D. LINKING NUMBERS.

Let J and K be two disjoint oriented knots in S^3 (or R^3). This section describes eight methods for defining an integer called their <u>linking number</u>, all of which turn out to be equivalent, at least up to sign. Assume J and K are polygonal.

- (1) Let [J] be the homology class in $H_1(S^3-K)$ carried by J . Since $H_1(S^3-K)\cong Z$, we may choose a generator γ of this group and write [J] = $n\gamma$. Define $\ell k_1(J,K)=n$.
- (2) Let M be a PL Seifert surfact for K, with bicollar $(N,N^{\frac{1}{2}},N^{-})$ of M as in the previous section. Assume (allowing adjustment of J by a homotopy in $S^3 K$) that J meets M in a finite number of points, and at each such point J passes locally (a) from N^- to N^+ or (b) from N^+ to N^- , following its orientation. Weight the intersections of type (a) with +1 and those of type (b) with -1. The sum of these numbers we denote by $\ell k_2(J,K)$. [Note that this seems to depend on M].
- (3) Consider a regular projection of $J \cup K$. At each point at which J crosses under K, count

$$+$$
 1 for J and $-$ 1 for K

The sum of these, over all crossings of J under K, is called $\ell k_3(J,K)$.

(4) J is a loop in S^3 - K, hence represents an element of $\pi_1(S^3-K)$ with suitable basepoint. This fundamental group abelianizes to Z, and the loop J is thereby carried to an integer, called $\ell k_4(J,K)$.

- (5) [J] and [K] are 1-cycles in S³. Choose a 2-chain $C \in C_2(S^3; Z)$ such that [K] = ∂C . Then the intersection $C \cdot [J]$ is a 0-cycle, well-defined up to homology. Since $H_O(S^3) \cong Z$, $C \cdot [J]$ corresponds to an integer which we call $\ell k_5(J,K)$.
- (6) Regard J, $K: S^1 \to R^3$ as maps.

In vector notation, define a map $\mbox{ f : } S^{\mbox{\scriptsize 1}} \times \mbox{\scriptsize S}^1 \to \mbox{\scriptsize $S2 by the formula

$$f(u,v) = \frac{K(u) - J(v)}{|K(u) - J(v)|}$$

If we orient $S^1 \times S^1$ and S^2 then f has a well-defined degree. Let $\ell k_6(J,K) = \deg(f)$.

(7) (Gauss Integral) Define $\ell k_7(J,K)$ to be the integer

$$\frac{1}{4\pi} \int\limits_{J} \int\limits_{K} \frac{(x'-x)(dydz'-dzdy') + (y'-y)(dzdx'-dxdz') + (z'-z)(dxdy'-dydx')}{[(x'-x)^2 + (y'-y)^2 + (z'-z)^2]^{3/2}}$$

where (x,y,z) ranges over J and (x',y',z') over K.

- (8) Let $p: \tilde{X} \to X$ be the infinite cyclic cover of $X = S^3 K$ and let τ generate $\operatorname{Aut}(\tilde{X})$. Consider J as a loop in X based at, say, $x \in \operatorname{Im} J$. Lift J to a path \tilde{J} in \tilde{X} , starting at any $\tilde{x}_0 \in p^{-1}(x)$ and call its terminal point $\tilde{x}_1 \in p^{-1}(x)$. There is a unique integer m such that $\tau^m(\tilde{x}_0) = \tilde{x}_1$. Define $\ell k_8(J,K) = m$.
- EXERCISE. Identify the choice in each of the above definitions which affects the sign of the linking number.
- 2. THEOREM. $\ell k_i = \pm \ell k_j$; i, j = 1, ..., 8.

- BOUNDARY LINKING. Recall that a link $L^n \subset R^{n+2}$ is a boundary link if its components bound disjoint Seifert surfaces. To establish that a link is a boundary link merely requires a construction; to show one is not, may require more cunning. This section discusses some methods, by example, and establishes that both boundary and non-boundary links $L^n \subset R^{n+2}$ exist for all $n \geq 1$. First some crude criteria.
- /. PROPOSITION: If any two components of $L^1 \subset S^3$ or R^3 have nonzero linking number, L is <u>not</u> a boundary link.

PROOF: Use definition (2) of linking number.

- 2. PROPOSITION: If $L^n \subset S^{n+2}$ or R^{n+2} is splittable, then L is a boundary link. (Assuming L is PL or C^∞)

 PROOF: Assume the components L_1, \dots, L_r lie interior to disjoint balls $B_1^{n+2}, \dots, B_r^{n+2}$. Then (EXERCISE) one may construct homeomorphisms $h_i: R^{n+2} \to \text{int } B_i^{n+2}$ which are fixed on L_i . By theorem B1, each L_i bounds a Seifert surface M_i^{n+1} . Then the surfaces $h_i(M_i)$ are again Seifert surfaces for the L_i , and they are disjoint, as required.
- **3.** EXAMPLE: Whitehead's link is not a boundary link. For if M_J and M_K are Seifert surfaces for J and K, respectively, one may construct the universal abelian (= universal) cover

 \widetilde{X} of $X=S^3-J$ by cutting along M_J . If $M_J \cap M_{\widetilde{K}} = \phi$, then $M_{\widetilde{K}}$

lifts to disjoint (why?) Seifert surfaces ... \tilde{M}_{-1} , \tilde{M}_{0} , \tilde{M}_{1} ... for the liftings ... \tilde{K}_{-1} , \tilde{K}_{0} , \tilde{K}_{1} ... of K in \tilde{X} . This is impossible,

since any two consecutive liftings of K have linking number 1 .

That boundary linking is a fairly subtle property is exhibited by the following variations on the Borromean link.

EXERCISE: In the above picture, the two links on the right are boundary links. Those on the left are not.