Harmonic Analysis, Problem set 3

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Winter term 2016/17

Due on Thursday, 2016-11-10

- **Problem 1.** (a) (Special case of monotone convergence theorem) Let \mathcal{I}_i , $i \in \mathbb{N}$, be collections of disjoint dyadic intervals and write $U_i = \cup \mathcal{I}_i$. Assume that $U_i \supseteq U_{i+1}$ for all i and $S := \inf_i \sum_{I \in \mathcal{I}_i} |I| < \infty$. Show that the set $\cap_i U_i$ has outer measure at least S, that is, it cannot be covered by a collection of disjoint dyadic intervals \mathcal{I} such that $\sum_{I \in \mathcal{I}} |I| < S$.
- (b) (A version of Egorov's theorem) Let $F: \mathcal{D} \to \mathbb{R}$ be a function that (for simplicity) vanishes on dyadic intervals not contained in [0,1]. Assume that $\lim_{k\to-\infty} F(I_{k,x})$ exists almost everywhere. Show that for every $\epsilon>0$ there exists a collection of dyadic intervals \mathcal{I}_{ϵ} and an integer k_{ϵ} such that $\cup_{I\in\mathcal{I}}|I|<\epsilon$ and for all $k,k'< k_{\epsilon}$ and all $x\notin \cup \mathcal{I}_{\epsilon}$ we have $|F(I_{k,x})-F(I_{k',x})|<\epsilon$.

Hint: consider

$$\mathcal{I}_i = \{ \text{maximal } J : \exists J \subset J', |J'| \le 2^{-i}, |F(J) - F(J')| \ge \epsilon \}$$

Problem 2. A collection of dyadic intervals $S \subset D$ is called η -sparse if for every $I \in S$ we have

$$|\cup\{J\in\mathcal{S},J\subsetneq I\}|\leq (1-\eta)|I|.$$

Let F be a dyadic martingale. Show that the collection $S := \bigcup_{k \in \mathbb{Z}} \mathcal{I}_{4^k,F}$ is $\frac{1}{2}$ -sparse.