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Problem 1. Recall the definition of the (dyadic) BMO norm and the dyadic John–Nirenberg inequality from
Homework 11.

(a) Show that for every 1 < q ≤ ∞ we have
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where the supremum is taken over all dyadic intervals.

(b) Show that the (non-dyadic) BMO space is the intersection of 3 dyadic BMO spaces. (Hint: recall Problem
2 from Homework 2.) Conclude that an analogue of (1) holds for the non-dyadic BMO space.

(c) Recall the definition of a (1, q)-atom from Homework 9. Show that if a is a (1, q)-atom and f a BMO
function, then
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(d) Let X be the linear subspace of Lq (algebraically) spanned by the (1, q) atoms (this is just the space of Lq

functions with bounded support and vanishing integral). Let L : X → C be a linear functional such that
|La| ≤ 1 for each (1, q)-atom a. Show that L can be represented by a BMO function f with ‖f‖

BMO
. 1

in the sense L(a) =
∫
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Problem 2. Recall that the Fejér kernel is given by
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, t > 0.

Show that for f ∈ Lp(R), 1 < p < ∞, we have Ft ∗ f → f as t → ∞ pointwise almost everywhere. Hint:
consider first Schwartz functions f and use the Hardy–Littlewood maximal inequality.


