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1 Fourier series

The functions (en)n∈Z defined by en(t) = e2πint form an orthonormal basis of the Hilbert
space L2([0, 1)). Thus we have for f ∈ L2([0, 1)),

f =
∑
n∈Z

〈f, en〉en (1)

By this equation we mean only that the sum on the right hand side converges to f in the
L2 norm. That is, denoting the partial sums by

SNf =
N∑

n=−N

〈f, en〉en

equation (1) just means

lim
N→∞

‖f − SNf‖2 = 0 (2)

The coefficients 〈f, en〉 =
∫ 1

0
f(t)e−2πintdt of f are also called Fourier coefficients of f and

denoted f̂(n). The above basis expansion is the Fourier series of f .
It is an interesting question whether the partial sums of the Fourier series SNf(t) also
converge at a given point t ∈ [0, 1) to the correpsonding value f(t).
If f is, say, differentiable at t it is not hard to show that SNf(t) does converge to f(t). But
if f is only continuous at t, it is not clear whether the sequence SNf(t) even converges1.
Using the principle of uniform boundedness, one can construct continuous functions whose
Fourier series diverge at a given point.
With some more effort one can show that for any given set E ⊂ [0, 1) of Lebesgue measure
zero, it is possible to construct a continuous function which diverges on E.
It was a long standing conjecture by Luzin (1915) that the Fourier series of a continuous
function converges almost everywhere. In the 1920s, Kolmogoroff gave an example of an L1

function whose Fourier series diverges everywhere. The conjecture was settled by Lennart
Carleson in 1965 [1] who proved the following even stronger result.

1But by means of Cesáro summation we at least know that, if it converges, the limit has to be f(t).

1



Theorem 1 (Carleson). For f ∈ L2([0, 1)), SNf(t) converges to f(t) for almost every
t ∈ [0, 1) as N →∞.

This was extended to Lp for 1 < p < 2 by R. Hunt (1968).

2 The Carleson operator

There are essentially three different approaches to proving Carleson’s theorem. Carleson’s
original paper [1] is known to be notoriously difficult to read and understand. It introduces a
new technique which has since developed into part of what is known today as time-frequency
analysis.
All proofs start out in a way that is very typical for pointwise convergence questions. They
bound a corresponding maximal operator which can be thought of as measuring the error
when trying to approximate f by smooth functions, for which pointwise convergence is
known. This operator is called the Carleson operator and given by

Cf(t) = sup
N∈Z

∣∣∣∣∣
N∑

n=−N

f̂(n)e2πint

∣∣∣∣∣
It is important to notice that this operator is not linear, but only sublinear.
The original proof given by Carleson uses a sophisticated decomposition of the function
f . In 1973, Charles Fefferman [2] gave a simpler proof of Carleson’s theorem focusing on
decomposing the operator. The approach by Michael Lacey and Christoph Thiele [3] in 2000
unifies both previous proofs in that it works on both the operator and the function.
The essence of time-frequency techniques is to break up a problem in terms of its symmetries.
In the second half of the talk, we will try to sketch some of the major steps in the Lacey-
Thiele approach. The techniques can be adapted to tackle many other problems in harmonic
analysis.
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