Exercises for Algebraic Topology I

Prof. Dr. C.-F. Bödigheimer Winter Term 2017/18

Blatt 11

due by: 17.01.2018

n k	1	2	3	4	5	6	7
2	Z	Z2_2	ℤ2	²² 12	ℤ2	ZZ 2	zz3
3	ℤ2	2Z 2	²² 12	zz_2	ZZ 2	ZZ 3	ZZ 15
4		Z2 2	^{ZZ} ⊕ZZ 12	∞ ₂ ⊕ ∞ ₂	∞ ₂ ⊕ ∞ ₂	$\mathbb{Z}_2 \oplus \mathbb{Z}_{24}$	zz ₁₅
5			ZZ 24	zz_2	zz_2	22 ₂	zz 30
6				0	ZZ	ℤ2	^{zz} 60
7					0	zz. ₂	²² 12
8						zz ₂	2z ⊕2Z ₁₂
9							Z24

D.B. Fuks, V.A. Rochlin: Beginner's Course in Topology, p. 437. The table shows the homotopy groups of spheres $\pi_{n+k}(\mathbb{S}^n)$ for $n = 2, \ldots, 9$ and $k = 1, \ldots, 7$.

Exercise 11.1 (Homotpy groups of projective spaces.)

- Compute all homotopy groups $\pi_q(\mathbb{R}P^\infty)$.
- Compute all homotopy groups $\pi_q(\mathbb{C}P^\infty)$.

Exercise 11.2 (Serre classes of abelian groups)

A Serre class S of abelian groups contains (1) the trivial group, (2) must be closed under subgroups and quotient groups, and (3) contains with A and C the middle group B of any extension $0 \to A \to B \to C \to C \to 0$. Examples are: a) just the trivial group, b) all finite abelian groups, c) all finitely generated abelian groups, d) all abelian torsion groups, e) all abelian torsion groups with only p-torion.

Show for any Serre class S:

- (i) If C_{\bullet} is a chain complex of abelian groups in \mathcal{S} , then all homology groups $H_q(C_{\bullet})$ are in \mathcal{S} .
- (ii) If $F \to E \to B$ is a fibration and both $\pi_q(F)$ and $\pi_q(B)$ are in \mathcal{S} for all q, then all $\pi_q(E)$ is in \mathcal{S} for all q.

- (iii) If $A \subset X$ is a subspace and both $H_q(A)$ and $H_q(X, A)$ are in \mathcal{S} for all $q \ge 1$, then $H_q(X)$ is in \mathcal{S} for all $q \ge 1$.
- (iv)* If $E_{p,q}^r$ is a first quadrant spectral sequence converging to H_* and if, for some r, all $E_{p,q}^r$ are in S, then H_q is in S for all q.

Exercise 11.3 (Homotopy groups of a bouquet.)

For $n \geq 2$ show that there is a split short exact sequence of homotopy groups

 $0 \longrightarrow \pi_{n+1}(X \times Y, X \vee Y) \longrightarrow \pi_n(X \vee Y) \longrightarrow \pi_n(X) \oplus \pi_n(Y) \longrightarrow 0..$

If $X = \mathbb{S}^k$ and $Y = \mathbb{S}^l$, we are tempted to use $\mathbb{S}^k \wedge \mathbb{S}^l \cong \mathbb{S}^{k+l}$ to conclude $\pi_n(\mathbb{S}^k \vee \mathbb{S}^l) = \pi(\mathbb{S}^k) \oplus \pi_n(\mathbb{S}^{k+l})$; is this correct ?

Exercise 11.4 (No quotient isomorphism.)

Here is an example showing $\pi_n(X, A, x_0) \cong \pi_n(X/A, \bar{x}_0)$ in general.

- (a) Compute the relative homotopy group $\pi_n(\mathbb{R}P^n, \mathbb{R}P^{n-1}, x_0)$ for $n \ge 2$.
- (b) Compute the absolute homotopy group $\pi_n(\mathbb{R}P^n/\mathbb{R}P^{n-1}, \bar{x}_0)$ for $n \ge 1$.

Exercise 11.5 (The homotopy group $\pi_7(\mathbb{S}^4)$.)

Prove that $\pi_7(\mathbb{S}^4)$ contains elements of infinite order. (In fact, it is the group $\mathbb{Z} \oplus \mathbb{Z}/12$; see the table above.)

Groups	Generators
$\begin{array}{l} {\rm Stab}(1) \ = \ \pi_4 ({\rm S}^3)[\approx {\rm ZZ}_2] \\ {\rm Stab}(2) \ = \ \pi_6 ({\rm S}^4)[\approx {\rm ZZ}_2] \\ {\rm Stab}(3) \ = \ \pi_8 ({\rm S}^5)[\approx {\rm ZZ}_2] \\ {\rm Stab}(4) \ = \ \pi_{10} ({\rm S}^6)[=0] \\ {\rm Stab}(5) \ = \ \pi_{12} ({\rm S}^7)[=0] \\ {\rm Stab}(6) \ = \ \pi_{14} ({\rm S}^8)[\approx {\rm ZZ}_2] \\ {\rm Stab}(6) \ = \ \pi_{14} ({\rm S}^8)[\approx {\rm ZZ}_2] \\ {\rm Stab}(5) \ = \ \pi_{14} ({\rm ZZ}_2$	$su(pr_{*}(sph_{3}))$ $su^{2}(pr_{*}(sph_{3})) \circ su^{3}(pr_{*}(sph_{3}))$ $su(pr_{*}(sph_{7}))$ - $su^{4}(pr_{*}(sph_{7})) \circ su^{7}(pr_{*}(sph_{7}))$

Table 2

k	Stab(k)	k	Stab(k)	
8	Z ₂ ⊕Z ₂	12	0	
9	$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$	13	zz_3	
10	Z2	14	∞ ₆ ⊕ ∞ ₂	
11	zz ₅₀₄	15	$\mathbb{Z}_{480} \oplus \mathbb{Z}_2$	

	Та	b	le	3
--	----	---	----	---

Ibidem. — These tables show the stable homotopy groups of spheres $\operatorname{Stab}(k) = \lim_n \pi_{n+k}(\mathbb{S}^n)$ for $k = 1, \ldots, 15$, together with generators for the cases $k = 1, \ldots, 7$.