Analysis 1

02.11.2017

Prof. Dr. H. Koch

F. GMEINEDER

Abgabe: 16.11.2017 in der Vorlesung

Übungsblatt 5

Aufgabe 1: Konvergenzkriterien für Reihen

$$2+2+2+2=10$$
 Punkte

Bestimmen Sie für die nachfolgenden Reihen, ob sie jeweils (absolut) konvergieren:

(i)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^3}$$
 (ii) $\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 3}$ (iii) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 3}$ (iv) $\sum_{n=1}^{\infty} \frac{(n^2 + 1)^n}{(3n^2 + 8n + 1)^n}$ (v) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$

Aufgabe 2: 10 Punkte

Es seien $N_1, N_2 \in \mathbb{N}$ und

$$p(x) = \sum_{k=0}^{N_1} p_k x^k$$
 und $q(x) = \sum_{k=0}^{N_2} q_k x^k$, $x \in \mathbb{R}$,

zwei Polynome vom Grad N_1 bzw. N_2 gegeben; hierbei sind $p_0,...,p_{N_1},q_0,...,q_{N_2}$ gegebene reelle Zahlen mit $p_{N_1},q_{N_2}\neq 0$. Weiters existiere ein $M\in\mathbb{N}$ mit $q(x)\neq 0$ für alle $x\geq M$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- Die Reihe $\sum_{n=M}^{\infty} \frac{p(n)}{q(n)}$ konvergiert.
- Die Reihe $\sum_{n=M}^{\infty} \frac{p(n)}{q(n)}$ konvergiert absolut.
- Es gilt $N_1 + 2 \le N_2$.

Aufgabe 3:

4+2+4 = 10 Punkte

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen mit der folgenden Eigenschaft: Es gibt ein $\theta > 1$ und ein $N \geq 2$, so dass

$$\frac{a_n}{a_{n-1}} \le 1 - \frac{\theta}{n} \qquad \text{für alle } n \ge N.$$

- (a) Zeigen Sie, dass die Reihe $\sum_{n=0}^{\infty}a_n$ konvergiert.
- (b) Vergleichen Sie diese Aussage mit dem Quotientenkriterium. Was stellen Sie fest?
- (c) Zeigen Sie, dass die Reihe $\sum_{n=0}^{\infty}a_n$ divergiert, falls es ein $N\in\mathbb{N}$ gibt mit

$$\frac{a_n}{a_{n-1}} \ge 1 - \frac{1}{n} \qquad \text{für alle } n \ge N.$$

bitte wenden ;) \longrightarrow

Aufgabe 4: Cauchy-Produkt von Reihen

4+2+4=10 Punkte

Zeigen Sie,

(a) dass für alle $x \in \mathbb{R}$ mit |x| < 1 gilt

$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k.$$

(b) dass für alle $x \in \mathbb{R}$ die Reihe

$$C(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

absolut konvergiert.

(c) dass für alle $x \in \mathbb{R}$ die Identität

$$2C(x)^2 = C(2x) + 1$$

gilt.