Exercises for Algebraic Topology II

Prof. Dr. C.-F. Bödigheimer Summer Term 2018

Blatt 3

due by: 7.05.2018

Lev Pontryagin (1908 — 1988)

Exercise 3.1 (Maps from a Lie group)

Let G be a connected Lie group of dimension m and X a path-connected CW complex; let $D \subset G$ be a closed disk around the unit $1 \in G$.

(a) Show that we have a diagram

$$\begin{array}{c|c} C(G-D;X,x_0) & \stackrel{\gamma}{\longrightarrow} \operatorname{map}(G,1;\Sigma^m X) \\ & \downarrow & \downarrow \\ & & \downarrow \\ C(G;X,x_0) & \stackrel{\gamma}{\longrightarrow} \operatorname{map}(G;\Sigma^m X) \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ C(G,G-D;X,x_0) & \stackrel{\gamma}{\longrightarrow} \Sigma^m X \end{array}$$

with a quasifibration Q on the left, a fibration $eval_1$ (the evaluation at the unit) on the right, and the horizontal maps (weak) homotopy equivalences.

(b)* There are obvious translation actions by G on the two middle spaces. Is the approximation map γ in this case equivariant? What about the conjugation action (assuming, that D is invariant under conjugation)?

(c) For $G = S^1 = SO(2)$, the fibration on the right is the evaluation fibration of the free loop space of ΣX with fibre the based loop space of ΣX . What are the fibration quotients on the left ?

Exercise 3.2 (Pontryagin product of J(X))

The reduced product space J(X) of a space X is an H-space. We know from Exc. its homology, at least for a sphere $X = \mathbb{S}^n$. Determine the Pontryagin product

$$H_i(J(X)) \otimes H_j(J(X)) \to H_{i+j}(J(X) \times J(X)) \to H_{i+j}(J(X)),$$

when $H_*(X)$ is given, where the first map is the homology cross product and the second is induced by the H-space multiplication. Here we assume, that the homology is free (or we work over a field).

Bust of L. Pontryagin in Moscow

Exercise 3.3 (Splitting of a reduced product space J(X))

Let $J_n(X)$ denote the filtration of the reduced product J(X) by word length. We know for the filtration quotients $D_n(X) = J_n(X)/J_{n-1}(X) \cong X^{(n)}$, the *n*-fold smash product.

For any word $w = x_1 x_2 \dots x_m$ we consider all subwords w_α of length n as an element in $D_n(X)$, order them lexicographically with respect to the indices, and concatenate them in this lexicographic order to a word $W_{(n)} := w_{\alpha_1} w_{\alpha_2} \dots w_{\alpha_r}$ of length $r = \binom{m}{n}$. Obviously, $W_{(n)}$ is an element in $J(D_n(X))$,

- (1) The map $w \mapsto W_{(n)}$ is a well-defined and continous map $h_n: J(X) \to J(D_n(X))$.
- (2) We concatenate all these maps h_n to a single map $h: J(X) \to J(\bigvee_{n \ge 1} D_n(X))$, identify $J(Y) \simeq \Omega \Sigma Y$ and denote its adjoint by

$$h' \colon \Sigma J(X) \to \Sigma(\bigvee_{n \ge 1} D_n(X)) \simeq \bigvee_{n \ge 1} \Sigma X^{(n)}$$

(3) Study the restrictions $h'_k \colon \Sigma J_k(X) \to \Sigma(\bigvee_{n=1}^{n=k} D_n(X))$ of h' to the filtrations $J_k(X)$ and show that we have

homotopy commutative diagrams,

$$\begin{array}{cccc} \Sigma J_k(X) & \xrightarrow{h'_k} & \Sigma \bigvee_{n=1}^{n=k} D_n(X) \\ & & & & \downarrow^j \\ \Sigma J_{k+1}(X) & \xrightarrow{h'_{k+1}} & \Sigma \bigvee_{n=1}^{n=k+1} D_n(X) \\ & & & \downarrow^p \\ \Sigma D_{k+1}(X) & \xrightarrow{\mathrm{id}} & \Sigma D_{k+1}(X) \end{array}$$

where q and p are the obvious quotient maps and i and j the obvious inclusions.

(4) Show by induction, that each h'_k and thus h' is a weak homotopy equivalence (for X connected).

Exercise 3.4 (Splitting of a product space) Recall the splitting

$$\Sigma(X \times Y) \simeq \Sigma(X \lor Y \lor (X \land Y)),$$

its homological analogue. Find for the powers X^n a connection to labelled configuration spaces C(M; X) and their splitting, when M is a compact manifold of dimension 0.