Exercises for Algebraic Topology II

Prof. Dr. C.-F. Bödigheimer Summer Term 2018

Blatt 11

due by: 9.07.2018

Jean Leray (1906 - 1998), invented spectral sequences, while he was prisoner-of-war between 1940 and 1945. The foto was taken 1961 in Oberwolfach.

Exercise 11.1 (Spectral sequences in Linear Algebra)

Let $E = V \oplus W$ be a vector space over a field \mathbb{F} ; we regard the decomposition as a coming from a filtration $F_0E = 0$, $F_1E = V$ and $F_2E = E$. Let $\partial: E \to E$ be a differential which preserves the filtration; written as a matrix in a basis of V and of W the differential has the form

$$\partial = \left(\begin{array}{cc} A & B \\ 0 & D \end{array} \right)$$

and since $\partial \circ \partial = 0$ we must have $A^2 = 0$, $D^2 = 0$ and AB + BD = 0. We consider the associated spectral sequence as a kind of basic example. Our aim is the homology $H(E; \partial)$ of this differential object, or say the Betti number $b(E) := \dim H(E; \partial) = \dim(\ker(\partial)) - \dim(\operatorname{im}(\partial))$.

(Note that we have no grading on E; so we set the homological grading q = 0 for all terms.)

(1) The 0-page consists of $E_{0,1}^0 = F_1 E / F_0 E = V$ and $E_{0,2}^0 = F_2 E / F_1 E = W$. The differential d^0 is A on V and is D on W.

(2) Then on the 1-page we have $E_{0,1}^1 = H(V; A)$ and $E_{0,2}^1 = H(W; D)$. The differential $d^1: E_{0,2}^1 \to E_{0,1}^1$ is

 $d^1(y + \operatorname{im} D) := B(y) + \operatorname{im} A \quad \text{for } y \in W.$

- (3) If we regard $B: W \to V$ as a differential morphism ('chain map') after sneaking in some sign from the differential object (W, D) to (V, A), then the induced map $H(B) = B_*: H(W; D) \to H(V; A)$ is exactly d^1 .
- (4) The 2-page is $E_{0,1}^2 = \operatorname{coker}(B_*)$ and $E_{0,2}^2 = \ker(B_*)$.
- (5) Find the isomorphism $H(E; \partial) \cong \operatorname{coker}(B_*) \oplus \ker(B_*)$.

Exercise 11.2 (Bockstein spectral sequences)

Consider the extensions

 $(A) \qquad 0 \longrightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \longrightarrow \mathbb{Z}/p \longrightarrow 0$

$$(B) \qquad 0 \longrightarrow \mathbb{Z}/p \xrightarrow{p} \mathbb{Z}/p^2 \longrightarrow \mathbb{Z}/p \longrightarrow 0$$

for some (prime) number p.

Choose (A) or (B) and construct the exact (Bockstein) couple associated these extensions. Determine if the spectral sequence converges; and if so, to what does it converge ?

Exercise 11.3 (Exact couples)

Consider an exact couple (E, A)

in the category of *R*-modules. Assume, Φ is an exact covariant endo-functor.

- We get a new exact couple $(\Phi(E), \Phi(A))$.
- If the spectral sequence for (E, A) converges to M, does the spectral sequence for $(\Phi(E), \Phi(A))$ converge to $\Phi(M)$?

Spectral sequences are a powerful book-keeping tool for proving things involving complicated commutative diagrams. They were introduced by Leray in the 1940's at the same time as he introduced sheaves. They have a reputation for being abstruse and difficult. It has been suggested that the name 'spectral' was given because, like spectres, spectral sequences are terrifying, evil, and dangerous. I have heard no one disagree with this interpretation, which is perhaps not surprising since I just made it up.

Ravi Vakil, Lecture notes

Exercise 11.4 (Wang sequence)

Let ξ be a fibre bundle $F \to E \to B$ over $B = \mathbb{S}^1$ with structure group G. Recall that ξ is determined by the homotopy class of a (based) clutching function $c_{\xi} \colon \mathbb{S}^0 = \{\pm 1\} \to G$, so by a single element $c_{\xi}(\pm 1) \in G$, in other words by some homeomorphism $\gamma \colon F \to F$. In fact, E is homeomorphic to the mapping torus of γ . Invoking the Mayer-Vietoris sequence (for the obvious decomposition E_1 resp. E_2 the restrictions of E to the upper resp. lower hemisphere of \mathbb{S}^1) we saw — a long time ago — that the homology of E is isomorphic to (in the appropriate degrees) the kernel resp. cokernel of the endomorphism $\gamma_* - \mathrm{id} \colon H_*(F) \to H_*(F)$.

Relate this to Exercise 11.1.