Exercises for Algebraic Topology I

Prof. Dr. C.-F. Bödigheimer Winter Term 2017/18

Blatt 8

due by: 6.12.2017

Norman Steenrod (1910 - 1971)

Exercise 8.1 (Homotopy-fiber.)

(a) Show that a map $f: X \to Y$ is null-homotopic if and only if it factors through some path space of Y, i.e., if and only if there exists a map $\tilde{f}: X \to P(Y, y_0)$ such that $ev_1 \circ \tilde{f} = f$.

Here $P(Y, y_0)$ is the space of all paths $w: [0, 1] \to Y$ starting at y_0 ; the evaluation map $ev_1: P(Y, y_0) \to Y$ is $ev_1(w) = w(1)$.

(b) Let $f: X \to Y$ be a map into a path-connected space Y and let $g: Z \to X$. Show that $f \circ g$ is null-homotopic if and only if g factors through the canonical map $p: hFib(f) \to X$, i.e., there is a map $\tilde{g}: Z \to hFib(f)$ such that $p \circ \tilde{g} = g$.

Note that the homotopy-fiber hFib(f) or better say the map $p: hFib(f) \to X$ is the pull-back of the evaluation

 $ev_1: P(Y, y_0) \to Y$ for some $y_0 \in Y$:

Exercise 8.2 (Push-forward of a cofibration)

Let $\iota: A \to X$ be a cofibration and $g: A \to B$ any map, then $\iota': B \to Y = B \cup_q X$ is a cofibration.

Exercise 8.3 (Formal properties of Push-outs and pull-back squares)

Let \mathcal{C} be any category. (Note: Push-outs and pull-backs have a universal property with uniqueness.)

(a) Consider the square $A \longrightarrow B$ and prove two of the following statements:

and prove two of the following statements:

and denote the left square by (I), the

- (a.1) If the square is a push-out and f is an isomorphism, then g is an isomorphism.
- (a.2) If f and g are isomorphisms then the square is a push-out.
- (a.3) State and prove the dual statements of (a.1) and (a.2).
- (b) Consider in the commutative diagram

$$A_1 \xrightarrow{J_1} A_2 \xrightarrow{J_2} A_3$$
$$\downarrow h_1 \qquad \downarrow h_2 \qquad \downarrow h_3$$
$$B_1 \xrightarrow{g_1} B_2 \xrightarrow{g_2} B_3$$

right square by (II) and the outer square by (III); prove one of the following statements:

- (b.1) If (I) and (II) are push-outs, then (III) is a push-out.
- (b.2) If (I) and (III) are push-outs, then (II) is a push-out.
- (c) Consider the same commutative diagram and prove one of the following statements:
- (c.1) If (I) and (II) are pull-backs, then (III) is a pull-back.
- (c.2) If (II) and (III) are pull-backs, then (I) is a pull-back.

Exercise 8.4 (Compactly-generated hausdorff spaces)

- (1) Show: A first-countable hausdorff space is compactly-generated.
- (2) Show: If $f: X \to Y$ is a quotient map of hausdorff spaces and X is compactly-enerated, then Y is compactlygenerated (but in general not hausdorff).

Exercise 8.5^{*} (Compactly generated weak hausdorff spaces)

A topological space X is called *weakly-hausdorff* if $f(K) \subset X$ is closed in X for any continuous map $f: K \to X$ from a compact space K to X. This is equivalent to the diagonal $\Delta(X)$ being closed in $X \times_k X = k(X \times X)$, the compactly-generated refinement of the product topology of $X \times X$.

N. Steenrod: A convenient category of topological spaces, Michigan Math. Journal, vol. 14 (1967), p. 133.

Let \mathcal{CG} denote the category of compactly-generated spaces weakly-hausdorff spaces and continuous maps, and let \mathcal{WH} denote the category of weakly-hausdorff spaces and continuous maps. We consider the forgetful functor $j: \mathcal{CG} \to \mathcal{WH}$ and the refinement functor $k: \mathcal{WH} \to \mathcal{CG}$. Show that there is a bijection of sets

 $map(X, k(Y)) \cong map((j(X), Y))$

for $X \in CG$ and $Y \in WH$. Thus the two functors are adjoint.