Exercises for Algebraic Topology II

Prof. Dr. C.-F. Bödigheimer Summer Term 2018

Blatt 9

due by: 25.06.2018

Exercise 9.1 (Associated principal bundles and the Borel construction)

Let $\xi: E \to B$ be a fibre bundle with fibre F and structure group G, and $\zeta: P \to B$ be a principal G-bundle over B. We can form the *Borel construction* $E := P \times_G F$ with its projection to B. We denote this fibre bundle by $\xi = \zeta \times_G F$. Vice versa, given an (F, G)-fibre bundle $\xi: E \to B$ we denote by $prin(\xi)$ the associated principal bundle with total space $P = bunmap(\tau_F, \xi)$, the space of bundle maps from the trivial (F, G)-bundle $\tau_F: F \to *$ over a point to the bundle ξ .

Show some of the following formulae for theses constructions:

- (1) $\operatorname{prin}(\xi) \times_G F \cong \xi$
- (2) $\operatorname{prin}(\zeta \times_G F) \cong \zeta$, if G acts faithfully on F.
- $(3) \ \zeta \times_G G \ \cong \ \zeta$
- (4) $\operatorname{prin}(\zeta) \cong \zeta$
- (5) $\operatorname{prin}(f^*(\xi)) \cong f^*(\operatorname{prin}(\xi))$ for any $f: B' \to B$.
- (6) $f^*(\zeta) \times_G F \cong f^*(\zeta \times_G F)$ for any $f \colon B' \to B$.

Armand Borel (1923 — 2003)

Exercise 9.2 (Classifying spaces for subgroups)

Let $H \leq G$ be a subgroup of a topological group, and

- (a) If $\zeta: P \to B$ is a principal G-bundle, then $\zeta_H: P \to B' := P/H$ is a principal H-bundle.
- (b) If $\omega_G : EG \to BG$ is a universal G-bundle, then $\omega_H : EG \to BH := EG/H$ is a universal H-bundle.
- (c) The induced map $\xi \colon BH = EG/H \to BG = EG/G$ is a fibre bundle with fibre the homogeneous space F := G/H and structure group G.

Exercise 9.3 (Fixed points and sections)

Let $\zeta: P \to B$ be a principal *G*-bundle. Let *F* be a *G*-space and $A := \operatorname{Fix}(F)$ the set of *G*-fixed points in *F*. Show that that for any fixed point $a \in A$ there is a section $s_a: B \to E$ in the fibre bundle $\xi := \zeta \times_g F: E = P \times_G F \to B$. More generally, ξ contains the trivial bundle $\xi_A := P \times_G A \cong P/G \times A \to B$.

(Hint: The word 'contains' means as a subbundle. What is a subbundle ? Cf. Exercise 9.4.)

Exercise 9.4 (Fibre exchange)

Let $\xi: E \to B$ be a fibre bundle with fibre F and structure group G. Let F' be another G-space and $\phi: F \to F'$ be a G-equivariant map. We consider the new fibre bundle ξ' over B with total space $E' := \text{prin}(\xi) \times_G F$, obvious bundle projection ξ and the new fibre F'.

Show that there is a generalized bundle map $(\tilde{f}, \mathrm{id}_B): \xi \to \xi'$, i.e., a commutative square

such that the restriction of \tilde{f} to any fibre is conjugate to ϕ ; more precisely, the composition $F \to E_b \to E'_b \to F$, where the middle map is the restriction $\tilde{f} |: E_b \to E'_b$, the first map resp. the third map is an identication of the actual fibre with F resp. F' via some bundle coordinates, is $g' \circ \phi \circ g$ for some $g, g' \in G$.

(Hint: The phrasing of the exercise is essentially the definition of generalized bundle map.)

Exercise 9.5^{*} (Gauge groups and adjoint representation)

Let $\zeta: P \to B$ be a principal *G*-bundle for a Lie group *G*. The gauge group $\mathcal{G}(\zeta)$ of this bundle is the group of bundle isomorphisms $(\tilde{f}, \mathrm{id}_B): \zeta \to \zeta$. It is a topological group (with one of the obvious topologies); like *G*, it acts on *P*.

(a) $\mathcal{G}(\zeta)$ contains G; is it larger than G?

The conjugation $G \times G \to G$, $(g, \gamma) \mapsto g\gamma g^{-1}$ can be regarded as a left action of G on itself. Thus we can define the (F, G)-bundle $\zeta \times_G G$ with structure group G and fibre F = G, but with the left conjugation action, not the left translation action. The bundle is called the *adjoint bundle* and denoted by $\operatorname{Ad}(\zeta)$.

(b) Show that its space of sections $Sect(Ad(\zeta))$ forms a group (under fibrewise multiplication).

(c) Show that there is an isomorphism of group $\mathcal{G}(\zeta) \cong \operatorname{Sect}(\operatorname{Ad}(\zeta))$.