Exercises for Algebraic Topology I

Prof. Dr. C.-F. Bödigheimer Winter Term 2017/18

Blatt 7 (now complete)

due by: 29.11.2017

A round man will not fit through a square hole; you must give him time to change. — Mark Twain

Exercise 7.1 (Not null-homotopic maps.)

- 1. If $f: X \to Y$ is null-homotopic, then the mapping cone $C(f) \simeq \Sigma X \vee Y$ is a wedge.
- 2. If $Z \simeq Z_1 \vee Z_2$, then $\tilde{H}^*(Z;\mathbb{K}) \cong \tilde{H}^*(Z_1;\mathbb{K}) \oplus \tilde{H}^*(Z_2;\mathbb{K})$ as rings without unit, for any commutative ring \mathbb{K} .
- 3. Example: The Hopf map $\eta: \mathbb{S}^3 \to \mathbb{S}^2 = \mathbb{C}P^1$ is not null-homotopic.
- 4. Example: A degree 2 map $\epsilon \colon \mathbb{S}^1 \to \mathbb{S}^1 = \mathbb{R}P^1$ is not null-homotopic. (Yes, I know it follows from the degree not being zero; but this proof here fits so beautifully as an example.)
- 5. Examples: The attaching map $f: \mathbb{S}^{2n-1} \to \mathbb{C}P^{n-1}$ of the top 2n-cell in $\mathbb{C}P^n = \mathbb{C}P^{n-1} \cup_f e^{2n}$ is not null-homotopic.
- 6. Examples: The attaching map $f: \mathbb{S}^{n-1} \to \mathbb{R}P^{n-1}$ of the top n-cell in $\mathbb{R}P^n = \mathbb{R}P^{n-1} \cup_f e^n$ is not null-homotopic.

Exercise 7.2 (Homotopy invariance of homotopy push-outs.)

For a diagram of three spaces and maps as

$$X_{2}$$

$$\downarrow^{\iota_{2}}$$

$$X_{0} \xrightarrow{\iota_{1}} X_{1}$$

we have defined the homotopy push-out (or double mapping cylinder) $Z := \text{hocolim}(\iota_1, \iota_2)$ together with maps j_1 and j_2 in a homotopy-commutative square

$$X_{2} \xrightarrow{j_{1}} Z$$

$$\downarrow^{\iota_{2}} \qquad \downarrow^{j_{2}}$$

$$X_{0} \xrightarrow{\iota_{2}} X_{1}$$

satisfying a universal property. Consider the strictly commutative diagram of spaces and maps:

$$X_{1} \stackrel{\iota_{1}}{\lessdot} X_{0} \stackrel{\iota_{2}}{\longrightarrow} X_{2}$$

$$f_{1} \downarrow \qquad f_{0} \downarrow \qquad f_{2} \downarrow \qquad \qquad f_{2} \downarrow \qquad \qquad Y_{1} \stackrel{\iota_{1}}{\lessdot} Y_{0} \stackrel{\iota_{2}}{\leadsto} Y_{2}$$

1

and show that there is a continous function

$$\zeta(f_1, f_0, f_2)$$
: hocolim $(\iota_1, \iota_2) \to \text{hocolim}(\kappa_1, \kappa_2)$

with the following properties:

- $(1) \zeta(\mathrm{id}_{X_1},\mathrm{id}_{X_0},\mathrm{id}_{X_2}) = \mathrm{id}_Z.$
- (2) $\zeta(g_1 \circ f_1, g_0 \circ f_0, g_2 \circ f_2) = \zeta(g_1, g_0, g_2) \circ \zeta(f_1, f_0, f_2).$
- (3) If f_1^s , f_0^s and f_1^s are three homotopies $(0 \le s \le 1)$ with the obvious compatabilties, then $\zeta_s := \zeta(f_1^s, f_0^s, f_2^s)$ is a homotopy.
- (4) If f_1 , f_2 and f_0 are homotopy-equivalences, then $\zeta(f_1, f_0, f_2)$ is a homotopy-equivalence. (So the homotopy colimit is a homotopy-invariant construction.)
- (5)* Show in contrast, that the topological pushout $C := X_1 \cup_{X_0} X_2$ is not a homotopy invariant construction: look at the diagram with $X_1 = \mathbb{D}^2$, $X_0 = \mathbb{S}^1$ and $X_2 = *$ in the top row and $Y_1 = \mathbb{R}^2$, $Y_0 = \mathbb{R}^2 0$ and $Y_2 = *$ in the bottom row and all maps being the obvious inclusions or constant maps.

Exercise 7.3 (Composition and homotopy colimits)

Consider the diagram

$$X_{0} \xrightarrow{f} X_{1} \xrightarrow{g} X_{2}$$

$$\alpha \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \gamma$$

$$Y_{0} \xrightarrow{\tilde{f}} Y_{1} \xrightarrow{\tilde{g}} Y_{2}$$

where the left square and the right square are homotopy push-outs, so $Y_1 = \text{hocolim}(f, \alpha)$ and $Y_2 = \text{hocolim}(g, \beta)$. Show that the outer square is a homotopy pushout and thus $\text{hocolim}(g, \beta) \simeq \text{hocolim}(g \circ f, \alpha)$.

Exercise 7.4 (Free and based homotopies)

Show the relaxation function from based homotopy classes to free homotopy classes

$$R: [(X, x_0), (Y, y_0)] \longrightarrow [X, Y]$$

to be surjective for path-connected spaces X and Y. Find an example, where it is not injective.

Here the email exchange with a student on 22.11.2017:

Lieber Herr Bödigheimer,

wollen wir bei Aufgabe 4 des aktuellen Blattes nicht noch annehmen, daß auf X die Inklusion des Basispunktes eine Kofaserung ist?

Beste Grüße, FK

Lieber Herr K.,

ja, wir wollen und wir müssen. - Nun wissen wir leider offiziell noch nicht, was eine Kofaserung ist. (Das sage ich am Montag.)

Deshalb müsste man voraussetzen: Assume that there is a neighbourhood U of $x_0 \in X$ and a homotopy $r_t \colon X \to X$ and so on. Man könnte vielleicht einfach sagen: Assume that x_0 has a neighbourhood U in X, which is homeomorphic to a disk \mathbb{D}^m for some m. Oder wir sagen: Replace X by the double mapping cylinder of $x_0 \leftarrow x_0 \to X$. (d.h. hefte an x_0 einen Stachel an), was homotopie-äquivalent zu X ist. --- Sie müssen zugeben, dass die alte Aufgabe mit der fehlenden Voraussetzung viel schöner ist und besser klingt. Nun gut, ich korrigiere das morgen.

CFB

Poincaré, leaving the scene.

Exercise 7.5* (Farewell to Poincaré Duality.)

(a) Assume the connected, compact, closed and orientable m-manifold M is triangulated as the geometric realization $M = |\mathcal{X}|$ of a finite polyhedron \mathcal{X} ; we denote the barycentric subdivision of \mathcal{X} by \mathcal{X}' . For any simplex $\sigma \in \mathcal{X}_q$ let $D(\sigma)$ denote its dual block by $D(\sigma)$, the closed star of σ with respect to the subdivision \mathcal{X}' , which is defined as the union of simplices of in \mathcal{X}' or flags $\phi = (\sigma_0 < \sigma_1 < \ldots < \sigma_m)$ in \mathcal{X} starting with $\sigma_0 = \sigma$. Each $D(\sigma)$ is homeomorphic to a closed disc of dimension m - q. Since we have

$$D((v_0, v_1, \dots, v_q)) = D(v_0) \cap D(v_1) \cap \dots \cap D(v_q)$$

for $\sigma = (v_0, v_1, \dots, v_q)$ spanned by the vertices $v_0, v_1, \dots, v_q \in \mathcal{X}_0$ of \mathcal{X} , the dual blocks form a cellular (not simplicial) structure \mathcal{S} on M.

Let $C_{\bullet}(\mathcal{X})$ denote the simplicial chain complex of the simplicial structure \mathcal{X} , with boundary operator ∂ . And let $\mathcal{B}^{\bullet}(\mathcal{S})$ be the cochain complex of the cellular structure \mathcal{S} , with coboundary operator δ . The orientation of M determins the signs of faces and co-faces in ∂ resp. δ . The function

$$D: \mathcal{C}_q(\mathcal{X}) \longrightarrow \mathcal{B}^{m-q}(\mathcal{S}), \quad \sigma \mapsto D(\sigma)^\#,$$

where $D(\sigma)^{\#}(\tau) = 1$, if $\tau = \sigma$, and = 0, if $\tau \neq \sigma$, extends to an isomorphism of free modules. We have the duality property

$$\delta D(a) = D(\partial a)^{\#}.$$

in other words

Show that D induces an isomorphsm

$$H_q(M) \cong H_q(\mathcal{C}_{\bullet}(\mathcal{X})) \longrightarrow H^{m-q}(\mathcal{B}^{\bullet}(\mathcal{S})) \cong H^{m-q}(M).$$

(b) Now, where is the cap product and the fundamental class? — Let $C^{\bullet}(\mathcal{X}')$ be the simplicial cochain complex of the simplicial stucture \mathcal{X}' , with coboundary operator δ' . And on the other side we take $\mathcal{C}_{\bullet}(\mathcal{X}')$ to be the simplicial chain complex of \mathcal{X}' , with boundary operator δ' . The fundamental class [M] is the signed sum over all m-simplices in \mathcal{X}' , thus over all flags $\phi = (\sigma_0 < \sigma_1 < \ldots < \sigma_m)$ with all $\sigma_i \in \mathcal{X}_i$ simplices of the old triangulations of dimension i; the signs are determined by the given orientation.

Recall that the simplicial version of the cap product is given by the formula

$$\alpha \cap (\sigma_0 < \ldots < \sigma_q) = \alpha(((\sigma_0 < \ldots < \sigma_k)) \cdot (\sigma_k < \ldots < \sigma_q))$$

for a simplicial k-cochain α and a q-simplex $b = (\sigma_0 < \ldots < \sigma_k < \ldots < \sigma_q)$ with $k \le q$. Applied to the fundamental class $b = [M] = \sum \pm (\sigma_0 < \sigma_1 < \ldots < \sigma_m)$ we obtain

$$\alpha \cap [M] = \sum \pm \alpha((\sigma_0 < \ldots < \sigma_q)) \cdot (\sigma_k < \ldots < \sigma_m).$$

So if $\alpha = (\sigma_0 < \ldots < \sigma_q)^{\#}$ is the dual form of the simplex $(\sigma_0 < \ldots < \sigma_q)$, then $\alpha \cap [M]$ is the signed sm of all (m-q)-simplices $\psi = (\sigma_q < \ldots < \sigma_m)$, since $(\sigma_0 < \ldots \sigma_q \ldots \sigma_m)$ occurs in the fundamental class [M]. The boundary formula for he cap product is

$$\partial'(\alpha \cap b) = \delta'(\alpha) \cap b \pm \alpha \cap \partial'(b)$$

If we fix b = [M], which is a cycle, we obtain a duality

$$P: \mathcal{C}^q(\mathcal{X}') \longrightarrow \mathcal{C}_{m-q}(\mathcal{X}'), \quad P(\alpha) = \alpha \cap [M].$$

Show, that P induces an isomorphism

$$H^q(M) \cong H^q(\mathcal{C}^{\bullet}(\mathcal{X}')) \longrightarrow H_{m-q}(\mathcal{C}_{\bullet}(\mathcal{X}')) \cong H_{m-q}(M).$$