Harmonic Analysis, Problem set 11

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Winter term 2016/17

Due on Thursday, 2017-01-19

Definition. An *filter* p on \mathbb{N} is a collection of subsets of \mathbb{N} with the following properties:

- (a) $\emptyset \notin p, \mathbb{N} \in p$.
- (b) If $A, B \in p$, then $A \cap B \in p$,
- (c) If $A \subseteq B \subseteq \mathbb{N}$ and $A \in p$, then $B \in p$.

Let X be a topological space and $f : \mathbb{N} \to X$ a function. A limit of f along a filter p is a point $x \in X$ such that for every neighborhood U of x we have $f^{-1}(U) \in p$. This is denoted by $\lim_{n \to p} f(n) = x$.

An *ultrafilter* is a filter that is maximal with respect to inclusion. An ultrafilter is called *principal* if if has the form $\{A : n \in A\}$ for some $n \in \mathbb{N}$.

Problem 1. In this problem you will show that there exist multiplicative linear functionals on $\ell^{\infty}(\mathbb{N})$ that are not given by evaluation at a point.

- (a) Show that every filter is contained in an ultrafilter. Show that there exists a non-principal ultrafilter.
- (b) Let p be an ultrafilter and $A \cup B \in p$. Show that $A \in p$ or $B \in p$.
- (c) Let $f: \mathbb{N} \to [-1,1]$ be a function and p an ultrafilter. Show that $\lim_{n \to p} f(n)$ exists and is unique.
- (d) Let $f, g: \mathbb{N} \to [-1, 1]$ and p an ultrafilter. Show that $(\lim_{n \to p} f(n))(\lim_{n \to p} g(n)) = \lim_{n \to p} f(n)g(n)$. Hence the ultralimit defines a multiplicative linear functional on $\ell^{\infty}(N)$ (you do not have to verify linearity).
- (e) Show that if $f \mapsto \lim_{n \to p} f(n)$ coincides with the point evaluation at $m \in \mathbb{N}$, then p is the principal ultrafilter at m.

Definition. The *BMO (for "bounded mean oscillation") norm* of a (measurable) function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$||f||_{BMO} := \sup_{I} \inf_{c \in \mathbb{R}} |I|^{-1} \int_{I} |f - c|$$

where the supremum is taken over all subintervals of \mathbb{R} . The *dyadic BMO norm* is defined similarly with a supremum over dyadic intervals I.

The space of functions with finite BMO (resp. dyadic BMO) norm is denoted by BMO (resp. BMO_d)

Problem 2. (a) Show that $||f||_{BMO} \le ||f||_{\infty}$

- (b) Show that the function $\log |x|$ is in BMO.
- (c) Show that the function $1_{x>0} \log |x|$ is in BMO_d, but not in BMO.
- (d) Show that

$$||f||_{BMO} \le \sup_{I} |I|^{-1} \int_{I} |f - f_{I}| \le 2||f||_{BMO}, \quad f_{I} = |I|^{-1} \int_{I} f.$$

(e) Prove the (dyadic) John–Nirenberg inequality: there exist constants C, c > 0 such that for every dyadic interval I

$$|I \cap \{f - f_I > \lambda\}| \le C \exp(-c\lambda/||f||_{BMO_d})|I|, \quad 0 \le \lambda < \infty$$

Hint: one can assume $||f||_{BMO_d} = 1$ and $f_I = 0$, and it suffices to consider $\lambda = 10N, N \in \mathbb{N}$. Construct inductively a sequence of subsets $I_N \subset I$ starting with $I_0 = I$ as follows: each $I_N = \bigcup_i I_{N,i}$ will be a disjoint union of dyadic intervals. Given I_N define

$$I_{N+1} := \bigcup_i (I_{N,i} \cap \{ M_d(f - f_{I_{N,i}}) > 5 \}),$$

where M_d is the dyadic Hardy–Littlewood maximal function. By induction on N show:

(e.1) $f \le 10N$ on $I \setminus I_N$, (e.2) $|I_N| \le \exp(-cN)|I|$, (e.3) $|f_{I_{N,i}}| \le 10N$.