Exercises for Algebraic Topology I

Prof. Dr. C.-F. Bödigheimer Winter Term 2017/18

Blatt 5

due by: 15.11.2017

Exercise 5.1 (Thom spaces)

For a k-dimensional vector bundle $\xi \colon E \to B$ we denote disk bundle by D(E) and the sphere bundle by S(E). Their quotient $\text{Th}(\xi) := D(E)/S(E)$ we call the *Thom space* of ξ . (Note that D(E) and S(E) do depend on the choice of a metric on the bundle; but different choices lead to homeomorphic Thom spaces.).

Rene Thom (1923 - 2002), french topologist.

Show two of the following statements (1) - (4).

(0) $\operatorname{Th}(\xi) \cong B_+ \wedge \mathbb{S}^k$, if ξ is a trivial bundle.

- (1) $\mathbb{R}P^{n+1}$ is the Thom space of the dual of the canonical line bundle over $\mathbb{R}P^n$. Thus $\mathbb{R}P^{n+1} \{x\} \simeq \mathbb{R}P^n$.
- (2) (Whitney sum) $\operatorname{Th}(\xi \oplus \zeta) \cong \operatorname{Th}(\xi) \wedge \operatorname{Th}(\zeta)$ for the sum of two vector bundles.
- (3) (Functoriality) For any injective bundle map $(\tilde{f}, f): \xi \to \zeta$ there is a map $\operatorname{Th}(\tilde{f}, f): \operatorname{Th}(\xi) \to \operatorname{Th}(\zeta)$ such that
 - (a) $\operatorname{Th}(\operatorname{id}_E, \operatorname{id}_B) = \operatorname{id}_{\operatorname{Th}(\xi)}$ and
 - (b) $\operatorname{Th}(\tilde{g} \circ \tilde{f}, g \circ f) = \operatorname{Th}(\tilde{g}, g) \circ \operatorname{Th}(\tilde{f}, f).$

Examples:

Grassmann vector bundles $E_k(\mathbb{R}^n) \to \operatorname{Gr}_k(\mathbb{R}^n)$ over Grassmann manifolds with $f: \operatorname{Gr}_k(\mathbb{R}^n) \to \operatorname{Gr}_{k+l}(\mathbb{R}^{n+l})$ sending the linear subspace $L \subset \mathbb{R}^n$ to $L \subset \mathbb{R}^n \oplus \mathbb{R}^l$, or $g: \operatorname{Gr}_k(\mathbb{R}^n) \to \operatorname{Gr}_{k+l}(\mathbb{R}^{n+l})$ sending L to $L \oplus \operatorname{Span}(e_{n+1}, \ldots, e_{n+l}) \subset \mathbb{R}^{n+l}$, both with corresponding map $\tilde{f}: E_k(\mathbb{R}^n) \to E_r(\mathbb{R}^{n+l})$ resp. $\tilde{g}: E_k(\mathbb{R}^n) \to E_{k+l}(\mathbb{R}^{n+l})$ on the total spaces. (4) (Naturality of the Thom class) $\operatorname{Th}(\tilde{f}, f)^*(\tau(\zeta)) = \tau(f^*\zeta)$ for the Thom class τ of a bundle $\zeta \colon E' \to B'$ and of its pull-back $\xi := f^*\zeta \colon E := f^*E' \to B$ along any map $f \colon B \to B'$, and $\tilde{f} \colon E \to E'$ the induced map.

Exercise 5.2 (Gysin sequence in homology.)

Establish for an orientable (k-1)-sphere bundle $\xi: S \to B$ over an orientable manifold B the Gysin sequence in homology:

$$\dots \longrightarrow H_i(S) \xrightarrow{\xi_*} H_i(B) \xrightarrow{\cap \chi} H_{i-k}(B) \xrightarrow{\sigma_*} H_{i-1}(S) \longrightarrow \dots$$

where $\chi = \chi_{\xi} \in H^k(B)$ is the Euler class of ξ .

Werner Gysin (1915 - ?), swiss topologist, student of Heinz Hopf, of whom little is known, not even a picture.

Exercise 5.3 (Cohomology ring of the complex Stiefel manifolds.)

Compute with the Gysin sequence the cohomology rings of the complex Stiefel manifolds:

 $H^*(V_k(\mathbb{C}^n);\mathbb{Z}) \cong \Lambda_{\mathbb{Z}}(s_{2n-2k+1}, s_{2n-2k+3} \dots, s_{2n-1}), \quad \text{whith } |s_i| = i..$

In particular, $H^*(U(n);\mathbb{Z}) \cong \Lambda_{\mathbb{Z}}(s_1, s_3, \dots, s_{2n-1})$ for the unitary groups.

Eduard Stiefel (1909 - 1978), swiss topologist and student of Heinz Hopf.

Exercise 5.4 (The pseudo-manifold of a cycle.)

Let $a = \sum_{\alpha} \lambda_{\alpha} b_{\alpha}$ be an integral *m*-cycle in a space *X*, where α runs in a finite index set *A*, the coefficients $\lambda_{\alpha} \neq 0$ and $b_{\alpha} \colon \Delta^m \to X$ are basis elements in the chain group $S_m(X)$. In the boundary

$$\partial a = \sum_{\alpha} (-1)^i \lambda_{\alpha} \partial_i(a) = \sum_{\alpha,i} (-1)^i b_{\alpha,i}$$

we abbreviate the faces by $b_{\alpha,i} := b_{\alpha} \circ d_i$. Because of $\partial a = 0$ we can choose a 'cancellation pairing' $\pi : A \times \{0, \dots m\} \rightarrow A \times \{0, \dots m\}$ among the faces $b_{\alpha,i}$, which means :

(1)
$$b_{\alpha,i} = b_{\beta,j}$$
 and (2) $(-1)^i \operatorname{sign}(\lambda_\alpha) + (-1)^j \operatorname{sign}(\lambda_\beta) = 0$, if $\pi(\alpha, i) = (\beta, j)$.

Take an *m*-simplex Δ_{α} for each $\alpha \in A$ and define the *cycle space* to be the finite polyhedron

$$P(a) := (\bigsqcup_A \Delta_\alpha) / \sim_{\pi}$$

where \sim_{π} identifies the faces of the Δ_{α} according to the pairing π :

$$b_{\alpha,i}(t) \sim_{\pi} b_{\beta,j}(t)$$
 for all $t \in \Delta^{m-1}$, if $\pi(\alpha, i) = (\beta, j)$.

Example: If X = M is a connected, compact, closed, orientable and triangulated m-manifold and a the fundamental cycle, i.e., the the sum of all m-simplices with appropriate signs (determined by the chosen orientation), then there is an obvious pairing (namely each (m-1)-simplex is contained in precisely two m-simplices which we pair). With this pairing P(a) = M and $[a] = u_M$ is the fundamental class determined by the orientation.

- (a) Show by example that P(a) depends on the pairing π .
- (b) If P(a) is connected, the homology group $H_m(P(a);\mathbb{Z})$ is infinite cyclic and generated by an obvious fundamental class v_a . (For this reason we call P(a) a pseudo-manifold.)
- (c) Construct a map $\Phi: P(a) \to X$ such that $\Phi_*(v_a) = [a]$ for the induced homomorphism $\Phi_*: H_m(P(a); \mathbb{Z}) \to H_m(X; \mathbb{Z}).$

Exercise 5.5^{*} (How to use the cap-product and Poincaré duality to prove the homology and cohomology groups of a compact manifold to be finitely generated.)

Let M be a compact, connected and orientable manifold of dimension m. Assume we are given a space X together with a homology class $v \in H_m(X;\mathbb{Z})$ and a map $f: X \to M$ such that $f_*(v) = u_M$, the fundamental class of M. The cap product satisfies

$$f_*(f^*(\alpha) \cap b) = \alpha \cap f_*(b)$$
 for $\alpha \in H^*(M)$ and $b \in H_*(X)$.

(a) Fixing b = v, we have $f_*(f^*(\alpha) \cap v) = \alpha \cap u_M$ and thus the commutative diagram

where PD_M is the Poincaré isomorphism. (Is the left vertical map $\beta \mapsto \beta \cap v$ an isomorphism ?)

(b) Conclude that f^* is injective and f_* is surjective in each degree.

Examples:

(1) f: X = M × N → M and N orientable.
(2) f: X = M#N → M smashing N minus an open disc to a point, and N orientable.
(3) f: X = Klein bottle → S¹, a non-orientable S¹-bundle over S¹.
(4) f: X = M → M an r-fold covering, v = f₁(u_M) the fundamental class transfered up; this time one gets on the right r times the Poincaré isomorphism.

- (c) Apply this to the cycle space P(a) from Exercise 5.4 for a cycle *a* representing the fundamental class $[a] = u_M$ of *M* (and any pairing π). Conclude that $H_*(M;\mathbb{Z})$ is finitely generated in each degree. And all cohomology groups $H^*(M;\mathbb{Z})$ are finitely generated.
- (d) For a connected and compact, but non-orientable manifold consider the two-fold orientation cover, use the transfer, the mod-2-Bockstein, and the Universal Coefficient Theorem to show that the homology and cohomology groups are finitely generated.