Mathematisches Institut
Prof. Dr. Christoph Thiele
Dr. Pavel Zorin-Kranich
Winter term 2016/17

Due on Thursday, 2016-11-03

The set of harmonic functions on the upper half-plane from the lectures 1 and 2 is denoted by \mathcal{M} here, and the set of their primitives by $\mathcal{P} \mathcal{M}$.

Problem 1. Let $F \in \mathcal{P} \mathcal{M}$. Show that $\lim _{t \rightarrow 0} F(x, t)=\left(f_{l}(x)+f_{r}(x)\right) / 2$ for every $x \in \mathbb{R}$. You may use the bijections between $\mathcal{P} \mathcal{M}, \mathcal{M}, \mathcal{P B}^{\prime}, \mathcal{B}^{\prime}$ from the lectures.

Problem 2. Define adjacent systems of dyadic intervals by

$$
\mathcal{D}^{\alpha}=\left\{2^{-k}\left([0,1)+m+(-1)^{k} \alpha / 3\right), m, k \in \mathbb{Z}\right\}
$$

where $\alpha=0,1,2$. Not that \mathcal{D}^{0} is the usual system of dyadic intervals.
(a) Show that each \mathcal{D}^{α} is nested in the sense that for $I, J \in \mathcal{D}^{\alpha}$ we have $I \cap J \in\{I, J, \emptyset\}$.
(b) Show that for every interval $I \subset \mathbb{R}$ there exists $\alpha \in\{0,1,2\}$ and $J \in \mathcal{D}^{\alpha}$ such that $I \subset J$ and $|J| \leq 4|I|$.
(c) Let $f \in \mathcal{B}$. The (continuous) Hardy-Littlewood maximal function is defined by

$$
M f(x):=\sup _{x \in I}|I|^{-1} \int_{I} f,
$$

where the supremum is taken over all intervals containing x. Show that $M f<\infty$ almost everywhere.
(d) Let $F \in \mathcal{M}$ and $M F(x):=\sup _{t>0} F(x, t)$. Show that $M F<\infty$ almost everywhere. Hint: use part c.

