Exercises for Algebraic Topology II

Prof. Dr. C.-F. Bödigheimer Summer Term 2018

Blatt 12

due by: 16.07.2018

R. Thom, G. Reeb and J.-P. Serre, 1949 in Oberwolfach (from left to right)

Exercise 12.1 (Euler characteristic of a spectral sequence)

For a chain complex C_{\bullet} of abelian groups, which is of finite type, one defines the Euler characteristic as

$$\chi(C_{\bullet}) = \sum_{n} (-1)^{n} \operatorname{rank}(C_{n}) = \sum_{n} (-1)^{n} \dim_{\mathbb{Q}}(C_{n} \otimes_{\mathbb{Z}} \mathbb{Q}).$$

We know that $\chi(C_{\bullet}) = \chi(H(C_{\bullet})).$

Now for a spectral sequence $E = (E_{p,q}^r)$ of abelian groups define the notion of finite type. Define for each page E^r an Euler characteristic $\chi(E^r)$. Show that E^{r+1} is of finite type, if E^r is. And conclude $\chi(E^r) = \chi(E^{r+1})$. We call this constant number the *Euler characteristic* of E, denoted by $\chi(E)$.

Prove that E does converge, if it is of finite type. Say it converges to the graded and filtered abelian group H. Show that H is also of finite type and that $\chi(H) = \chi(E)$.

Exercise 12.2 (Poincare polynomial of a spectral sequence)

Recall the Poincare polynomial $P_t(C_{\bullet}) = \sum_n (-1)^n \operatorname{rank}(C_n) t^n$ of a chain complex or graded module of abelian groups. Under what conditions can one define it? Is there a relation to the homology $H(C_{\bullet})$? — Now define a Poincare polynomial for a spectral sequnce and show the obvious.

Jean-Pierre Serre

Exercise 12.3 (Serre classes I)

A Serre class of abelian groups is a non-empty class S of abelian groups with the property: if in an exact sequence $A \to B \to C$ we have $A, C \in S$, then also $B \in S$.

- (a) Show for some of the following examples that they are Serre classes: all abelian groups, all trivial groups, all finite groups, all finitely generated groups, all torion groups, all *p*-torion groups (p any prime), all *p*-local groups (i.e. torsion groups with all orders of elements being prime to p).
- (b) One calls a homomorphism $\phi: A \to B$ a S-monomorphism resp. a S-epimorphism, if the kernel resp. the cokernel of ϕ is in S. Now it is clear what we mean by a S-isomorphism. Show that S-isomorphic is an equivalence relation.

Exercise 12.4 (Serre classes II)

Let $E = (E_{p,q}^r)$ be a spectral sequence of abelian groups and let S be a Serre class. Assume E converges to the filtered and graded abelian group H.

- (a) If, for a fixed r, all $E_{p,q}^r$ are in \mathcal{S} , then all $E_{p,q}^{r+1}$ are in \mathcal{S} .
- (b) In this case, also all H_n are in S.

Und nochmal Serre.