Analysis 1

12.10.2017

Prof. Dr. H. Koch

F. GMEINEDER

Abgabe: 19.10.2017 in der Vorlesung

Übungsblatt 1

Aufgabe 1: Mengen

10 Punkte

Sei X eine nichtleere Menge. Für $A,B\subset X$ definieren wir die Menge $A\Delta B$ durch

$$A\Delta B := \big\{ x \in X \colon \ x \in A \cup B \text{ und } x \notin A \cap B \big\}.$$

Beweisen Sie mit Hilfe einer Wahrheitstabelle, dass für alle $A,B,C\subset X$ die folgenden Eigenschaften gelten:

- (i) $A\Delta\emptyset = A$.
- (ii) $A\Delta A = \emptyset$.
- (iii) $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.
- (iv) $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.

Aufgabe 2: Peano-Axiome

10 Punkte

Im Folgenden sei $A \subset \mathbb{N}$ nichtleer.

- (i) Definieren Sie das *kleinste* Element von A so, dass Ihre Definition dem intuitiven Verständnis des Begriffs entspricht. Achten Sie dabei darauf, nur die in der Vorlesung eingeführten Axiome der natürlichen Zahlen zu verwenden.
- (ii) Zeigen Sie anhand Ihrer Definition aus der ersten Teilaufgabe den folgenden Satz:

Jede nichtleere Teilmenge der natürlichen Zahlen besitzt ein kleinstes Element.

Aufgabe 3: Vollständige Induktion-Summenformeln

10 Punkte

Zeigen Sie mittels vollständiger Induktion, dass die nachfolgenden Aussagen für alle $n \in \mathbb{N}_{\geq 1}$ gelten:

(i)
$$\sum_{k=1}^{n} (-1)^{n-k} k^2 = \frac{n(n+1)}{2},$$

(ii)
$$\sum_{k=1}^{n} k^2 2^k = -6 + 2^{n+1} (3 - 2n + n^2).$$

${\bf Aufgabe~4:~Vollst\"{a}ndige~Induktion-Ungleichungen}$

10 Punkte

Bestimmen Sie mit Beweis die jeweils kleinste natürliche Zahl $n_0 \in \mathbb{N}$, sodass die nachfolgenden Aussagen für alle $n \geq n_0$ gelten.

(i)

$$\frac{4^n}{n+1} < \frac{(2n)!}{(n!)^2}.$$