Exercises for Algebraic Topology I

Prof. Dr. C.-F. Bödigheimer Winter Term 2017/18

Blatt 1

due by: 18.10.2017

Aufgabe 1.1 (Poincaré Duality mod 2).

For a connected, compact and closed *m*-manifold M we define a fundamental class mod 2 to be a non-zero class in $H_m(M; \mathbb{Z}/2)$ such that the 'restriction' $o_p := \rho_{p,M}(u)$ in $H_m(M, M - p; \mathbb{Z}/2) \cong \mathbb{Z}/2$ is non-zero (und thus a generator) for each point $p \in M$.

- (a) Show that any M as above has such a class and it is unique.
- (b) If M is orientable, then the mod-2-reduction of any fundamental class in $H_m(M;\mathbb{Z})$ is the fundamental class mod 2.
- (c) Define the mod-2 Poincare homomorphism by

 $PD: H^q(M; \mathbb{Z}/2) \to H_{m-q}(M; \mathbb{Z}/2), \quad PD(\alpha) := \alpha \cap u$

and show it is an isomorphism for compact M.

B. Farb, D. Margalit: A Primer on Mapping Class Groups, page 165.

For any homeomorphism $f: S_g \to S_g$ the induced homomorphism on $H_1(S_g) \cong \mathbb{Z}^{2g}$ determines a matrix A_f in $\operatorname{GL}_{2g}(\mathbb{Z})$ with respect to the basis in the figure. If f is orientation-preserving, A_f is a matrix in $\operatorname{SL}_{2g}(\mathbb{Z})$. Moreover, since f_* preserves the intersection form (see Aufg. 1.2(c)), the matrix A_f is even in the symplectic subgroup $\operatorname{Sp}_{2g}(\mathbb{Z})$.

Aufgabe 1.2 (Intersection form and signature)

Let m = 2n be even and consider a compact, connected and orientable manifold of dimension m. with its intersection form

 $I: H_n(M; \mathbb{Z}) \times H_n(M; \mathbb{Z}) \to \mathbb{Z}$, defined by the equation $a \bullet b = I(a, b)[x]$

where \bullet denotes the intersection product and where [x] is the ground class in $H_0(M)$. Show that

- (a) $I(a,b) = (-1)^n I(b,a).$
- (b) I(a,b) = 0, if a or b is of finite order.
- (c) $I(f_*(a), f_*(b)) = I(a, b)$ for any orientation-preserving self-map of S_q .

Compute the intersection form and the signature of the following manifolds:

- (0) $M = S_q$, an orientable surface of genus g; see figure above.
- (1) $M = \mathbb{S}^n \times \mathbb{S}^n$.
- (2) $M = \mathbb{S}^{m_1} \times \cdots \times \mathbb{S}^{m_k}$ with $m = m_1 + \dots m_k$ even.
- (3) $M = \mathbb{C}P^n$.

loc. cit., p.age 171. — Denote by $\Gamma_g = \pi_0(\text{Homeo}^+(S_g))$ the group of homotopy classes of orientation-preserving homeomorphisms of the surface S_g . It is called the mapping class group. As remarked above, we have a homomorphism $\Gamma_g \to \text{Sp}_{2g}(\mathbb{Z})$ to the symplectic group. The drawings amount to a proof, that it is an epimorphism, since the transvections generate the symplectic group.

Aufgabe 1.3 (Connected sum of two manifolds)

(a) Compute the homology groups of M in terms of the homology groups of M_1 and M_2 .

For two closed manifolds M_1 and M_2 of the same dimension m recall the definition of their connected sum $M = M_1 \# M_2$ as the union of M_1 and M_2 with a disc removed in each of them and identified along the boundaries of these discs. The result is a new manifold, which is connected resp. compact if both M_1 and M_2 are so; it is orientable, if both M_1 and M_2 are so and if we identify the boundaries with an orientation-preserving homeomorphism.

(b) Now assume that m = 2n and M_1 and M_2 are both orientable. Using $H_n(M) \cong H_n(M_1) \oplus H_n(M_2)$, show

$$I_M((a_1, a_2), (b_1, b_2)) = I_{M_1}(a_1, b_1) + I_{M_2}(a_2, b_2)$$

for the intersection form of M.

Aufgabe 1.4 (Free parts and torsion parts of homology and cohomology)

For a connected, compact, closed and orientable manifold M show with the help of Poincaré Duality and the Universal Coefficient Theorem:

- free $(H^q(M)) \cong$ free $(H_q(M)) \cong$ free $(H_{m-q}(M))$
- $\operatorname{tors}(H^q(M)) \cong \operatorname{tors}(H_{q-1}(M)) \cong \operatorname{tors}(H_{m-q}(M))$

Here free (A) denotes the free part and tors(A) the torsion part of a finitely-generated abelian group A. (We use that these homology and cohomology groups are finitely-generated.)

Can one refine the second statement by considering only the torsion with respect to a certain prime ?

Aufgabe 1.5^{*} (Degrees of self-maps)

For a connected, oriented, compact and closed *m*-manifold *M* we can use the fact $H_m(M) \cong \mathbb{Z}$ to define a degree $\deg(f) \in \mathbb{Z}$ for any self-map $f: M \to M$ by the equation

$$f_*(u) = \deg(f) \, u,$$

where u is a fundamental class.

- (1) With the other fundamental class -u we get the same degree.
- (2) Clearly, $\deg(f) = 0$ for a null-homotopic map.
- (3) And $\deg(f) = \pm 1$ for a homotopy-equivalence.
- (4) Furthermore, $\deg(f \circ g) = \deg(f) \deg(g)$ for the composition of two self-maps.
- (5) For $M = \mathbb{S}^m$ we know that deg: $[\mathbb{S}^m, \mathbb{S}^m] \to \mathbb{Z}$ is a bijection; in particular, each natural number is the degree of some self-map. Surprisingly, this is not true in general; for $M = \mathbb{C}P^n$ the degree of any self-map must be an *n*-th power.

Hint: Look at the top cohomology group instead, which is generated by α^n with $\alpha \in H^2(\mathbb{C}P^n)$ a generator.