Harmonic Analysis, Problem set 6

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Winter term 2016/17

Due on Thursday, 2016-12-01

The first problem establishes equivalence between classical and outer L^p spaces. In particular, this shows that the Marcinkiewicz interpolation theorem can be used with any combinations of outer and classical L^p spaces. We denote

$$\mu\{f > \lambda\} = \mu(\{x : f(x) > \lambda\}), \quad \mu(Sf > \lambda) = \inf_{\mathbf{E} \subset \mathcal{E}: \sup_{E' \in \mathcal{E}} \inf_{S(f_{1}(\cup \mathbf{E})^{c})(E') \le \lambda} \sum_{E \in \mathbf{E}} \sigma(E).$$

(in the lecture notes the latter quantity is sometimes denoted by $\mu(\{Sf > \lambda\})$, but this is not intended and will hopefully be corrected soon).

Problem 1. Let (X, \mathcal{E}, σ) be an outer measure space. It is known that the class \mathcal{X} of Carathéodory measurable sets is a σ -algebra and the outer measure μ is σ -additive on \mathcal{X} . Assume that μ is also σ -finite (so that Fubini's theorem applies) and that $\mathcal{E} \subset \mathcal{X}$. Let \mathcal{B} denote the set of \mathcal{X} -measurable functions from X to \mathbb{R}_+ .

(a) For $f \in \mathcal{B}$ show that

$$\int_X f(x)^p \mathrm{d}\nu(x) = p \int_0^\infty \lambda^{p-1} \mu\{f > \lambda\} \mathrm{d}\lambda.$$

Hint: write $f(x)^p = \int_0^{f(x)} p \lambda^{p-1} d\lambda$.

(b) Consider the size

$$S_{\infty}f(E) := \inf_{A:\mu(A)=0} \sup_{E \setminus A} f.$$

Show that $\mu\{f > \lambda\} = \mu(S_{\infty}f > \lambda)$ for all $f \in \mathcal{B}$ and $0 < \lambda < \infty$.

(c) Suppose additionally that $\sigma(E) < \infty$ for all $E \in \mathcal{E}$ and consider the size

$$S_1 f(E) := \sigma(E)^{-1} \int_E f \mathrm{d}\mu.$$

Show that $\mu\{f > \lambda\} = \mu(S_1 f > \lambda)$ for all $f \in \mathcal{B}$ and $0 < \lambda < \infty$.

Problem 2 (Hilbert transform). It has been sketched in the lecture that

$$\int_{-\infty}^{+\infty} (f + iHf)^k = 0$$

for all smooth compactly supported real-valued functions f and integers $k \ge 2$, where H denotes the Hilbert transform (in particular Hf is also real-valued).

- (a) Let $k \ge 2$ be an even integer. Show that $||Hf||_{L^k} \le C_k ||f||_{L^k}$ for some C_k that does not depend on k. Hint: expand the real part of the above identity and use Hölder's inequality to separate L^k norms of f and Hf.
- (b) Let $2 \le p < \infty$. Show that $||Hf||_{L^p} \le C_k ||f||_{L^p}$.
- (c) Let $\tilde{f}(x) = f(-x)$. Show that for all smooth compactly supported functions $f, g \in C_0^{\infty}(\mathbb{R})$ we have $\int (Hf)g = \int (H\tilde{g})\tilde{f}$. Use duality between L^p and $L^{p'}$, 1/p + 1/p' + 1, and the fact that C_0^{∞} is dense in $L^{p'}$ to show that $\|Hf\|_{L^p} \leq C_k \|f\|_{L^p}$, $1 (here again <math>f \in C_0^{\infty}(\mathbb{R})$).

