Harmonic Analysis, Problem set 5

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Winter term 2016/17

Due on Thursday, 2016-11-24

Problem 1 (Quasinormed spaces). Let X be a quasinormed vector space, that is, $||\lambda x|| = |\lambda|||x||$ for all $\lambda \in \mathbb{C}$, $x \in X$, and $||x + y|| \le C(||x|| + ||y||)$ for all $x, y \in X$ and some $C \ge 1$.

(a) Let $x_1, \ldots, x_{2^n} \in X$. Show that

$$\|\sum_{i=1}^{2^n} x_i\| \le C^n \sum_{i=1}^{2^n} \|x_i\|.$$

(b) Let $x_1, \ldots, x_n \in X$. Show that

$$\|\sum_{i=1}^{n} x_i\| \le \sum_{i=1}^{n} C^i \|x_i\|.$$

(c) Let $(x_i)_{i=1}^{\infty} \subset X$ be a sequence with $||x_i|| \leq a^{-i}$ for some a > 1. Show that the sequence of partial sums

$$\sum_{i=1}^{n} x_i$$

is Cauchy.

Problem 2 (Indicator functions of sparse collections are Carleson measures). Consider the outer measure space $X = \mathcal{D}$ with \mathcal{E} consisting of the trees $T_I = \{J \subseteq I\}$ and the outer measure generated by $\sigma(T_I) = |I|$. Let the size S_1 be defined by

$$S_1(F)(T_I) := |I|^{-1} \sum_{J \subseteq I} |J| F(J).$$

Recall that a collection of dyadic intervals $S \subset D$ is called η -sparse if for every $I \in S$ we have

$$|\cup\{J\in\mathcal{S},J\subsetneq I\}|\leq (1-\eta)|I|. \tag{1}$$

Let $S \subset \mathcal{D}$ be an η -sparse collection. Show that $\|1_S\|_{L^{\infty}(S_1)} \leq 1/\eta$. Hint: the relative complements of the sets (1) inside I are pairwise disjoint.