## Exercises for Algebraic Topology II

Prof. Dr. C.-F. Bödigheimer Summer Term 2018

Blatt 10

due by: 2.7.2018

**Exercise 10.1** (The first Stiefel-Whitney class)

A real vector bundle  $\xi$  is orientable if and only if its first Stiefel-Whitney class  $w_1(\xi)$  vanishes.

Exercise 10.2 (Classifying spaces of categories)

If two categories C and C' are equivalent, show that there classifying spaces BC and BC' are homotopy-equivalent.



Norman Steenrod (1910 — 1971)

**Exercise 10.3** (Milnor construction)

Let G be a topological group. We denote by  $EG := \lim G \star \ldots \star G$  the Milnor construction of G, where  $G \star \ldots \star G$  denotes the (n + 1)-fold join of G. We denote elements in EG by the equivalence class  $[\underline{t}, \underline{g}]$ , where  $\underline{t} = (t_i)$  is a sequence of barycentric coordinates and  $g = (g_i)$  is a sequence of group elements.

- If  $\phi: G \to G'$  is a continuous homomorphism of groups, there is an induced map  $E\phi: EG \to EG'$ .
- $E\phi$  is equivariant in the sense  $E\phi(\gamma(\underline{t}, g)) = \phi(\gamma)E\phi(\underline{t}, g)$ .
- If  $\phi_0 \simeq \phi_1$  are homotopic through a homotopy of homomorphisms  $\phi_t$ , then there is a *G*-equivariant homotopy  $E\phi_0 \simeq E\phi_1$ .

• If G = G' and  $\phi: G \to G$  is an automorphism, then  $E\phi$  is a G-equivariant homeomorphism.

## **Exercise 10.4** (Inner automorphisms: conjugation in a group)

Let G be a topological group and consider for an arbitrary element  $\gamma \in G$  the inner automorphism  $\kappa_{\gamma} \colon G \to G$ ,  $g \mapsto \gamma g \gamma^{-1}$ . It induces on BG a map homotopic to the identity.

(Hint: the self-map  $[\underline{t}, \underline{g}] \mapsto [\underline{t}, \underline{g}\gamma^{-1}]$  of EG is G equivariant and thus (even G-equivariant) homotopic to the identity. The self-map  $[\underline{t}, \underline{g}] \mapsto [\underline{t}, \gamma \underline{g}\gamma^{-1}]$  induces on the quotient BG = EG/G the same map (where we act on EG on the left).)

## **Exercise 10.5**<sup>\*</sup> (Clutching construction)

Let  $\xi: E \to B$  be an (F, G)-bundle over a suspension  $B = \Sigma X$ . We assume that the G action on the fibre F is faithful.

(a) We decompose the base space in to the closed upper and lower hemispheres  $B^+ = \Sigma^+ X$  resp.  $B^- = \Sigma^- X$ , we identify their intersection as the equator X, and choose trivializations  $h_+: E^+ = \xi^{-1}(B^+) \to B^+ \times F$  resp.  $h_+: E^- = \xi^{-1}(B^+) \to B^- \times F$ . Their restrictions  $h^{\pm}E^0 := \xi^{-1}(X) \to X \times F$  give the map  $h_- \circ h_+^{-1}: X \times F \to X \times F$  of the form  $(x, y) \to (x, H(x, y))$  for some map  $H: X \times F \to F$ . Since H must be G-equivariant, the adjoint is a map

$$cl_{\xi} = cl \colon X \to G$$
, with  $H(x, y) = cl(x) y_{\xi}$ 

which is called a *clutching function* for  $\xi$ .

- (b) Show: The homotopy class of  $cl_{\xi}$  does not depend on the choice of the trivialisations over  $\Sigma^{\pm} X$ .
- (c) Show: If  $\xi \cong \xi'$ , then  $cl_{\xi} \simeq cl'_{\xi}$ .
- (d) Vice versa, show that any function  $c: X \to G$  determines a bundle  $\xi = \xi_c$  over  $\Sigma X$  with total space  $E := (\Sigma^+ X \times F) \sqcup (\Sigma^- X \times F)/(0, x, y) \sim (0, x, c(x)y)$ . And c is obviously a clutching function for this  $\xi_c$ .
- (e) Show: If  $c \simeq c'$ , then  $\xi_c \cong \xi'_c$ .

Thus altogether we have an isomorphism

$$\operatorname{Bun}_{G}^{F}(\Sigma X) \xrightarrow{\cong} [X, G],$$

and in particular for principal G bundles  $\operatorname{Prin}_G(\Sigma X) \cong [X,G]$ . What is the relation to the classification theorem  $\operatorname{Bun}_G^F(B) \cong [X,BG]$  for arbitrary base spaces ?