ha, 3.H]; the connection to sheafs
is treated in [Spa, p. 360]. For the important example of the orientation
bundle, see [Bre, VI.7].
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6 2-fold Coverings and H1

Let Cov2(X) denote the set of isomorphism classes of 2-fold coverings of X.
From the theory of covering spaces we know a bijection between Cov2(X)
and the conjugacy classes of index-2 subgroups of π1(X,x0). The latter
subgroups in turn are exactly the kernels of homomorphisms π1(X,x0) →
Z/2.
Furthermore, if f : X → RP∞, the pull-back of the universal 2-fold-covering
S∞ → RP∞ along f gives a 2-fold covering of X. With the same f we can
pull-back the generator α ∈ H1(RP∞;Z/2) to f∗(α) ∈ H1(X;Z/2). (There
is also an obvious connection between 2-fold coverings and real line bundles
over X by taking the 0-dimensional sphere in the line over ich point, which
makes all this even more interesting.)

The goal of this bachelor thesis is to show: There is a bijection between
Cov2(X), the first cohomology group H1(X;Z/2) and the set of homotopy
classes [X,RP∞]. A good reference is [Hau, 4.3].
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7 Lefschetz Theory

Assume X has finite type homology over a field, i.e., all homology groups
H∗(X;F) with coefficients in a field F are finite-dimensional and almost all
are trivial. Then one can define to any self-map f : X → X a so-called
Lefschetz number

L(f) :=
∑
i

(−1)i Trace(Hi(f) : Hi(X;F)→ Hi(X;F)) .

This is a generalisation of the Euler number, since χ(X) = L(idX). The
famous Lefschetz Fixed Theorem says: If X is a compact polyhedron and
L(f) 6= 0, then f has a fixed point.
The theory needs the simplicial approximaion theorem as a tool. (There are
interesting applications for coincidence questions, for which Poincare duality
will be needed; see [Bre, VI.14].)

The goal of the bachelor thesis is to develop the theory, go over many ap-
plications and also try the Lefschetz coincidence theory.
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8 Euler number of a map

Assume X has finite type homology over Q, all homology groups H∗(X;Q)
with coefficients in Q are finite-dimensional and almost all are trivial. Then
one can define to any self-map f : X → X a so-called Euler number

χ(f) :=
∑
i

(−1)i dim(Hi(X;Q)/Ki) .
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where Ki is the union of the ascending chain of subvector spaces ker(fm∗ )
given by the kernels of the homomorphisms induced by the iteration of
fm∗ : Hi(X;Q)→ Hi(X,Q) in degree i ≥ 0. Clearly, this is a generalization
of the Euler number of a space, since χ(X) = χ(idX). In the same way
as the Lefschetz number of a map detects fixed points, this Euler number
detercs periodic points.

The goal of this bachelor thesis is to prove: For X a finite connected poly-
hedron, any self-map f : X → X has a periodic point, if χ(f) 6= 0.
The proof in [G-D, III.9] and the applications should be worked out in detail.
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