Harmonic Analysis, Problem set 8

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Winter term 2016/17

Due on Thursday, 2016-12-15

Definition. We denote the embeddings that have been introduced it the lecture by

$$Af(x,t) := \int_{\mathbb{R}^d} |f(z)| \frac{t}{(t+\|x-z\|)^{d+1}} \mathrm{d}z,$$

$$Df(x,t) := \sup \Big\{ |\int_{\mathbb{R}^d} f(z)\phi(z) \mathrm{d}z| \ : \ \int \phi = 0, \ |\phi(z)| \le \frac{t}{(t+\|x-z\|)^{d+1}}, \ \|\nabla \phi(z)\| \le \frac{t}{(t+\|x-z\|)^{d+2}} \Big\}.$$

Problem 1. (a) Show that if $||x - y|| \lesssim t$, then $|Df(x, t)| \lesssim |Df(y, t)|$.

(b) For $f \in L^p(\mathbb{R}^d)$, 2 , consider the square function

$$Sf(x) := \left(\int_0^\infty Df(x,t)^2 \frac{\mathrm{d}t}{t}\right)^{1/2}.$$

Show that $||Sf||_p \lesssim ||f||_p$ by estimating $\int (Sf)^2 g$, $g \in L^{(p/2)'}(\mathbb{R}^d)$, using the outer Hölder inequality and the embeddings from the lectures.

Problem 2 (Calderón reproducing formula). Let ϕ, ψ be functions on \mathbb{R}^d with $\int \phi = \int \psi = 0$, $|\phi(x)|, |\psi(x)| \lesssim (1 + ||x||)^{-d-1}$, $|\nabla \phi(x)|, |\nabla \psi(x)| \lesssim (1 + ||x||)^{-d-2}$.

(a) Show that the operators

$$T_R f := \int_{\|x\| \le R} \int_{1/R}^R (f * \psi_t)(y) \phi_t(\cdot - y) \frac{\mathrm{d}t}{t} \mathrm{d}y,$$

where $\phi_t(x) = t^{-d}\phi(x/t)$ and analogously for ψ , are bounded on $L^2(\mathbb{R}^d)$ uniformly in R > 1. Hint: use the L^2 almost orthogonality result from the lecture.

- (b) Show that $T := \lim_{R \to \infty} T_R$ exists in the weak operator topology (this means that for every $f \in L^2(\mathbb{R}^d)$ there exists $Tf \in L^2(\mathbb{R}^d)$ such that for every $g \in L^2(\mathbb{R}^d)' = L^2(\mathbb{R}^d)$ we have $\lim_{R \to \infty} \int (T_R f T_f) g = 0$).
- (c) Show that T is a bounded linear operator on $L^2(\mathbb{R}^d)$ and $T = \lim_{R \to \infty} T_R$ in the strong operator topology (this means that for every $f \in L^2(\mathbb{R}^d)$ we have $\lim_{R \to \infty} ||T_R f Tf||_2 = 0$).
- (d) Assuming that $\int_0^\infty \hat{\phi}(t\xi)\hat{\psi}(t\xi)\frac{\mathrm{d}t}{t} = 1$ for all $\xi \in \mathbb{R}^d \setminus \{0\}$ show that Tf = f.