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[19.10.2016]

1 Introduction

Functional analysis is the study of normed complete vector spaces (called
Banach spaces) and linear operators between them. It is built on the struc-
ture of linear algebra and analysis. Functional analysis provides the natural
frame work for vast areas of mathematics including probability, partial dif-
ferential equations and numerical analysis. It expresses an important shift
of viewpoint: Functions are now points in a function space.

Let £ C R™ be an open bounded set with smooth boundary. One of
the deepest results in Finfihrung in die PDG was that the Green’s function
g(z,y) provides a map

f—u

given by
u(z) = / o, 9) f(y)dy = Tf

so that
—Au=f in

u=20 on 0f)

whenever f is sufficiently regular. It is not hard to see that
T:L*Q) — L*(Q)

and T is one of the most relevant operators in functional analysis.

The main abstract objects are topological vector spaces over K, K = R or
C. We will focus on normed spaces, the most important class of topological
vector spaces.

Definition 1.1. Let X be a K vector space. A map |.|| : X — [0,00) is
called norm if
|zl =0 = x =0, (1.1)
if for all xz,y € X
1z +yll < llzll + llyll (triangle inequality) (1.2)

and if for all A e K and x € X
Az = [Alll]l- (1.3)

It is called normed space and Banach space if it is complete as metric space.
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Remark 1.2. A norm defines a metric by d(x,y) = ||z — y||.

First examples.

1. R™ and C™ equipped with the Euclidean norm are real resp. complex
Banach spaces.

2. Let X be a set. The space of bounded functions B(X) equipped with
the supremum norm is a Banach space.

3. Let (X, d) be a metric spaces. The space of bounded continuous func-
tions Cy(X) equipped with the supremum norm is a Banach space, or
more precisely a closed sub vector space of B(X).

4. Let U C R?be open. CF(U) is the vector space of k times differentiable
functions on U which are together with there derivatives bounded. The
norm

luller @) = max [|19%ulsw)

turns Cf into a Banach space. Fxercise

5. Let U C C be open. The space of bounded holomorphic functions
H>(U) is a Banach space when equipped with the supremum norm.

Lemma 1.3. Suppose that X is a Banach space and U C X is a vector
space which is a closed subset of X. Then U is a Banach space.

Definition 1.4. Let X and Y be normed spaces. We define L(X,Y) as the
set of all continuous linear maps from X to Y.

Theorem 1.5. Let T : X — Y be in L(X,Y). Then

IT|x=y == sup |T(z)[ly < oo
|z x <1

and ||.||x—y defines a norm on L(X,Y). A linear operator T : X — Y is
continuous if and only if its norm ||T||x—y is finite. L(X,Y) is a Banach
space if Y is a Banach space.

Proof. Continuous linear maps from X to Y are a vector space with the
obvious sum and multiplication. Let T : X — Y be a continous linear map.
We choose € = 1 and xzg = 0. Then there exists § > 0 so that

ITally <1 i flellx <6,
and hence, if z € X, x # 0, then ‘ oz ‘ < ¢ and
Tallx || x
x ox _
Taly = LX) 20| < 51
6 ]| x Ity
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and thus
1T xoy <67t

Vice versa: Let T': X — Y be linear so that ||T||x—y < co. For e > 0 we
choose 0 = ¢/||T||x—y. Then

[Tz = Tyly = [T(x = ylly <[ Tlx-vlle—ylx <e

provided ||z — y||x < 4. In particular 7' is uniformly continuous.
Now assume that Y is a Banach space and let T, € L(X,Y") be a Cauchy
sequence. For all z, T,z is a Cauchy sequence in Y since

[Tne — Tmzlly < T — Tonllx -y [l x-

Let

Tx := lim T,x.
n—oo

The convergence is uniform on bounded sets, and hence the limit T is con-
tinuous and in L(X,Y). Moreover

1T = Tullx—y = sup [T =Tn)ally = sup limsup||(Tr, — Tn)zlly
leflx <1 leflx <1 m—oo

<limsup [|T), — Tp|lx>y — 0
m—o0

as n — o0o. Here we used continuity of addition and the map to the norm. [J

Definition 1.6 (Dual space). Let X be a normed space. We define the dual
(Banach) space as X* = L(X,K).

Example: Let X = R" with the Euclidean norm. The map
n
R">y — (x — ijyj) e (R™)*
j=1

is isometric and surjective. It allows to identify R™ and (R™)*.

[19.10.2016]
[21.10.2016]

Lemma 1.7. The space Co(R™) C Cp(R™) of functions converging to 0 at
oo is a Banach space. Similarly the space co of sequences converging to 0
equipped with the sup norm is a Banach space.

Lemma 1.8. Let X be a normed space. Addition, scalar multiplication and
the map to the norm are continuous.

Lemma 1.9. The closure of a subvector space of a normed spaces is a
subvector space.
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Further examples: Let 1 < p < g < co. We define the sequence spaces
Definition 1.10. A K sequence (z;);jen is called p summable if

oo
Z\xj|p<ooifp<oo, s%op|xj]<oo if p= oo.

i=1 =t

The set of all p summable sequences is denoted by IP(N) = [P.

Theorem 1.11. The set of p summable sequences is a vector space. The

expressions
1/p

[o.¢]
@)l = [ Dl |, p<oc
j=1

resp.

() [liee = sup |z;]
jEN

are norms on [P(N), which turn IP(N) into Banach spaces. If % + % =1,
1 <p,qg<ooand (z;) € 1P, (y;) €19 then (x;y;) is summable and Hdlder’s
inequality holds:

o0 [ee]
> xiy| < Tyl < I@) i ll@5) -
j=1 =1

Remark 1.12. We may replace N by Z, by a finite set, or even an arbitrary
set. Then [*°(X) = B(X). The triangle inequality is called Minkowski
inequality.

We recall Young’s inequality
1 1
lzyl < — |z’ 4+ —[y|?
p q

for % + % =1,1<p,q <ooand z,y € R. Without loss of generality we
assume z,y > 0 and this can be proven by searching the maximum of

1
x— axy — —aP
p

for y > 0 which is attained at zo = y*/(=1):

1 p—1 » 1
ToYy — —x) = yr T =y
p P q

As a consequence

1 1 1 1
D lwgyil < 3 Ll =yl = @)l + =)l
; ; p q p q
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and we obtain Holder’s inequality

Z [2y51 =I1(za) |l | (yr) 1o Z o) o o 1 o) 3

=u<xk>um<yk>uzq<; + ;>
1) el )

Proof. Since {*°(N) = B(N) there is nothing to show if p = co. Moreover
the triangle inequality is obvious if p = 1. Then, if 1 < p,q¢ < c©

o [o.¢]
S a4yl <l + oyl g + sl
=1 =1
o0 o0
< g+ s+ D e+ P sl
j=1 j=1

<Ny + 931~ s (11 ) + 1) o)

I+ )l (1)l + 1))

and
(5 + yi)lle < 1(@)llew + 1(y5) i

provided we can devide by ||(z; + y;)[|;». There is nothing to show if this
quantity is 0 and it is finite whenever we sum over a finite number of indices.
Then a limit argument gives the full statement.

In particular we obtain the triangle inequality. One easily sees that
|(z;)|le = 0 implies (z;) = 0 and

[Az) e = M () 2w

Thus the spaces [P are normed vector spaces. Now suppose that =, = (2, ;)
is a Cauchy sequence in [P. Then for every j, n — x, ; is a Cauchy sequence
in K. Let y; = limy, o0 2y ; and y = (y;). Then, for every m > 1 (assuming
p < o0, since [*° = B(N))

N
ly = 2l = Jim 3 [y — o l?
j=1

N

= lim lim Tni — Tm.ilP
Jim i 3 [ — |

J=1

< nh_{Iolo ||$n - JSmep
— 0 as m — o0.

O]
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Definition 1.13. Two norms ||.| and |.| on a normed spaces X are called
equivalent, if there exits C' > 1 so that for all x € X

C7Hlz|| < fal < Oz

Theorem 1.14. All norms on finite dimensional spaces are equivalent. Fi-
nite dimensional normed spaces are Banach spaces.

Proof. Let |.| be the Euclidean norm on K¢ and ||.|| a second norm. Let
{ej}j=1,..,a be the standard basis. Then

d d d
| S ases]| < D7 Jaj maxlenl < (Vamax llexl) |3 aje;]|
j=1 j=1 j=1

Thus v — ||.|| is continuous with respect to |.|. It attains the infimum on the
Euclidean unit sphere (which is compact). This minimum has to be positive
and we call it A™'. Then

ol = [vllo/[oll < Afolflv/|v]l] = Allv]].

The two inequalities imply the equivalence of the norms ||.|| and |.| by choos-
ing

C= max{\/gmaxHekH,/\, 1}.

Thus every norm on K¢ is equivalent to the Euclidean norm, and any
two norms are equivalent.

A Cauchy sequence v, = (vm,) with respect to ||.| is also a Cauchy
sequence with respect to the Euclidean norm, hence it converges to a vector
v with respect to the Euclidean norm, and hence also |v,, —v| — 0.

This proves the claim for K¢ Now let X be a vector spaces of dimension
d. Then there is a basis of d vectors, and a bijective linear map ¢ from K%
to X. If ||.||x is a norm on X then 2 — ||¢(x)| x is a norm on K% Thus the
first part follows. Since ¢(zy,) is a Cauchy sequence with respect to ||.||x iff
(x,) is a Cauchy sequence in K? with respect to the second metric, and one
converges iff the second converges.This completes the proof.

O

21.10.2016]
26.10.2016]

Lemma 1.15. Let X be a Banach space and U be a closed subvector space.
Then X/U is a vector space,

T = inf —x
12| x /0 yeUlly |

defines a norm (here T is the equivalence class of x) and X /U is a Banach
space.
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Proof. Exercise O]

Lemma 1.16. Let X and Y be normed spaces. Their direct sum X @Y (=
X xY) is a vector space. If 1 < p < oo then

1@, 9)llp = [I(x]x, [yl )l
defines a norm with which X @Y becomes a Banach space.

Proof. Exercise O

2 Hilbert spaces

2.1 Definition and first properties

Definition 2.1. Let X be a K vector space. A map (.,.) : X x X — K is
called inner product if

(1 + x2,y) = (x1,y) + (x2,Y) for all z1, 19,y € X (2.1)

Az, y) = Mz, y) forallz,y e X, A €K (2.2)

(x,y) = (y,x) forall z,y e X (2.3)
In particular (x,z) € R for all x € X and
(x,z) >0 forallx € X (2.4)
(x,x) =0 — =0 (2.5)
Examples:
1. Euclidean vector spaces over K, Euclidean inner product.

2. Real and complex square summable sequences space (?(N) with ((z;), (y;)) =
POEFITE

3. Let U C R™ be measurable, X = Cy(U), (f,g) = [; fgdm" where m"
denotes the Lebesgue measure.

Lemma 2.2 (Cauchy-Schwarz). Let X be a vector space with inner product.
Then

=

[(z,9)| < ({z,2)(y,9))
forall xz,y € X.
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Proof. Let z,y € X and A € K. Then

If y = 0 there is nothing to show, so we assume y # 0 and define A = %

Then

2
(y,y)
which implies the Cauchy-Schwarz inequality. O
Lemma 2.3. The map
z = |z] := (2, z)

defines a norm.

With this notation the Cauchy-Schwarz inequality becomes

(@, )] < [l [yl
Proof. Clearly ||z|| > 0, ||z|| = 0 iff z = 0. Moreover
IAz]f* = APl
and by the Cauchy-Schwarz inequality

lz +ylI* =lll® + {,y) + {y,2) + [yl
<lzl* + 2l llly ] + Iyl
=(ll]l + lly1)*.

O]

Definition 2.4. A vector space X with an inner product is called pre-Hilbert
space. It is a Hilbert space if it is a Banach space.

Lemma 2.5. The inner product defines a continuous map from X x X to
K.

Proof. Exercise O

It is not hard to verify the parallelogram identity
Iz +ylI* + Iz — ylI* = 2[|z[|* + 2]}y (2.6)

for x,y € H some pre-Hilbert space.
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Theorem 2.6 (Jordan von Neumann). Let X be a normed K wvector space

with norm ||.||. We assume that the norm satisfies the parallelogram identity
lz +ylI* + llz = ylI* = 2l|= ] + 2[ly]* (2.7)
Then )
(w.y) = 7 (llz +9ll? = 1o — y)?) (2.8)
if K=R and
1 2 2 N2 2
y) = 7 (lz+ 9P = o =y +illz + iyl —ille —iy|?)  (29)

otherwise defines an inner product such that the norm is the norm of the
preHilbert space. Vice versa: The morm of a prehilbert space defines the
parallelogram identity.

As a consequence we could define a Hilbert spaces as a Banach space
whose norm satisfies the paralellogram identity. By an abuse of notation
we call a normed space pre-Hilbert space if it satisfies the parallelogram
identity.

Proof. We begin with a real normed spaces whose norm satisfies the paral-
lelogram identity. We define

1
(@y) =5 (le+yl* = == yl*).

Then
(z,y) = (y, ).
Since by the parallelogram identity

20|z + 2P + 2]yl = lle +y+ 21> + lz —y + 2|
hence

lz + 3 + 21 =2}z + 2)* + 2llyl* ~ llz — y + 2|
=2|ly + 2[|* + 2l|z[* ~ lly — = + 2*

and

1 1
lzty+2l* = 21+ yl* +lla+ 2+ ly+ 27 = Sz —y+2* = S ly—a+2]”

1 1
lzty—2l* = 21+ yl* +llz =2+ ly = 2[° = Sz =y 2" = S ly =2 =]”
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and we arrive at
1 2 2
(w+y,2) =1 (lz+y+2]" o +y—=2[)

1 1
= (e + 21 = llz = 21 + 30y + 21 — lly = =IP)
:<$,Z> + <y’Z>'
We claim
(Az,y) = Mz, y)

for all z,y € X and A € R. It obviously holds for A = 1 by checking the
definition, and for all A € N be the previous step, hence for all A € Z. But
then it holds for all rational A and by continuity for A € R.

We complete the proof for complex Hilbert spaces: We define

3
1 . .
(o,g) = 1 D2 ¥l + iy
k=0

and observe that (iz,y) = i(x,y), (x,y) = (y,z) by definition, Re(x,y) is
the previous real inner product and Im(z, y) = Re(z, iy). O

Corollary 2.7. A normed space is a pre-Hilbert space if and only if all two
dimensional subspaces are pre-Hilbert spaces.

Proof. 1t is a pre-Hilbert space if and only if its norm satisfies the parallelo-
gram identity which holds if and only if the parallelogram identity holds for
all two dimensional subspaces. O

This has geometric consequences.

Lemma 2.8. Let H be a Hilbert space, K C H compact, and C C H closed
and convex, C and K disjoint. Then there exist x € K and y € C so that

[ =yl = d(C, K)

Proof. Let x; € K and y; € C be a minimizing sequence. Since K is compact
there is a subsequence which we denote again by (z;,y;) and z € K so that
x; — x. By the triangle inequality

[z =yl = d(C, K).

Then

|Yn — ym||2 =|(x —yn) — (x — ym)||2

=2[|z — yul® + 2l|z — ym* — 122 = (Y + ym) |
<2z = yull* + |z — ym|*) — 4d*(C, K)

—0 as n,m — o0
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since by convexity %(yn + ym) € K. Thus (y,) is a Cauchy sequence with
limit y € C'. Moreover

A(C, K) = lim [z~ = |z~ y]|.
O

26.10.2016]
[28.10.2016]

Definition 2.9. We call two elements x,y € H orthogonal if (x,y) =0 .

Lemma 2.10. Suppose that C is a closed and convexr subset of a Hilbert
space H and x € H. Then the closest point in C to x is unique and we
denote it by p(x). Moreover, if y = p(z) then

Re(z —y,z—y) <0 (2.10)

forall z € C. If y € C satisfies this inequality for all z € C then y = p(x).
If C is a closed subspace then for all z € C

(x —p(x),z) =0. (2.11)

The point y = p(x) € C is uniquely determined by this orthogonality condi-
tion. Moreover

1 = [l = p(2) 1 + lp(2)I*.

Proof. Uniqueness is a consequence of the proof of Lemma Let y € C.
Then by the triangle inequality, if z € C' then for 0 <t <1

yt) =y +t(z—y)eC
and hence if y = p(x),
lz = yl* < llz —y = t(z = 9)> = |z = y[|* = 2t Refx — y, 2 — y) + [y|*.
This implies (2.10) and also the converse. In the case that C is a closed
subspace (2.10)) is equivalent to the orthogonality relation. ]
2.2 The Riesz representation theorem

Theorem 2.11 (Riesz representation theorem). Let H be a Hilbert space.
Then
J:H>z— (y— (y,x)) € H*

1s an R linear isometric isomorphism. It is conjugate linear:

J(A\x) = \J(z).
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Proof. By the Cauchy-Schwarz inequality

[T (@)= = sup [{y,2)| < |z([m
lyll<t

and the map is well defined and antilinear. Since
| T (@) > (e, T (2)) = (@, 2) = |||
we see that
1 (@)= = ||| -
Thus J is an isometry: ||J(2)|| g+ = ||z||g. In particular J is injective. To
show that .J is surjective we assume that x* € H* and try to find x so that
x* = J(x). Let
N={yeH:xz*(y) =0}

Then N is a subvector space and it is closed. Let p be the orthogonal
projection to N as above. We choose yy € H with z*(yp) = 1 and define

xo = Yo — P(Yo)-

Then z*(zp) = 1 and for all y € N by (2.11)) (y,z¢) = 0. Moreover z*(z —
x*(x)zo) = 0 hence z — x*(x)zg € N and by (2.11])

(x — ™ (x)x0, 20) = 0.
Since z = [z — x*(x)zo] + =™ (x) o, then
(x,x0) = (z*(x)m0, 20) = 2" () w0l Ty
" (@) = (2, o ) = J () (@)
" [lzol[? [EN S
Theorem 2.12 (Lax-Milgram). Let H be a Hilbert space and
Q:HxH>(z,y) = Qz,y) €K
be linear in x, antilinear in y, bounded in the sense that
Q(z, y)| < Cll=[l]yll
and coercive in the sense that there exists 6 > 0 so that
ReQ(z,z) > d|lx|*.

Then there exists a unique continuous linear map A : H — H with contin-
uous inverse A~" so that

Q(J}?y) = <A$,y>

Moreover
IAllg—u < C, A g <671
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Proof. Let © € H. Then

y— Qz,y) € H”.

By the Riesz representation theorem there exists a unique z(x) € H so that

<Z(l’),y> = Q(m,y)

for all y € H. Then

sup Q(z,y)
lyll<t

[z(2)]| = e [(2(2), u)| =

Clearly z(z1 + x2) = z(z1) + 2(z2) and z(Az) = Az(x) and we define the
continuous linear operator Ax = z. Since

Re(Az, z) > 6]|z|

we obtain
[Az[| = 6|].
It particular A is injective and the range is closed. If it is not surjective
there exists z with ||z|| = 1 and z is orthogonal to the range, i.e.
(Az,z) =0

for all x € X. In particular we reach the contradiction

0= (Az,z2) > d|z|>

2.3 Orthonormal systems

We recall that N elements x; of a vector space X are called linearly inde-
pendent if

N
Z )\j:pj =0
7j=1

implies A\; = 0. Let x; be N linearly independent vectors of a Hilbert space.
By the Gram-Schmidt procedure we obtain an orthonormal system with

1
Y1 = x1
(1]

U2 = @2 — (T1,y1)Y1
1

Y2 = y=Y2
1]l
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recursively. We can do this with N = co.
Examples: Orthonormal polynomials. Let 1 : R — (0, 00) be measurable
so that all moments exists, i.e.

/ |lz|N pda < oo
R
for all N > 0. Let
X ={feCR): 1+ |z])~N]|f| is bounded for all N}.

Then
X xX53(f,9) = (f,9):= /fgud:v

defines an inner product. The monomials
— n
fn=1

are linearly independent.
We consider the case

N(x):{ 12 if|z] <1

0 otherwise

with X = C(]—1,1]). It leads to (multiples) of the Legendre polynomials.

Definition 2.13 (Legendre-polynomial). The Legendre polynomial P, is
the unique polynomial of degree n with P,(1) =1 and

1
/ 2" P, (x)dz =0
-1
for all 0 <m < n.

There is a very compact formula for them.
Lemma 2.14 (Rodrigues formula).

1 dr

Pn _ v 2 1)"
() = gy gl = 1))
Proof. The degree of P,, defined by the right hand side is obviously n and
the leading term of P,(x) reads 29(?3;2 2", If 0 < m < n then after m

integrations by parts

1 dm 1 qn—m
/ 2" ——(z? = 1)"dx = (—1)mm!/ (z? —1)"dz = 0.

1 dzm® _q dxnmm
Finally
ar dar
— (-1 =2"——(z-1)" =2"nl
dx =1 dx =1

O]
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A more difficult calculation gives

1 n)! 1 n
[ EePar =B [ v

n). 1

-1
(2n)! 5 /1 2
= 9.9 "1 —s)"ds = :
92n ()2 L)t = oome

1
\/2n2—|—1\/2m2+1/ Po() P () dit = 6,
—1

and the functions

and

2n +1
2

P,(x)

are an orthonormal system.

28.10.2016]
[02.11.2016]

We consider the Banach space C([0, 27]; C) with inner product

(f9) = 5 [ fade

It is not hard to see that this is an inner product.
Lemma 2.15. The functions €™ are an orthonormal system.

Proof. We compute

1 2 i 1 2r
— e imTdy = — =Mz g =
2 Jo 2 Jo
ifn#mand =1if n=m. O

Sturm-Liouville problems lead to something very similar. Let ¢ € C([0, 1], R)
and let A € C. We consider the boundary value problem

—u" +qu=u in (0,1) u(0) =u(l) =0 (2.12)
We have proven in Finfihrung in die PDG:

Theorem 2.16. Given A € C the space of solutions to (2.12) is vector
space of dimension 0 or 1. There exists a monotone sequence A, — o0 and
a sequence of real valued functions u, € C*([0,1]) which satisfy

"
—Uy, + qun = )\nun
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/unumd:n = Opm.-

The functions u, have n—1 zeroes in (0,1).If X # A, for some j then (2.12)
has only trivial solutions.

We repeat the proof of orthogonality:
)\n/unumdx = /(—u'é—l—qun)umdx = /un(—ug’n + qup,)dx = /_\m/unﬁmdx

which implies either A, = A, (since A, is real) or [ upupdz = 0.

Lemma 2.17 (Bessel inequality). Let x; be an orthonormal system. Then

N N
0< |zl = > [z, za)l? = llz = Y (2, 2n)al?
n=1 n=1

Proof. Let M C H be the N dimensional subspace spanned by the elements
x; and let p be the projection to the closest point. Then by Lemma [2.10]

1 = [l = p(2) 1 + lp(2)II*.

Moreover
N
p(z) = Z AJT;j
=1
and
N
<$,.Z‘n> = <p($)7$n> = Z )\m<$maxn> =M
m=1
and

Ip(@)]” = Al
n=1

O]

Definition 2.18. A subset A of a metriz space X is called dense if its
closure is X. A metric space X is called separable, if there is a countable
dense subset.

Examples:
1. N is countable.

2. X and Y countable implies X x Y is countable. In particular Q% is
countable.

3. If X are countable sets then there union is countable.
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4. Subsets of countable sets are countable.

5. Q is countable.

6. QV is countable.

7. RY is separable since Q" is countable and dense.
8. 12(N) is separable.

Definition 2.19. A orthonormal set x; of a Hilbert space is called orthonor-
mal basis if
(x,zj) =0 foralljeN

implies x = 0.

Theorem 2.20. The following properties are equivalent for a Hilbert space
H which is not finite dimensional.

o The space H is separable.
e There exists an orthonormal basis and ||z||*> = Y [{z, z;)|*.
o The exists a surjective isometry 1> — H

Proof. Suppose that H is separable. Let (y,) be a dense sequence and Xy
the span of the first NV y,. Its dimension is at most N. We use the Gram-
Schmidt procedure to find an orthonormal basis (x,) of Xx. We do this
recursively by increasing n. This leads to a countable orthonormal sequence
(z5,) so that its span is dense. Now let x € X. By the Bessel inequality

N N
D ) +lle = ()] = ||z,
=1 =1
Thus
N
N =z =) (2, zn)zn||
n=1

is monotonically decreasing. Since (y,) is dense and 22;1(1‘, Tp)Tn = PNT
is the closed point in the span of (x,),<n it converges to 0, which is equiv-

alent to
N

Z(x,xn>xn -z

n=1

in L2, which in turn implies

[eS)
l]* = [, )
n=1
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Now suppose that (z,) is an orthonormal basis. We want to define

%2> (an) — Zanxn € H.

n=1

We claim that for M > N

N M M
E AnTy — E AnTy = E AnpTy
n=1 n=1

n=N+1

the norm of which is given by

N
z:= lim E anT
N—o0 4 e
J=n

Then
N
||* = i > lanl® = [[(an)lI*.
~>oon:1

The map is clearly linear, surjective (by the previous part) and an isometry.
To complete the proof it suffices to prove that [?(N) is separable. Al-
most by definition the (countable) union of the subspaces of dimension N of
sequence being 0 for indices > N are dense: The truncated series converge
in L2. It suffices now to find a dense countable subset of RY. QV is an

obvious choice.
O

In particular a Hilbert space is either isomorphic (there exists an isomet-
ric surjective linear map) to R? resp. C%, to I2, or it is not separable.
Example: The space [?(R) with inner product

(f.9) =3 F@)g(@)

zeR
is not separable since the vectors
«_J 0 ify#ux
Y 1 ify==x

are an uncountable orthonormal system. In particular the pairwise distance
is v/2 and there cannot be a countable dense set.
There are natural questions:
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e Which of the concrete orthonormal systems constructed above are a
basis? We will see that the answer is all of them, but we need more
tools to prove this.

e [s there a good theory of not necessarely orthonormal basis? This is
more tricky.

02.11.2016]
[04.11.2016]

3 Lebesgue spaces

3.1 Review of measure spaces
Reference:
1. Alt: Linear functional analysis, Springer.
2. Lieb and Loss: Analysis, AMS 2001.

3. Sharkarchi and Stein: Real Analysis: Measure theory, Integration and
Hilbert spaces. Princeton University Press. 2009.

Theorem 3.1 (Banach-Tarski). There exists finitely many pairwise dis-
joints sets A, By of R? and isometric maps i, j: R3 — R? so that

N M N M
BI(O) = U ¢n(Bn) = U wm(Am) = U B, U U Am
n=1 m=1 n=1 m=1

Remark: Makes use of the axiom of choice.

Definition 3.2. Let X be a set. A family of subset A is called a o algebra
of

. led

2. Ae Aimplies X\Ae A
3. A, € Aimplies |J A, € A.
n=1

A map p: A—[0,00] is called a measure if whenever A, € A are pairwise

disjoint then
M( U An) = ZN(ATL)
n=1 n=1
The triple (X, A, u) is called a measure space.
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Examples:

1. X a set, A = 2% the set of all subsets, and u(A) the number of
elements.

2. If (X, d) is a metric space then there is a smallest o algebra containing
all open sets. It is called the Borel o algebra of X.

3. In probability theory the o algebra encodes the available information
on a system.

4. X = R", A the Borel sets, i1 the Lebesgue measure restricted to the
Borel sets.

5. X =R", A the Lebesgue sets, u the Lebesgue measure.
6. X =R", 0<s<n, H® A the Borel sets, H® the Hausdorf measure.

Definition 3.3. Let X be a set and A a o algebra. A map f : X —
R U{—00,00} is called measurable if

FH((t0q]) € A

for allt € R. If (X, A, ) is a measure space and f : X — [0,00] then we
define the Lebesgue integral by the Riemann integral

/ﬂm—[fuul«mﬂ»ﬁeMaﬂ

We call a measurable function f integrable if |f| is integrable. Let 1 < p <
o0o. We call a measurable function f p integrable if |f|P is integrable and

denote Y
p
nmm=</mw@ |

We call a measurable function oo integrable or essentially bounded if there
s a constant C' so that

p{z = [f(2)] > C}) = 0.
The best constant is denoted by || f| e

There are convergence theorems about the relation between the limit of
integrals, and the integral over limits: The theorem of Lebesgue on domi-
nated convergence, the Lemma of Fatou and the theorem of Beppo Levi on
monoton convergence.

Definition 3.4. A measure space (X, A, ) is called sigma finite if there

o0
exists a sequence of measurable sets A; of finite measure so that X = |J A,.
n=1
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3.2

Construction of measures

Measures are often constructed by first constructing outer measures.

Definition 3.5. Let X be a set. An outer measure u maps subsets of X to
[0, 0] so that

1.

2.

3.

p{}) =0,
A C B implies p(A) < u(B).

,,L(j[’:jl A;) <3252 nl4y).

Examples:

Let X = R% We define the measure of a coordinate rectangle as the
product of the sidelengths and the measure of a countable disjoint
union of coordinate rectangles as the sum over the measures of the
rectangles. Finally we define the outer measure of a general set as the
infimum of all measures of coverings by unions of coordinate rectancles.

If (X, A, pn) and (Y, B,v) are o finite measure spaces we define rectan-
gles in the cartesian product as the cartesian product of measurable
sets and their measure as the product of the measures. Then we pro-
ceed in the same way as above to obtain an outer measure on X x Y.

The Hausdorff measure: Let X be a metric space and s > 0. We define
the premeasure of a set A of diameter r

s/2

and the Hausdorff measure

A= inf{i¢(An) LA C G An}.
n=1 n=1

Definition 3.6. Let X be a metric space. We call y an outer metric measure
if it is an outer measure which satisfies

u(AU B) = u(A) + u(B)

for all A, B C X with dist(A, B) > 0.

Definition 3.7. Let p be an outer measure on X. We call a subset A C X
Caratheodory measurable if for all B C X

u(B) = u(B N A) + p(BN (X\A)).
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Theorem 3.8 (Caratheodory). Let p be an outer measure on the set X.
Then the Caratheodory measurable sets C are a o algebra and (X,C, plc) is
a measure space. Moreover C contains all sets of exterior measure 0. If X
is a metric space and i is a metric outer measure than C contains all open
sets. In the case of the Cartesian product C contains all Cartesian products
of measurable sets.

Theorem 3.9 (Fubini-Tonelli). Let (X, A, u) and (Y, B,v) be o-finite mea-
sure spaces, A x B the product o algebra and i X v the product measure. Let
f be px v integrable. Then for almost of v € X y — f(x,y) is v integrable,
x— [y f(z,y)dv(y) is p integrable and

[ tewdnxv=[ [ s i,

(04.11.2016]
[09.11.2016]

3.3 Jensen’s and Holder’s inequalities

Lemma 3.10. Suppose that f : R — R is convex. Then both one sided
derivatives exist and if x <y then

ﬁ—i_

du () < *y (y) < cTy (y)
and for all z
. ]
£(2) 2 max{ (@) + 4 @)z — ), f(0) + D (@)=~ ).

Proof. If xg < x1 < xo then

flz1) = f(zo) _ flz2) = f(wo) _ fla2) — f(21)

< <
Tr1 — X0 Tro — X0 ro — I
and h
L f@+h) = f()
h
is monotonically increasing. This implies the differentiability from the right,
and similarly from the left and the relation between the derivatives. O

Lemma 3.11. Let (X, A, u) be a measure space, ((X) =1, F : R - R
convex and f real valued and integrable. Then F o f is measurable, (F o f)_

1s integrable and
Fo/fduS/Fofdu
X X
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Proof. Let ty = fX fdu. Since F': R — R is convex, we have for any ¢

+

F(t) > Flto) + & (to) (¢ — to).

dt
Thus

.
W({F o ] < 5) < ul{F(to) + % (t0)(f ~t0) < )

and min{F o f,0} is integrable since x — F'(ty) + %+(t0)(f —to) (which is
affine in f) is integrable. Then

dF+
/XFOfdMZ/XF(to)ert (to)(f —to)du

+
=F(to) + % (to) (/x fdp — to) = F(to).
O

We call a function f: X — C integrable if the real and imaginary parts
are both integrable. We say a property holds almost everywhere, if it holds
outside a set of measure 0.

Lemma 3.12. Let 1 < p,q < and%—k% =1. If fe L? and g € L7 then
fg is integrable and

\ / fgdu‘ <l llgllze.

If1 < p < oo, then the equality implies that g = A f|P~2f almost everywhere
for some X € K with |\ = 1.

Proof. We copy the proof basically from the one for the sequence space. As
there it suffices to consider f and g with || f||z» = 1 and ||g||s = 1 and prove

1 1
[ 18lgld < [ 150+ 2igitde = 1.
p q
The inequality is strict unless
1 pyl q
[f9(@)| = =|f ()" + ~|g(2)|
p q
almost everywhere, which implies |g| = | f|P~!. Now
[ o] < [ 153l < 151 ol

and in the case of equality all inequalities must be equalities. Hence |g| =
|f|P~t. Now suppose for some integrable function h

‘/hd,u’ :/|h|du.
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Then there exits A € C with || = 1 so that [ hdu € [0,00) and

/Alhd,u:/Re)\lhd,u:/Wd,u

h = A

and hence

almost everywhere. Back to our situation above this implies
g=AfP2f

almost everywhere for some complex number of modulus 1. O

3.4 Minkowski’s inequality

Theorem 3.13. Let 1 < p < 00 and let X and Y be spaces with o finite
measures | and v respectively. Let f be u X v measurable. Then

( ") < [ ([ 1w ppae) s

If 1 < p, if the integrals above are finite, and if

</X pdu(w))l/p = /Y ( /X If(x,y)\pdu($)>l/p du(y).

then there exist a p-measurable function « and a v-measurable function [
so that

/ () dv(y)
Y

/ fz,y)dv(y)
Y

f(z,y) = a(z)8(y)

almost everywhere. A special case is the triangle inequality (which holds
without assuming o finiteness)

1+ glleegy < 1F ey + 91l Le(

whenever f and g are p-integrable, with equality for p > 1 iff f and g are
linearly dependent.

Proof. We assume first that f is nonnegative and omit the absolute value.
We claim that

Y- /X 2o y)du(z)  and H(z) = /Y f(,y)dv(y)

are measurable functions. This follows from the Theorem of Fubini if f resp
fP are p x v integrable, and by an approximation argument in the general
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case. Then

/ HP(2)dpu(x / / F (@, y)dv(y) H(z)" du(x)

:/Y/Xf(x,y)Hp—l(x)du(x)dV(y)

S/Y (/X f”(ar,y)du(x))l/p (/deu(x)>p;1d1/(y)

p—1

-/ ( / f”(a:,y)du(x))l/pd”(y) (/ de“’(”")>p

where we used Holder’s inequality with ¢ = p%l.

We want to divide by the right hand. We can do that whenever the left
hand side is neither 0 nor oo, and we can achieve that in the same fashion
as for sequences.

Now assume that p > 1, f is complex valued and integrable. Then, with

. /Yf(w,y)dV(y) dp(z / (/ | f(z,y)|dv(y ) dp(z)

and we continue as in the previous step, assuming equality. Then we have
equality in the application of Holder’s inequality

(2, 9)] = ao(z) /Y @ )lav(y)

for almost all  and y. Since we must have also equality in the equality
above we must have

fz,y) = a(2)B(y)

for some measurable function « and .

For the last part we apply the first part with the counting measure on
Y = {0,1}. The product measure is defined in the obvious fashion, even
without assuming that p is o finite. If f is p integrable then by the definition
of the integral

pz:[f(@)] >t}) <t fI7
Let

A= U{x )|+ gz >|>;}

which is a countable union of sets of finite measure. We replace X by A,
take as o algebra the sets in A which are contained in A, and p restricted
to this o algebra as measure. This is ¢ additive. O
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3.5 Hanner’s inquality

There is an improvement of the triangle inequality.

Theorem 3.14 (Hanner’s inequality). Let (X, A, u) be a measure space and
f, g be p-integrable functions, 1 <p <oo. If1 < p <2 then

1f +9ll70 +1f = allze = (e + lgllze)” + [ flle = lgllze |, (3.1)

(1f +gllze+1f =gl o)+ 1 f +glle = 1f =gl e |” < 2°(If 1w +gl70)- (3-2)

If 2 < p < 0 all inequalities are reversed.

The inequalities reduce to the parallelogram identity if p = 2. Both are
equivalent: The second is obtained from the first by replacing f by f + ¢
and g by f — g. It suffices to prove the first inequality.

Proof. We may assume that ||g||zr < || f]|zr (otherwise we exchange the two)
and || f||z» = 1 (otherwise we multiply f and g by the inverse of the norm).
The first inequality follows from the following pointwise inequality: Let

a(r) = (1+r)P "+ (1 —r)P~h Blr) = [(1+r)P = (1 —r)P~ P,
We claim that
a()[fIP+ B(r)lgl” < [f +gl” +1f — gl (3:3)

for 1 <p <2 0<r <1 and complex numbers f and g (and the reverse
inequality for 2 < p < c0). Indeed, (3.3]) implies

a(r)[f(@)[" + B(r)lg@)]” < [f(x) + g(x)” +[f(x) — g(x)”
and by integration

a(mIfIZe + Bl <If +gllze + 1 = glILo-

We apply the inequality with » = ||g|rr and recall that || f||z» = 1. The left
hand side becomes

[(IIfIILP +lgllze)? ™+ (11l = llglee) = 1 flle

+ [(HfHLp +lgllze)* = = (lfllze = lglze)=") [lgll e
=(1A e + Nlgllze)?” + (Al e = llgllze)”.

It remains to prove (3.3).
Let for0< R <1,

Fr(r) = a(r) + B(r)RP.
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We claim that it attains its maximum at r = R if 1 < p < 2 and resp. its
minimum if p > 2. We compute

Fp=ao' +fR=(p— DL+ = (1-rP?)(1 - (R/r))
and the derivative vanishes only at » = R and changes sign there. Thus
a(r)+ B(r)RP < (1+ R’ + (1 — R)?

if 0 < R <1 and p < 2 with the opposite inequality if p > 2. Now let R > 1.
Since § < a if p < 2 we obtain

a(r)+8(r)RP < RPa(r)+8(r) < RP[(1+R?)+(1-R7?)] = (1+RP)+(RP-1)

and the reverse inequality if p > 2. This implies (3.3]) for real f and g. We
claim that (3.3]) holds for complex f and g. It suffices to consider f =a >0
and g = be®. Since

(a® + b% + 2abcos 0)P/2 4 (a® + b% — 2abcos H)P/?

has its minimum at § = 0 (resp. its maximum if p > 2) since x — 27/2 is
concave if p < 2 (convex if p > 2).
U

(09.11.2016]
[11.11.2016]

3.6 The Lebesgue spaces LP(u)

Lemma 3.15. The set of p-integrable functions is a vector space. The
Minkowski inequality

If +9gllr <[ fllLe + llgllze

holds. Moreover

IAfl[ee = (ALl e

and
[fllze =0
if and only if f vanishes outside a set of zero
u({f #0}) = 0.

These functions are p integrable for all p. They are a subvector space.

Proof. The vector space property follows from the Minkowski inequality.
The other statements are obvious. O
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Definition 3.16. We call two measurable functions equivalent f ~ g if
w{f # g}) = 0. We define LP(p) as the space of equivalence classes of p
integrable functions.

If f ~ g then || f—g|lzr = 0. The equivalence relation is compatible with
the vector space structure.

Theorem 3.17. [Fischer-Riesz] The space LP(u) is Banach space.

Proof. Tt is straight forward to verify that LP(u) is a vector space (using
Minkowksi’s inequality), and that ||.[[z» is a norm. Completeness is more
involved.

Let f,, be representatives of a Cauchy sequence. By taking subsequences
if necessary we may assume

I fn = fnllze < 27 minEmnd,

We define the monotone sequence of functions

n—1
Fu(x) = [A@)]+ D |fmi1 (@) = fin(@)]
m=1
and F' = lim,,_, Fy,(x). F is measurable and by monotone convergence

/ FPdy = lim / FulPdp < Al + 1
n—oo

and in particular it is finite almost everywhere. Thus

n—1
fo=F1+ > (fmi1 = fm)

m=1

converges if F'(x) < co. Let f be the limit if F'(z) < oo, and 0 otherwise. It
is measurable. Since max{f, f,} < F we obtain by dominated convergence

I = fullZ =/|ffn|pdwo.

3.7 Projections and the dual of L”(u)

Lemma 3.18. Let 1 < p < oo and let K be a closed convex set in LP(u).
Let f € LP(u). Then there exists a ungive g € K with

1f = gllze () = dist(f, K).

Moreover

Re/X(h—g)(f_—@)\f P du<0, Vhek.
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Proof. Let h, be a minimzing sequence. Since %(hn + hy) € K and
|An = f =+ hm — fllee < |on — fllze + [[hm — fllLr, We see that

1 = f + hm — fllr — 2dist(f, K).
Now let p < 2, from the second Hanner’s inequality we obtain

(th - f + o — f”LP + ||hn - hm”Lp)p
+ |1 — f + b = fllze — [ — bl 20|
<2 (|lhn = fllo + llhm = fII70)-

Let A = limsup,, ,;, o0 [[An — Amllze. This limsup is obtained along two
subsequences n,m — oco. Let D = dist(f, K). Then

(2D + AP 4 |2D — AP < 2P T1pP

which implies A = 0 by the strict convexity of A — |2D + AJP.
If p > 2 we argue similarly with the first inequality.
Now let g € K be the point of minimal distance and let h € K. Let

N(t) = / 1~ (g +t(h — g))|Pdp.

Then N (t) attains its minimum at ¢ = 0 on the interval [0,1]. We claim
that its derivative at t = 0 is

SNl = pRe [ 17(2) = 9@} (/@) - 9(2))g(2) ~ Bio))dn

This implies the assertion.
To calculate the derivative we assume that f,g € LP(u) and define

N(t) = |If +tgllr,-
Since almost everywhere
d P p—2 5
a\t=0|f +tg|” =plfI"""Re fg

and the pth power is convex

7P = 1f = gl < S(F +tg ~ 1£P) < I + g = 1P,

the formula follows by dominated convergence. O

Theorem 3.19. Let (X, A, p) be a measure space, 1 < p,q < 00, %4—% =1.
Then

JiLi3g o (f / Fodu) € (L7 ()"

1 a conjugate linear isometric isomorphism.
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The proof is the same as for Hilbert spaces: By Holder’s inequality the
map is well defined and

13 zeys < 1 llza-

Since
S F) = / lidp

we conclude as for Hilbert spaces that

13 zeys = (1l za-

Surjectivity is proven exactly as for Hilbert spaces.

[11.11.2016]
[16.11.2016]

Corollary 3.20. Suppose that p is o finite. Then

L® 39— (f = /fgdu) € (L' ()"

s an tsometric isomorphism.

The proof is an exercise on sheet 5.

3.8 Young’s inequality and Schur’s lemma

Let (X, A, ) be a measure space and suppose that 1 < p,q,r < oo and
%-ﬁ-%—k% =1.If fe LP(u), g € LYp) and h € L"(u), then fgh is integrable
and

[ satn) <1100 1o 120
This is a consequence of a multiple application of Holder’s inequality:
[ fatn| <1 1uslonl
and

TP 2 5T |7
lglP=T|h|P=Tdp < |||g|7- HLq@p-n HhHLr(pp—n = llgllza lIPlIZ-

1 1 1
I P
p—1\q r p—1 P

We denote LP(R?) (or even LP) for LP(m%) where m? is the Lebesgue
measure.

since
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Lemma 3.21. Suppose that 1 < p,q,r < oo satisfy
1 1 1
+=+
p q T

and that f € LP(RY), g € LY(RY) and h € L"(R?). Then
R xR > (2,y) = f(—2)g(z —y)h(y)

1s integrable and
Ihah)i= [ Fogle = ph)in®(@.y)

satisfies

[L(fy g, W < A f |z llgllall Al -

and

I(f,9,h) = I(g, f,h) = I(f, h,g) = I(h, g, [).

Proof. We assume 1 < p,q,r < oo since the limit cases are simpler, and
follow by obvious modifications. Measurability is a consequence of the the-
orem of Fubini. It suffices to prove the statement for nonnegative functions

[ fotani® < [ \7ghian

and the integrability of fgh follows from the integrability of | fgh|. We define
p', ¢ and 1’ by % + T% =1 ie p = [% etc. Let

since

alz,y) =|f(=2)["/" gz - y)|'",
Blx,y) =If (=) P/ |h(y)7,
vz, y) =lg(z — )| ()7

1 1 1 _
Theny—‘-?—i-?—land

I= / a(@, ) Ba, y)y(, y)dm™
<ol 18] o 1] o

LI ST TR AN I
AR AT A LA AT
111 llgllcolfl -

The second last equality is a consequence of the theorem of Fubini. O
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Theorem 3.22 (Young’s inequality). Suppose that 1 < p,q,7’" < oo and

1 1 1
7+*:1+7
p q r

If f € LP and g € L9, then for almost all x

flz—y)g(y)

1s integrable and

fegta) = { 11600 iyt

0 otherwise
defines a unique element in L (RY) and
1F* gll Lo ay < [ fllzolgllza-
Proof. We have e~1#1* ¢ L7 for all 1 < r < 0. Then

e P fa —y)g(y)

is m?? integrable by Lemma We apply Fubini to see that [ f(z —
y)g(y)dm?(y) exists for almost all x. By Theorem the estimate follows

once we pI'OVe
d
‘ [ < Il liglzallbll e

for ] 1
Sy =1
r oo
and all h € L". Since then
1 1 1
-+ -+-=2
p q r

and, by Fubini and Lemma [3.2]]

‘/f*gh iz < [ 111+ glllam’

= [ 11 = plls ) am s,y
<l 7l sl Al

There is a particular case: if g =1 and p = r':

1+ glle < fllzrllgllzr-

Schur’s lemma gives a criterium for an integral kernel to define a linear
map from LP(v) to LP(u) for 1 < p < oo.
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Theorem 3.23 (Schur’s lemma). Let (X, A, pu) and (Y,B,v) be o finite
measure spaces and k : X XY — R be u x v measurable. Suppose that
Cy,Cy € 10,00) and

sup [ Ik, pldv() < Cr, sup [ b, )ldu(o) < Co
T )
If1<p<ooand f € LP(v), then

/ Bz, 9) f(y)dv(y)

exists for almost all x and

| / ko) fWavy)| | < PO v,

L (p)
The map
D)5 f > Tfi= [ Ha)f@iv) € )

is a continuous linear map which satisfies

1—-1 1
TN 2r () s1rw) < Cy PC3.

Proof. Repeating the argument of Young’s inequality we have to prove that

1—1 1
[ 9@l o)l wlde < v < €73 (34)
where
1 1
T
p g
if ||fllze = |lgllze = 1. If p =1 or ¢ = oo this is an immediate consequence

of the theorem of Fubini. So we assume 1 < p,q < oco. It suffices to prove
for nonnegative functions f, g and k where f and g are bounded and 0
outside a set of finite measure, since then follows by an approximation
and monotone convergence.

For z € C with 0 < Rez < 1, we define

£l _{ [fP==tf i f#0

- 0 otherwise,

and

P (1_y)_ .
g, = lg|7=10 g it g #£0
0 otherwise .

Then for o € R,
[ fiollzoe = lg14iollL = 1,
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and
| frviollr = 1 f2e = Ngiollr = llgll7e = 1,

and hence

/ 1910 @) (2, )| fio () dt x v < Cy

/ 91i0 (@) k(@ 9)| | fraio (9) s x v < Co.

Moreover
f1=f, g1 =g.
P P

Notice that f, and g, are bounded and zero outside a set of finite mea-
sure. By dominated convergence

2o H(z) = / 92 (@) k() () dpe x v

is continuous in the strip C = {z : 0 < Re z < 1}, differentiable and satisfies
the Cauchy-Riemann differential equations. The claim follows from the three
lines inequality:.

Lemma 3.24 (Three lines inequality). Suppose that uw € C(C) is bounded
and holomorphic in the interior. Then

sup [u] = sup |u]
C ocC

We apply the lemma to
u(z) = Ci71Cy 7 H(2).
O

[16.11.2016]
[18.11.2016]

Proof. 1) Let U C C be a bounded open connected set and u € C(U;C) be
a holomorphic function in the interior. We claim that then

sup [u(z)| = sup |u(z)].
rcU xeolU
We prove this by contradiction. Suppose that |u| attains its maximum M

at some interior point zp and suppose that this is larger than supg; |u(z)].
Then

f(2) = Reu(z)/u(z)
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satisfies 0 < f < M and f(z9) = M. Moreover f is harmonic. Let
fe(x +iy) = f(x +iy) + €|z — Re 2|

where ¢ is so small that f.(z) < M for z € QU. Then f. has a maximum
in an interior point z;. At this point the Hessian is negative semidefinite by
its trace Af:(z1) = 4e. This is a contradiction.

2) Let u be as in the lemma amd let

ue(2) = €7 u(z).
Since u.(z) = 0 as | Im z| — oo

sup [ue(2)| = sup |ue| < e° sup |u(z)|.
z€eC z€0C z€0C

Now we let € tend to zero. O

3.9 Borel and Radon measures

Let (X,d) be a metric space. We recall that the Borel sets B(X) are the
smallest o algebra containing all open sets.

Definition 3.25. Let (X,d) be a metric space. A Borel measure is a mea-
sure on the Borel sets. A Radon measure is a Borel measure, such that for
every x € X there exists an open environment U > z so that p(U) < oo and
such that for every Borel set A

w(A) =sup{u(K): K C A, K compact }

Definition 3.26. We call a measure complete, if the o algebra contains
every subset of a set of measure zero.

The theorem of Fubini in the form stated holds for X v with the smallest
o algebra containing all cartesian product of measurable sets. The Lebesgue
measure restricted to the Borel sets is not complete. We can easily complete
o algebras.

Lemma 3.27. Let p be a Radon measure. Then the measure of compact
sets is finite and for e > 0 and K compact there exists an open set U D K
of finite measure with p(U) < u(K) + €.

Proof. Let K be compact. For every x € K exists an open set U, containing
x with u(U,) < oo. Since K is compact and

Kcl|Ju.
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there exists a finite subcovering

N
Kc|JUy,=U
j=1

and

N
p(K) < p(U) < u(Us)).
j=1

We define U; = U N{z : d(z, K) < %} By the theorem of Lebesgue

1(Uj) = u(K).
]

Definition 3.28. We call X locally compact if for every point x there is
a neighborhood whose closure is compact. We call (X,d) o compact if it is
locally compact and if it is a countable union of compact sets.

Let (X, d) be o compact. Then there exists a sequence of compact set
K so that Kj is contained in the interior K1 of K11 and X = Uj’;l K;.
This is proven on exercise sheet 6.

Lemma 3.29. Let p be a Borel measure on a o compact space (X, d) and
let B be a Borel set with u(B) < oo and € > 0. Then there exists a closed
set C C B with n(B\C) < e. If u is in addition Radon then there exists an
open set U containing B with w(U\B) < €.

Proof. For the first part we may assume pu(X\B) = 0 - otherwise we define
v(A) = u(AN B). we define

F_ ACR?: Ais Borel and for every € > 0 there exists a closed set C'
o with u(A\C) < e.

It contains all closed sets. We claim:
1. If Aj € F then ﬂAj e F.
2. If Aj € F then UA]' e F.

3. Since open sets are countable unions of closed sets every open set is in

F.

We define
G={A: X\A,Ae F}

Then G contains complements of elements and countable unions of elements
of G. Hence it is a o algebra containing all open sets, and thus it is the
Borel o algebra. This implies the first claim.
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Let now p be Radon and K; as above. Then Kj;\B is Borel with
u( j\B) < 00. Then there ex1stsaclosed set Cj C KJ\B with g(( j\C N\B) <

€277, Let -
U (K;\C)).

It is open and

B =

C8

(K;nB) | JK\Cj=U

7j=1

Moreover
wU\B) = u(J(E\C)\B) < &
]

Lemma 3.30. Let (X,d) be o compact, and p a Borel measure such that
any compact set is of finite measure. Then u is Radon and it is outer reqular.

Proof. Only inner regularity has to be proven since outer regularity fol-
lows then by Lemma Let A be Borel with finite measure (why does
this suffice?). By Lemma there exists a closed set C' C A such that
1(A\C) < e. Let K; be compact subsets with X = (J K; and K contained
in the interior of K 1. Then

w(CNK;) = p(C)
and C'N K is compact. O

The most important example is the Lebesgue measure. A Radon measure
on a compact metric space is finite. If (X, d) is a countable union of compact
sets and p is a Radon measure then p is o finite.

The counting measure on R is not a Radon measure.

Remark 3.31. Continuous functions on compact metric spaces are inte-
grable with respect to Radon measures.

Lemma 3.32. Let (X,d) be a o compact metric space, pn a Radon measure
on X and 1 < p < o0o. Then continuous functions with compact support are
dense in LP(u).

Proof. Let f be integrable. We decompose it into real and the imaginary
part and it suffices to prove the assertion for real functions. Similar we
decompose a real valued function into positive and negative part, and it
suffices to approximate a nonnegative integrable function f.

" [ ran= [ utts > e
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given € > 0 there exists 0 = tg < t; <...t; < tj11 <ty < oo so that (with
to =0)

o N
0</ p({f > thdt = (¢ — ti)u({f > t;}) <
0 =

Let
Ay = o f1) > 1),
Then
1 =Dt —ti-)xa,ll <e

and it suffices to approximate a characteristic function of a measurable set
A of finite measure by a continuous function. Let ¢ > 0. By inner and outer
regularity there exists a compact set K and an open set U so that

KCcAcCU p(U) < p(K) +e.
Then d(K, X\U) := dy > 0 and we define
fo(x) = max{l — Ld(z, K),0} € C(X)
Then if dgL > 1

1
Ifz — xallzr <eP.

If L is sufficiently large then supp f is compact. Thus continuous functions
with compact support are dense. ]

[18.11.2016]
[23.11.2016]

3.10 Compact sets

Lemma 3.33. If (X, d) is o compact and ji is Radon measure, then Lipschitz
continuous functions with compact support are dense in LP(u) for 1 < p <
0.

Proof. We prove that for every € > 0 and f € C(X) with compact support,
there exists f. Lipschitz continuous with

supp f- C supp f

and
sup|f. — f] <e.

It suffices to do this for f > 0. Since supp f is compact it is uniformly
continuous: There exists § > 0 so that |f(x) — f(y)| < e if d(z,y) < . With

(@)l
L= p{ iy ’y)>5}

40 [FEBRUARY 10, 2017]



which is finite since it is the supremum of a continuous function on a compact
set, we obtain the inequality

|f($)—f(y)|§€+[/d($,y), vxayGX'

We define
9(x) = min{f(y) + 2Ld(z,y)}.

One easily checks that g has Lipschitz constant 2L, and the mimimum is
attained in Bs(z) and

max{0, f(x) — £} < g(2) < f(a).
O]

Theorem 3.34 (Arzela-Ascoli). Let (X,d) be a compact metric space. Then
a closed set A C Cy(X) is compact if and only if

1. A s bounded.

2. A is equicontinuous, i.e. for € > 0 there exists § > 0 so that
|fle)=fl<e  iffeAandd(z,y) <d.

Proof. Let A be compact. Since

Co(X) > f = [ flleyx)

is continuous and hence attains its maximum in A, we deduce that A is
bounded. Let ¢ > 0. For every f there exists 6y > 0 and an open neighbor-
hood Uy C Cp(X) so that

lg(z) —g(y)| < e if g € Uy and d(x,y) < dy.

Then A Cyca Uy, and since A is compact there is a finite subcovering,
A Cj»vzl Uy;. We define 6 = min dy,.

Now assume that A is closed, bounded and equicontinuous. Let f; € A
be a sequence. Given € > 0 we claim that there exists g such that Bs.(g) C
Cp(X) contains infinitely many f;. Let ¢ > 0 and § > 0 as in the second
condition. Then there exist a finite number N of points x, so that Bs/a(zx)
cover X since X is compact. There exists a subsequence so that f;,(xy)
converges for all . In particular, after relabeling, there are infinitely many

{fi hien so that | fj,(z) — fj,.(¥x)] <e. Then

fjl C B3E(fj1)‘

O
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Lemma 3.35. Let (X,d) be a compact set. Then it is separable.

Proof. Given ¢ there exists a finite number of points z5, 1 < n < N(e) so
that the union of the balls B.(z%) cover X. Take a sequence ¢ = 277. This

n
leads to a dense sequence. O

Corollary 3.36. Let (X,d) be compact. Then Cy(X) is separable.

Proof. By the proof of Lemma the Lipschitz continuous functions are
dense. The countable union of separable sets is separable and its closure is
separable. Hence it suffices to prove that

K ={f€C(X): [f@)llc,x) < n | f(@) = f(y)] < nd(z,y)}
is separable. This set is compact by Theorem |3.34] and hence separable. []

Corollary 3.37. Let (X,d) be o compact and j a o finite Borel measure.
If 1 < p < oo then LP(u) is separable.

Proof. Since Lipschitz continuous functions with compact support are dense
we argue as for Cp(X). O

Corollary 3.38. Suppose that 1 < p < oo, f € LP(R?), ¢ > 0. Then there
exist 6 >0 and R > 0 so that for all |h| < §

1FCHR) = FOller <& lIxra\Bro) fllr <e

Proof. The second claim is a consequence of monotone convergence. For the
first we approximate f by a Lipschitz continuous function g with compact
support, ||g — f|lzr < /4 and estimate

1FC+h) = flle <IFC+h) = g(+R)l[ee + [If = glle +1lg(- + h) — gl
<c/a+ /4 + gl (m?(suppg)) "
<e
by choosing |h| < r for some small r. O
We want to characterize compact subsets of LP spaces.

Theorem 3.39. Let 1 < p < co. A closed subset C C LP(R") is compact
iff

1. C is bounded.

2. For every € > 0 there exists § so that for all |h| < § and all f € C

[f(+h) = fllormaey <€
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3. For every e > 0 there exists R so that for oll f € C
HXRd\BR(O)f”LP <e.

Proof. Let C' be compact. Since f — || f||Lr is continuous it attains its
maximum and hence C' is bounded. Suppose there exists ¢ > 0 and h; — 0
and f; € C so that

1£5(-+hs) = fille > €.

Since C' is compact we may assume that f; is a Cauchy sequence with limit
f. Then there exists § > 0 so that

If(+h) = fllr <&/2

for |h| < 0. This contradicts the previous inequality. Similarly we deduce
the third part.

Vice versa: Suppose that C C LP(R?) is closed, bounded, and satisfies
the three claims. We choose a smooth function 7 supported in the unit ball
with values between 0 and 1 and [ 7 = 1, define 5, () = r~9n(z/r) and we
fix € > 0. Then there exists d so that by Minkowski’s inequality and the
second assumption

Ifr — fllze §|§l1|1<p If(.+h)—fller <&, fr=mnr%F,

for all f € C and r < §. Moreover f, is Lipschitz continuous with Lipschitz
constant depending on §. By Theorem the set Cj is compact, and we
can cover it by a finite number of balls of radius /2. But then the balls with
radius € cover C'. Thus C is precompact, and compact since it is closed. [J

[23.11.2016]
[25.11.2016]

3.11 The Riesz representation theorem for C,(X)

Definition 3.40. Let (X,d) be a o compact metric space and K; C X
compact with K; in the interior of Kj41 and X = |JK;. We denote by
Co(X) C Cp(X) the continuous functions f with limit 0 at oo, i.e. for all
€ > 0 there exists j so that f is at most of size € outside K;. We define
C.(X) as the subspace of continuous functions with compact support.

Definition 3.41. Let (X,d) be a metric space. We call L € (Cp(X))*
nonnegative if
L(f)>0 whenever f > 0.
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Theorem 3.42. Let (X,d) be a sigma compact metric space and let L :
C.(X) — K satisfy
IL(F)I < Ckllflleyx)

for supp f C K compact. Then there exists a Radon measure p and a
measureable function o : X — {£1} so that

L) = [ fods

Definition 3.43. Let L be as above. We define the variation measure of L
by
p'(U) = sup{L(f) : f € Ce(X),supp f C U,[f] <1}

for open sets U and for general sets
w*(A) =inf{u(U): ACUU open }.
Proof. We prove the theorem by several steps.

1. u* is a outer metric measure, which defines a Radon measure on the
Borel sets.

2. For f € C.(X) nonnegative we define

A(f) = sup{|L(g)| - l9| < f}

and prove for f nonnegative
A = [ au

3. As a consequence
\MMs/uw

and we can extend L to L'(u), hence L € (L'(u))* and there exists
o € L*(u) so that

L) = [ fodu
for all f € C.(X) with [|o|[fe,) < 1.

4. We complete the proof by |o(z)| = 1 for almost all z. Since we may
change on a set of y measure 0, we obtain |o| = 1.

We observe that by multiplying g by a constant of size 1 we may always
assume that L(g) € [0,00) in the definition of x* and A.
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Step 1: We claim that p* is an outer metric measure. To show that it
is an outer measure, let U; be open sets, U = UU; and we have to show that

pHU) <Y ut(Uy).

Let 0 < f <1 with supp f C U. We have to show that

L(f) <> w*(U)).

Let K = supp f which is compact. Thus K is covered by finitely many
Uj-vlej for some N < oo. Moreover we may assume that the U;’s are
contained in a fixed compact set, or even replacing X by this compact set,
that X is compact. We claim that there exist g;, 0 < g; < 1, suppg; C U;
and ) g; =1 on K. We define f; = g;f. Then

N
L(f) =Y L(f;) < D 1w (U))-
j i=1

To see the existence of the g;, take Uy = X\K. Then X = U§V:0Uj and we
take a subordinate partition of unity, i.e. functions n; € Cp(X) with 0 < n;
and suppn; € U; so that

N
1= Z?’]j.
7=0

The functions g; = 7n; for 1 < j < N have this property. More precisely,
let Ag = X'\ Ujvzl Uj. It is compact and satisfies Ay C Up. There is 7jg €
Cy(X) supported in Up, identically 1 on Ay. Let Ay = X\({z : 7o(x) >
%} U;VZQ U;) € Ur and we repeat the contruction. Recursively we obtain 7);

with
N
p=> il >
j=0

| =

in X. We define ~
i

)

Finally, if A, B are Borel sets with positive distance there exist disjoint
open sets V and W containing A resp. B. Then

nj

p(AUB) =inf p*(U) =inf p*(UNV) + p*(UNW) = p*(A) + p*(B).
Let p be the measure defined by the Caratheodory construction. Then

p(U) = p*(U)

for open sets. By construction u is bounded on compact sets and thus its
restriction to Borel sets is a Radon measure.
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Figure 1: Formula (3.5

Step 2: Let f € C.(X) be non negative. We define

A(f) =sup{|L(g)| : g € Ce(X), |g| < [}

Clearly 0 < f; < fo implies A(f1) < A(f2) and for ¢ > 0, A(cf) = eA(f). We
claim that

Af1+ f2) = A(f1) + A(f2)

for fi, fo € C.(X) nonnegative. Indeed, if |g1| < f1 and |go] < fo then
lg1 + 92| < f1 + fo, and, if in addition L(g1), L(g2) € [0, 00),

|L(g1) + L(g2)| < A(f1+ f2)-

This gives
A1) + A(f2) < A(fL + f2)
Now let |g] < f1 + fa. We define

oo | A h R0
0 otherwise

and similarly go. Then |g;| < f; and hence

IL(g)| < A(f1) + A(f2)

which gives

Af) = Af1) + A(f2)

We claim that

A(f) = /fdu-

It suffices to consider 0 < f < 1. We approximate f by step function so that

1 = 1
1f = N Z XUszup < N (3.5)
j=1
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with .
Ui ={a: fa) > £},

By continuity U;11 C U;. We approximate the characteristic function by
continuous functions so that suppn; C Uj—1, n; = 1 on U; and p(supp n;\U;) <
1/7. It suffice to verify

)1 [ i < 1/
which follows from

u(U;) < X(m)] < p(suppy).
Step 3: Now
LU <MD = [ 171dn

We extend L to an element in (L!(u))*, which is represented by an infinite
integrable function ¢ by Corollary . Moreover

ol ooy < Ll (L1 ()= = 1-
Step 4: We claim that |o| = 1 almost everywhere. By definition

u(U) = sup{ / fodu=L(f): f € Co(X).|f| < L,supp f C U}

We choose a sequence of functions with

/ frodu = L(f;) = w(U).

Since [ fjodu < [ |oldu and |o| < 1 we deduce |o| = 1 almost everywhere.
O

25.11.2016]
[30.11.2016]

3.12 Covering lemmas and Radon measures on R?

The space R? is ¢ compact and the Lebesgue measure is ¢ finite Radon
measure.

Theorem 3.44 (Covering theorem of Besicovitch). There exists My de-
pending only on d so that every family F of closed balls with bounded radii
contains My subfamilies G, 1 < m < My so that each G, consists disjoint
balls and if A is the set of the centers then

Acly U B

m BeGn,
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The same statement with the same proof holds for open balls.

Proof. We assume first that A is bounded and define D as the supremum
of the radii. There exists a ball By = B, (x1) with r; > %. We choose
recursively B, = B, (x,) with x,, in

n—1
Ap = A\ U By, (z5)
j=1

so that

Ty > zsup{r : B.(x) € F,z € An}.

We stop if A,, = { }. For simplicity we consider the case when the procedure
does not stop. Then whenever j > n, we have r; < %rn (otherwise we would

not have chosen B,, (z,)) and
5 — ] > 1 > 2T
and the balls B, /3(x;) are all disjoint and
AclB;
We fix £ > 1 and define
I={j:1<j<kBjNB,#{}}

We claim that there is a bound for the number of balls in I: #I < M, with
My depending only on d and D.

We first bound the number of small balls. Let K :=IN{j:r; < 3ry}.
Then #K < 20%.
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(>
e

To see that we consider j € K and choose z € B, 3(zj) C Bsy, ().
The #K balls B, 3(z;) are all disjoint and hence

(Bri)? > > (rj/3)" = (ri/4)"#K.
JEK

Next we bound the number of large balls, i.e #(I\K). Let now i,j €
I\K, i # j. We will give a upper bound on

_ (i — xp, x5 — )
|zi — xpl|lzj — 2

cos(Z(xpx;, vpj))

This gives a lower bound on the distance of the points é::iZ' for n < k,
n € I\K, and hence a upper bound on their numbers L; depending only
on the dimension since the unit sphere is compact. Therefore we can take
Mg =20%+Lg+1.

To simplify the notation we assume that xp = 0. Let 6 be the angle
between the centers Zx;,x;. Since B; N By # { } and B; N By, # { }, we

have without loss of generality
|lzi| <2l [2s] < i+ gy 2] < g4

We claim that z; € Bj if cosf > 2. Firstly we notice that if |z; — z;| >
|z, then

i) + |2j? — |og — ) 2>

cosf = < =
2|ai||z;] 20|z 2|a;]

49 [FEBRUARY 10, 2017]



Hence if we assume cos > 2 then |z; — 2| < |2;|. We suppose by contra-
diction that z; ¢ Bj. Then r; < |z; — z;| and

il P — | — )

cos
2|zi|zj]
_mal (el = i — 25 (| + | — 5))
2|z 2|z x|
Ll gl
<1 n ri+rE—7r;
-2 T
1 n T < 5
2 T - 6

Now it suffices to derive the upper bound for cos@ when x; € Bj, since
otherwise cosf < % has already a upper bound. So we assume z; € B;
from now on and we may restrict to rp = 1 by scaling. Then i < j, since
otherwise B; would not have been chosen, and thus z; ¢ B;, and

4
3§ri<\xi—xj]<rj§§ri, Ti<’$i‘§1—|—7“i, T‘j<‘$j‘<1—|-7“j.

50 [FEBRUARY 10, 2017]



The proof becomes now an exercise in planar geometry. We have

3 1w 1 r %7‘2-—1 ri+ri—r;—1
16 4 fx;] = Bl Tyl T EA
i — 25| + || — |2yl
- |51

i — x| + |@a] — || |2 — @] — || + |2
|25 |z — x|

|zj|z; — 2]
=2(1 — cosb) il
|zjl|@; — 2]
=2(1 — cosf) il
i — @]
i+ 1
<2(1 — cos ) 1T
ri
8
< 5(1 — cosf)

and hence cosf < %.

It remain to define the sets G,,. We do this by defining a map
o:N—={1,... M}

We choose it to be the identity for j < M. After that we proceed recursively,
which we can do since

#{i<k:BN B #{}} < Ma

It remains to extend the result to unbounded sets. We do this by applying
the first part in the annuli 6(m — 1)D < |z| < 6mD.
O

Theorem 3.45. Let ju be a Radon measure on R? and let F be a family of
closed balls and let A be a Borel set which is the union of the centers. We
assume ju(A) < oo and inf{r : B.(z) € F} =0 forx € A. Let U C R be
open. Then there exists a countable collection of disjoint closed balls G C F

so that
u((Am N B) ~0.
BedG
Proof. We fix # so that 1 — - < # < 1 and claim that there is a finite

M,
collection of disjoint balls Bj, 1d§ j < M in F so that

M
p| (AnUN B | <0u(ANT).
j=1
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Suppose this is true. Then we define
M
A=A\ B;
j=1

and repeat the argument with F; the subset of balls with center in A;.
After the kth step the complement has a measure at most 67 u(U N A). So it
remains to prove the claim. Let F( be the subset of balls with radii at most
1. Then we apply the Besicovitch covering theorem and obtain G,,. Then

My
Anvcl) U B
j=1BCG;
and

M,
u(AﬁU)SZdu(AﬂUﬁ U B).
=1 BeG,

There exists J so that

]\LM(AHU) §u(AﬂUﬂ U B).
BeGy

By monotone convergence there exist finitely many balls in G; so that the
claim holds. O

We turn to derivatives of Radon measures.

Definition 3.46. Let 1 and v be Radon measures on RY. For x € RY we
define

Dov(a) = L S0 J5G i i(Br(a)) > 0 for allr >0

I oo if for somer > 0, u(Br(z)) =0
Dyv(z) = § Hmintr—o UEEL i w(By(x)) > 0 for all 7 >0
2] oo if for some r > 0, u(Br(z)) = 0.

We say that v is differentiable with respect to p and x if D,v(z) = D,v(z).

Then we write Dyv(x) and call this quantity the density of v with respect to
1.

Remark 3.47. Let f € C.(RY) and u Radon measure. Then

T — /f(y — x)du(y)

is continuous and hence Borel measurable.

92 [FEBRUARY 10, 2017]



Since the characteristic function of open and closed balls can be obtained
as pointwise limit of continuous functions with compact support, the map

r = v(B,(@)), = — p(Br(a)
are measurable. Thus

B

o0 if u(Br(z)) =0

1s Borel measurable. The map

5 if u(By () = 0

is continuous from the left and right if w(B,(x)) > 0 by inner and outer
regularity. Thus also Dyv(z) and D,v(z) are Borel measurable since we
can write them as inf’s and sup’s over rational radii. Moreover by inner
and outer regularity we obtain the same D,v(x) and D v(z) if we use closed

balls.

o { T if 1(By(2)) > 0

Theorem 3.48. Let u and v be Radon measures on R:. Then
1. Dyv(x) exists and is finite i almost everywhere.

2. D,v is Borel measurable.

30.11.2016]
[02.12.2016]

Proof. We may assume that u(R%) < oo and v(R?) < oo.
Step 1: We claim that for all Borel sets B and all ¢ > 0

v(BN{z: Dyv(z) <t}) <tp(BN{z: Dyv(x) <t})

and
v(BN{z: Dyv(z) > t}) > tu(BN{z: Dyv(x) > t}).

By outer regularity (u(B) = inf{u(U) : B C U}) and it suffices to prove the
assertion for B = U open. Let A ={x € U : D,v(z) < t}. Let

F ={By(a) :a € A, By(a) CU,v(By(a)) < tu(Br(a))}.

For every x € A, F contains arbitrarily small balls and we apply Theorem
to obtain a sequence of disjoint closed balls B; in F so that

v(A\(JB)) =0
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Then
v(A) =Y u(B;) <ty u(By) < tu(U).

Since
p(A) =inf{u(U): AcC U}

we obtain the first inequality. The second one is proven similarly.

Step 2: We claim that D,v(x) < oo outside a set of  measure 0. Let
A={z:D,v(z) =occ}. Then

v(4) > tu(A)

for all ¢, hence u(A) = 0.
Step 3: For s < t we define
R(s,t) ={z: Dyv(z) <s <t < D,v(z)}
Then
tu(R(s, 1)) < v(R(s,t)) < su(R(s, t))
which implies u(R(s,t)) = 0. Since

we see that Dyv(z) = D,v(z) for 1 almost all z. O

Definition 3.49. Let i and v be Borel measures on R?. We say the measure
v is absolutely continuous with respect to p, v << u, if p(A) = 0 implies
v(A) = 0. The mearures v and p are mutally singular with respect to p if
there exists a Borel set B such that u(X\B) = v(B) = 0. We write then
v.1pu.

Theorem 3.50 (Radon-Nikodym). Let v and j be Radon measures on RY
with v << u. Then

v(A) = / D,vdp
A
for all Borel sets.

Proof. Tt suffices to consider the case pu(R?) < oo and v(RY) < co. We have
seen that

u({Duv(x) = 00}) = 0

and hence, since v << p, v(({Dyv(x) = 00}) = 0. In the same fashion

v({Dyv(xz) =0}) =0.
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Let A be a Borel set. For t > 1 we define

A, =An{t" < D,v <"t}

Then

v(A) = i v(Anm) < i " (A,,) < t/ooo p({Dyv > s})ds = t/ADMVd“
and

V(A) = :f: W(An) > :f: P Ay) > ! /0 T (D > sh)ds = ! /A D,vdp.
We let now t — 1. O

Theorem 3.51 (Lebesgue points). Let p be a Radon measure on R and
feLl . (u). Then

r—0

fla) = lim (o)™ [ R

exists almost everywhere and we define f(z) =0 if it does not exist. Then
f is in the equivalence class of f. If f € LY (u) then f € LY and

loc loc

r—0

lim (B, (z)) ! /B W) = S dnts) =0

almost everywhere.

Proof. Tt suffices to consider nonnegative f and w(R?) < oo. We define

v(A) = /A fdp.

This is a Radon measure by Lemma [3.30] which is absolutely continuous
with respect to u. Thus

V(A):/Dul/d,u:/fd,u

and D,v lies in the equivalence class. Now the first claim follows from
Theorem [3.48]
For every t, | f(x) — t|P is integrable. From the first part

r—0

lim (B, () /B ) = tdn(s) = 11w
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almost every where. There is even a set IV of ;. measure zero so that this is
true for all t € Q outside the same set of measure zero. Let € > 0. Thus the
set of all z such that

r—0

lim sup (B, ()" /B W) = S duty) > ¢

is contained in N. To see this, chose ¢t € Q so that |f(x) — t|P < e. This
completes the proof. ]

Corollary 3.52. Let p be a Radon measure and f € LP(u). Then there
exists a cannonical representative of the equivalence class.

4 Distributions and Sobolev spaces

4.1 Baire category theorem and consequences

Lemma 4.1 (Baire category theorem). A countable intersection of dense
open subsets of a complete metric space is dense.

Proof. Let (X,d) be a complete metric space and A; open dense sets. Let
x € X and € > 0. Let 1 € Ay so that d(z,z1) <¢e/3 and 0 < §; < ¢/3 so
that Bss, (z1) C Aj. We pick recursively z,, 6, so that d(zp,_1,2,) < dn,
26, < ¢/3" and Bas, (v5) € An N Bs, _, (xn—1).

By construction, d(z,_1,7,) < £/(2-3""1) and, if n < m, d(zn, Tm) <
737 Dieo 377 < 2 and (z,) is a Cauchy sequence with limit y. Since
Tm € Bs, (xy) for m > n the same is true for y, and y € A4, for all n. O

Theorem 4.2 (Banach-Steinhaus). Let X and Y be Banach spaces, F C
L(X,Y). Suppose for each x € X

sup{||Tz|ly : T € F} < oc.

Then
sup{||T||x>y : T € F} < oc.

Proof. Let
Cp={z € X :sup [|[Tz]y <n}.
TeF

This set is closed since both map and norm are continuous, and C,, is an
intersection of closed sets. By assumption | JC),, = X. We claim that some
C), has nonempty open interior. If not then the sets U, = X\C,, are open
and dense, with nonempty intersection, a contradiction to |JC),, = X. Let
U C Cp, be nonempty and open. It contains a ball B,(xg). If ||z|| < r then

ITzlly < Tz —20)lly + 1T (x0)lly < no+ ;ugHT(xo)HY = R
S
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Then
1T x>y < R/r

forall T € F. O

02.12.2016]
[09.12.2016]

The Baire category theorem has interesting further consequences.

Theorem 4.3. Let X and Y be Banach spaces and T € L(X,Y). T is
surjective if and only if it is open, i.e. if the image of open sets is open.

Proof. Let T be open. Then T'(B;(0)) is open. In particular it contains a
ball B;(0). Then Y = JT'(B,(0)) and T is surjective. Now suppose that
T is surjective. It suffices to show that 7'(B1(0)) contains a ball around 0.
(Why?). Let

Y, = T(Ba(0)) = {Tal |zl <n}.

It is closed by continuity, and Y = |JY,,. As above we conclude that one (and
hence all) of the Y}, contains an open ball. Hence there exists B,.(0) C Y;. O

Corollary 4.4. Suppose that T' € L(X,Y) is injective and surjective. Then
Tl e L(Y,X).

Thus continuous linear maps which are invertible as maps between sets
are invertible as continuous linear maps.

Proof. Linearity of the inverse map is immediate. By Theorem T is
open. So T(B:¥(0)) contains a ball BY (0) and hence

ITlly > 7~ lzllx.
O

Theorem 4.5. The set of nowhere differentiable functions in Cy(0,1) is
dense.

Proof. Exercise. O

4.2 Distributions: Definition
We need a preliminary result.

Lemma 4.6. Let U C R? be open and k € N. Then for every f € C¥(U)
there exists a compact set K C U and a sequence f, € C*°(U) supported in
K so that 0% f, — 0%f in Cy(U) for n — oo and |a| < k.

It suffices to consider U = R%. We will later prove a more general result
and make sure that the reasoning is not circular.
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Definition 4.7. Let U C R? be open, and D(U) = CX(U) be the vector
space of infinitely differentiable functions with compact support called test
functions. We say f; — f in C(U) = D(U) if there is a compact set
K C U andsupp f; C K for all j and for all multiindices o

9%f; = 0°f  in Cy(U).

A distribution T on U is a continuous linear map from C3°(U) — K. We
denote the space of distributions by D'(U).

By continuous we mean that

if f; — f in the sense of test functions. It is immediate that the distributions
define a K vector space.

Lemma 4.8. Let T € D'(U). For every compact set K C U there exists k
and C > 0 so that, if f € D(U) with supp f C K then

T < Cllifllerw)-
Proof. We define for K C U compact
Xk ={f€D(U) :supp f C K}.
We define a metric on Xg

d(f,9) =sup 2" min{L,[|f — gllcx ) }-
k>0

With this metric Xg is a complete metric space:
d(fj, f) =0 iff f; — f in CH(U) for all k > 0.

Then T € D'(U) define a continuous linear map from Xx — K. More-

over
ITf| < o0

for all f € Xi. Now we argue as for the uniform boundedness principle of
Banach-Steinhaus: There exists m so that the set

{f e Xk :|Tf] <m}
contains an open ball. Then there exists r > 0 so that
ITfl <m for all f € Xix  with d(f,0) <.
Let k be so that 2!=% < 7. Then
d(f,0) <r i [|fllorey <27 and supp f C K.
we continue as for the theorem of Banach-Steinhaus.

O]
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Definition 4.9. We say that
T, —T in D'(U)

T.(f) = T(f) for all f € D(U).
If f € D(u) and g € C*°(U) then fg € D(U).
Definition 4.10. Let ¢ € C*°(U) and T € D'(U). We define their product

by
(@T)(f) =T(of)
and the derivative
(am]T)(f) = T(_amjf)'
It is easy to see that the right hand side of the formulas defines a distri-
bution. We can easily calculate Leibniz’ formula in the form

Ox; (¢T)(f) = =T(¢0; ) = T((0;0) f) = T(,(¢))
= [(02;0)T)(f) + (60x,T)(f)
and the associative and distributive law:
P(UT) = ¢(¢T).
Similarly the theorem of Schwarz holds
0202, T = 0z, 0y, T.

Let L}, (U) be the set of measurable functions on U which are integrable

on compact subsets. We say f; converges to f in L}, _if fj|x — f|x in L'(K)
for all compact subsets K.

Definition 4.11. We define L}, .(U) > f — Tr € D'(U) by
Ty () = dm*
(0) = | soam
for ¢ € D(U).

Lemma 4.12. The map LlloC — D' is linear, continuous and injective.

Proof. Only injectivity has to be proven. After multiplying by a character-
istic function of a ball we consider f € L'(B). Suppose that

/f¢dx—0

for all ¢ € C2° supported in B;(0). Then

fxo(x) =0

for all ¢ supported in B,(0) and |z| < 1 —r. But we have seen that there
is such a sequence ¢; so that f * ¢; — f in L'. Then f|Bl,T(0) = 0. This
implies the full statement. O
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Similarly, any Radon measure y on U C R defines a linear map from
the continuous functions with compact support to K, and we identify it with
the restriction to D.

Examples:

1. The Dirac measure dg

. . |0 ifx<O .
2. The Heaviside function H(x) = { | ife>0 satisfies
0. H = .
Firstly H € L}, .. If $ € D(U)
(@:H)(6) = O:Ti)(0) = ~Tu(6) =~ |~ H(a = 6(0) = 50(0)
3. Let
po L2 il <
N 0 if |z| > —t
Then
(0% — / / (02 — 02)p(t, x)dxdt
—¢ 0 0 (50(t .CL‘)

which is the contents of exercise 3 on sheet 8.

4. Let d > 2 and 4
2 TI'(5), g
o) = =2l
In FEinfihrung in die PDG we have seen that

Agxd= / 9z — 1) (- A(y))dy = ().

Thus
—Ag = 60.

09.12.2016]
[14.12.2016]

Lemma 4.13. The following identities hold

T(MD = (Z)le fOT’ ¢7 ¢ S C(U)7
T, = Ou; Ty for p € C(U).
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Proof. We use Fubini, integration by parts and the fact that f € D(U) has
compact support, to get

Toul )= [ ot dm = (6T, (5
Ty, of = [ f0r,0dm" = [ (-0, Nodm® = @.,T,)(7).

O]

Definition 4.14. Let T € D'(U). We say that T vanishes near x € U if
there exists r > 0 so that T(f) =0 for all f € D(U) with support in B,(x).
We define the support of T as the complement of the points near which T
vanishes.

Lemma 4.15. Let ¢ € D(U) and T € D'(U) with disjoint supports. Then

T(¢) = 0.

Proof. Let K be the support of ¢. Given z € K there exists r so that
T = 0 for every ¢ € D(U) supported in B,(x). Since K is compact there
is a finite covering of such balls B, (x;) with 1 < j < N . We choose a
partition of unity n; € C°°(U) supported in B, (x;) so that

N
D njle) =1
j=1
for x € K. Then
N
T¢ = T(njp)=0
j=1
O

Definition 4.16. Let T € D'(RY) and ¢ € D(RY). We define their convo-
lution by
(¢ +T)(x) = T($p(z — ), VoeR™

The righthand side denotes T acting on ¢(x —y) as a function of y.
Lemma 4.17. With the notation above, we know ¢ * T € C*°(R%) and
Oz, (9 *T) = (0r;0) ¥ T = ¢ % (04, T).

If ¢ € LY(RY) then
¢ x Ty(x) = ¢ x ().

Moreover, if supp ¢ = K1 and suppT = Ko then

suppp*T C K1+ Ko ={z+y:2 € Ky andy € Ks}.
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Proof. For v € R? we have to prove that

(¢ T)(x + tv) — (¢ T)(x)

= T(%(as(:c Fio =)~ 6z )

t
d
=T ZUJ 0;0)(x — = (Z vjﬁjgzb) x T (x)
j=1 j=1
d d
=T Y vdi(d@—-) | =0+ (Zv]aJT)(x)
j=1 j=1

This is a consequence of Lemma [4.8 and that the difference quotient

(0°9)(@ + tv) — (°9)(x %Z% o)

)ast—0
t
uniformly in x since the support is compact.
The remaining properties are not hard to verify. (Exercise) O

Remark 4.18. We can equivalently define the convolution of ¢ € D(R?)
and T € D'(R?) as the distribution:

(0 T)(f)=T($x[), VfeDRY,
where ¢(x) = ¢(—x).

In the same way we can easily define the convolution ¢ x T € D'(R?)
when ¢ € Ck(Rd) has compact support. By an abuse of notation we write
the convolution evaluated at x whenever it is defined, even if it is not defined
on all of R,

Definition 4.19. Let T € D'(R?) and let S € D'(R?) with compact support.
We define their convolution by

(S*T)(¢) =T(S * )
for ¢ € D(RY). Here S(v) = S(¥), 1 € D(R?).

It is an exercise to formulate and prove reasonable properties of the
convolution of distributions.

Example 4.20.

Let d > 2 and
2 T(9), o4 d
o) = == =2l € L, (RY).
Then
—Ag = do
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and
—A(gx¢) =0 x ¢ =¢.
We identify Ady with the distribution
Ado(f) = Af(0), VfeDR?).
Its support is {0}. Then
¢ * (Adp)(x) = Ado(d(z — ) = Ad(x).

The same construction works for all differential operators with constant co-
efficients.

Lemma 4.21. Suppose that T,, — T in D'(U) and that K C U is compact.
Then there exists k and C' so that

Sup Tu (NI < Clifllerw)
forall f € Xg ={f D) : suppf C K} and

sup{[Tn(f) = Tm(N)| : f € Xic, [[fllp <1} =0

as n,m — oo.

Proof. The proof of the first part is the same is for Lemma So, given
K, there exist £ > 1 and C' so that for any n

L) < Clfllegr
Since K is compact and
CEHE) 3 f = (0°f)jaj<k € Co(Zk x K) = Cyp(K;K#>r)

is an isometry where ¥ is the set of all multiindices of length at most k.
By a multiple application of Theorem

Bi(0)={f € Xl ey oy <13 C CL (K K#5h-1)

is compact in C¥~!(K). Let € > 0. Then there exist finitely many functions
fm € CF(K) so that the £ balls in C}~! centered at fy, cover By(0). We
may assume that they are in C2° by Lemma There exists ng so that

(T =T)(fm)| <€

if n > ng. Then, for any f € B1(0) there exists f,, such that ILf = fmllge-1 <
b
¢ and hence for n > ng there hold

‘(Tn - T)f| < |(Tn - T)(fm)’ + |Tn(f - fm)| + |T(f - fm)| <e+2Ce.
O
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Theorem 4.22. Let U C R? be open. Then D(U) C D'(U) is dense.

Proof. There are several steps.
Step 1: Distributions with compact support are dense. We choose a se-
quence ¢; € D(U) so that

8a¢j — 0*1

on compact subsets. Then ¢;T" has compact support and
(¢5T)(9) = T(#j9) = Tg

for all g € D(U).

Step 2: Construction of the ¢;. Let K; be a monotone sequence of
compact sets so that K is contained in the interior of K;1; and U = |J K.
Then for any j there exists 7; > 0 so that

min{dist(K;_1, RN\ K;), dist(K;, R\ K;11)} > r; > 0.

Let ¢ € C°(B1(0)) be radial with [@dz = 1 and let ¢, (z) = r~%p(z/7).
Then
(ybj = 907’]' *XKJ‘ € 0007
supp ¢; C Kj11, ¢j=1on K;_1.

Step 3 Let T € D'(U) have compact support. Then, for r small and
g€ D)
erxT(9) =T(6rxg) > T(g), 0

by an abuse of notation. O
The same argument gives Lemma [4.6

Lemma 4.23. Suppose that U is connected and 0;T = 0, j = 1,--- ,d.
Then there eixsts a constant ¢ so that T = T,.

Proof. Exercise. O

[14.12.2016]
[16.12.2016]

4.3 Schwartz functions and tempered distributions

We briefly cover the definition of Schwartz functions and tempered distri-
butions, which are the proper frame work for the Fourier transform.

Definition 4.24. The Schwartz space S(RY) consists of all Schwartz func-
tions, which are functions f so that for all multiindices o, B

120 flsup < o0
We say f; — [ as Schwartz functions if for all multiindices o and /3

xaaﬂfj — 2208 f uniformly.
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Remark 4.25. It is easy to see that if f € S(R?), then for any N there
exists Cy such that |f(z)| < Cn(1+|z|)~Y, and hence f € LP(RY), for any
p € [1,00]. So is 0“f for any multiindez .

Roughly speaking, the Schwartz functions have two properties: they have
infinite bounded derivatives and they decay fast at infinity. Recalling Oy, f(§) =

27ri§jf(§) and 9?]7"(5) = %agjf(f), the Fourier transform should work well
in the framework of Schwartz space and tempered distributions (see below).

Since nuf — f in S(RY), nu(z) = n(n~'z) where n € C2(B(0)) takes
value 1 on By(0), the inclusion D(RY) C S(RY) is dense.

Lemma 4.26. Let f be a Schwartz function.
1. If a is a multiindex then 0*f € S(R?).

2. If g € C* and for any multiindex o there exist ¢ and K|y so that
0%g] < o) (1 + |z])™1e!
then gf € S(R?).
3. If g € CO(RY) satisfies for any multiindex o
[z%g(2) || sup < 00,
then g x f € S(RY).

Proof. The first property follows from the definition. By the first property,
in order to prove the second property it suffices to show

sup [2(879) f| < oo,

which follows from the definition.
Since

0%(g*f)=g*0"f

and since 0“ f is Schwartz, by the first property the proof of the third prop-
erty is reduced to bounding

[12%(g * f)lsup-

We observe that
zj(g* f) = (x59) * [ + g (x;[)

and the claim follows by induction on the length of . O

Definition 4.27. We define d:S x S — [0,00) by

d(f,g) = sup 27k min{1, sup Hxaaﬁ(f _g)Hsup}-
k || +|8]=k
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Lemma 4.28. The expression d(f,g) defines a metric on S which turns it
mto a complete metric space.

Proof. Easy exercise. O

Definition 4.29. A tempered distribution is a continuous linear map from
S(R?) to K. We denote the space of tempered distributions by S'(R%). We
say that T; — T in S'(RY) if Tj(¢) — T() for all ¢ € S(R?).

Lemma 4.30. Let T € S'(RY). Then there exist k and c so that

T¢| <c sup [|z°079|sup-
ol +51<k

If T, = T in S'(R?) then there exist C' and k so that

sup [T,¢| < C  sup  [|°0% || sup
n || +|B| <k

and
’Tn<¢) - T‘N

SUD -+ <k [T90°@||sup

Proof. The proof is similar as that of Lemmal[4.21] The existence of C and k

follows from the idea of the proof of Banach-Steinhaus theorem. The conver-

gence result follows from the compactness of the ball {¢ € S(RY) | SUD|a|+|8|<k 12908 || sup <
1} in the space {¢ € S(R?)| SUP|a|+|8|<k—1 |2%0P¢||sup < +o0}, which is

easy to see if we notice that

— 0.

sup  [2°0%bl|aup < RT1 sup 007l up(mpione) TR 6] orn
o+ 8] <k—1 b la|+13|<k p((Br(0))%) CF=1(Bgr(0))

and we can choose R big enough. O

Remark 4.31. We define the derivative and the multiplication by a smooth
function with controlled derivatives for a tempered distribution as we did it
for distributions. Similarly, since compactly supported distributions S can
act on Schwartz functions f, we can define the convolution (S * f)(x) €
S(R?). We then can define the convolution of a tempered distribution with
Schwartz functions and with compactly supported distributions.

Let 1 < p < oo. There are the embeddings

D(RY) c S(RY) ¢ LP(R?Y) c S'(RY) ¢ D'(RY).

The embeddings are dense if p < co.

66 [FEBRUARY 10, 2017]



4.4 Sobolev spaces: Definition

Definition 4.32. Let U C R? be open, k € N and 1 < p < co. The Sobolev
space WFP(U) c LP(U) is the set of all LP(U) functions, so that for all
multiindices « of length at most k there ezists fo € LP(U) so that

0Ty = Ty, .

We define (identifying Ty and f and 0Ty with fo by an abuse of notation)

=

[ llweo = | 32 10 £

|| <k
with the usual modification if p = oco.

‘We have
9g=0.f, fgelLl(U)

if and only if
[ godm =~ [ sor, o
for all ¢ € D(U).
Lemma 4.33. Let g € CF(U) and f € W*P(U). Then gf € WEP(U).
Proof: Easy exercise.

Definition 4.34. Letk € N, 1 <p < co. We define Wé’p(U) as the closure
of C°(U) with respect to the norm || - |lwro@y. If V. C U the extension

defines a canonical (nonsurjective) isometry from Wé‘:’p(V) to Wéc’p(U).

Theorem 4.35. Let k € N and 1 < p < oo. The Sobolev space WHP(U)
is a Banach space. If V. C U then the restriction defines a map of norm 1
from WkP(U) to WkP(V). Moreover Wéf’p(]Rd) =WkP(R) if 1 < p < 0.

Proof. Let X = {a: |a| < k}. There is an obvious isometry
WHEPU) 5 f = (fa)aj<k € LP(U x ).

Let f; be a Cauchy sequence in W*P(U) with limit f € LP(U). Then
0%f; — fo in LP(U) and in D'(U). It is easy to check that fo, = 9*f in
D'(U): for any ¢ € D(U),
177,(6) = lim (-0 [ fovodm? = (~1)°! [ j0%6 dint = Ty (6)
U U

j—o0

Thus f € W*P(U) and W*P(U) is complete and we can identify WP (U)
with a closed subspace of LP(U x Xy).
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The restriction map with norm < 1 follows from the definition, and the
norm is indeed 1 since

1fllwrooy = I Fllwrewy,  f € WeP(V),

and fve Wé"’ P(U) is the trivial extension of f by 0.
Now let 1 < p < co. Density of D(R?) ¢ WF*P(R?) follows by the same
argument as in the proof of Theorem [4.22) O

[16.12.2016]
[21.12.2016]

Definition 4.36. Let k € N and 1 < p < oco. We define W FP(U) =
(W™ ()"

Lemma 4.37. The map J: LP(U x i) — WFP(U) defined by
TN =Y [ fadrudm, ue W ©)
laj<k Y
has norm 1.
Proof. Exercise. O

Lemma 4.38. Let U C R? be bounded and open and k € N. We assume
that f € C{f(U) and its derivatives of order up to k — 1 extend to continous

functions in U which vanish at OU. Then f € ng’p(U) for1 <p < oo.

Proof. We proceed as in Theorem Let Kj = {z € U : dist(z,0U) >
277}. We extend xg; by 0 to R and convolve it with a smooth function (say
g—j—1) of integral 1 supported in By-;-1(0), to obtain n; € C°(U). Then
suppn; C {z € U : dist(z,0U)} < 27771 and n;(z) = 1 for dist(x,0U) >
217 and

0%ny] < c(laf)2b.

Since for |a| < k, by the Taylor formula,
0% f(z)| < edist(z, OU)*1o.

Thus the sequence 7; f is uniformly bounded in CF(U), and hence in W*P(U).
Moreover

O%(nif) = 0°f

for every x € U and by dominated convergence
nif —f  inWHP(U).

We complete the proof by regularizing 7; f as in Lemma O
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The cofactor matrix cof A of an n x n matrix has as (i,5) entry (—1)"~J
times the determinant of the (n — 1) x (n — 1) matrix obtained from A by
removing the ith row and the jth column. It is the same as the partial
derivative of det(A) with respect to the (4, j)th entry. Then (linear algebra)

AT cof A = det Al,xp, (4.1)

Lemma 4.39. Let U C R? be open and ¢ € C*(U;RY). Then

d
Z 8mj COf(Dd))Z‘j =

=1

Proof. (From (4.1) with A = D¢,

dy, det(Dg) Zéwa det(De)
7=1

d d
=5 ), > (cof DY)mZ, . "

j=1km=1

d
= " (02,02, 8")(cof Do)y + Z By, 8" 8; cof (DP) 1

i’ k=1 7,k=1

d
= > (02,.,6"(cof Do)xj + 0r, 6" s (cof Do)y;).
7,k=1

which implies

d d
> 02,0 [ D 0a;(cof De)y; | =0.
k=1 j=1
This implies the claim if det D¢ # 0. If det D¢(x) = 0 we apply the reason-

ing to ¢ + ez and send € to 0. O

Lemma 4.40. If ¢ : V — U is a C,f diffeomorphism (bounded derivatives
of ¢ and ¢~') then there exists C > 1 so that

1f o dllwrsy < Cllf llwrrwy

Moreover the chain rule holds

d

Fod)=> (0u,fod)dy0

k=1
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Proof. The first claim follows from the chain rule and the transformation
formula. We prove the chain rule for a smooth diffeomorphism. The general
case follows by approximating the diffeomorphism and taking limits. We

write 1 o ¢(y) = 9(y). Then

d
- [ oo, dwinte) = [ 1 ;@ uyté det(Do ) (2)

8:ck

d d
:_; /U £@)0u(, o det(DY™)dm (@)

+ Edj / f(@)p0, <% det(D¢"))dm"(x)
k=17U "0y,

The second term vanishes by Lemma and we continue, assuming that
¢ is smooth (which requires an approximation argument)

d ox
-3 /U (05, f)a—yj det(Dé)dmd ().
k=1

The chain rule follows by another application of the transformation formula.
O

4.5 (Whitney) extension and traces

Definition 4.41. Let U C R? be open, bounded and connected. We say that
U is a Lipschitz domain if there exist a continuous vector field v on OU and
a Lipschitz continuous function p and ¢ > 0 so that OU = p~1({0}) and

plx+tv)—plx+sv)>t—s
forx € OU and —c < s <t <c.
Examples:

1. Bounded connected open sets with C'!' boundary.

2. Let h : R%! — R be Lipschitz continuous with Lipschitz constant L.
The set below the graph is not compact, but the other conditions are
satisfied with p(x) = xg — h(z1, -+ ,24-1) and v = egq.

Theorem 4.42 (Whitney). Let 1 < p < oo and U C R? be a Lipschitz
domain. Then there exists a linear extension map

WhP(U) — WhP(RY).
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Proof. We prove the theorem under the stronger assumption that 9U is a
C* manifold. By use of rotation, compactness and partition of unity, it suf-
fices to consider the extension problem for U = {x : 4 < ¥(z1,...,2q-1)}
where 1 is a function in Cf. By Lemma we can choose ¢(z) =
(x1,...,24-1,2q — Y(x1,22,...24-1)) to reduce the problem to extending
Sobolev functions on the lower half space V' = {z|zy < 0}. Let f be defined
on V. We make the Ansatz

f(z) if zg <0
F — k+1 . .
(@) >oaif(zr,...xq-1,—jxq) if xq>0.
=1

If f € C*(V) we want to choose the a; so that O*F' is continuous for
|| < k. Tt clearly suffices to do this for 8%, for 0 < j < k when {z4 = 0},
which leads to the Vandermonde matrix

11 1 .. 1 a 1
1 2 3 ... k+1 as 1
12 22 32 ... (k+1)? az | = 1

1k 2k 3% (k+1)%) \app (1)

The Vandermonde matrix is invertible and we can solve this system. The
coefficients a; hence exist and depend only on k. Then

1 F[lwrr@ay < Cllfllwrey-

Now we would like to pass from the assumption f € C¥(U) to f €
WHP(U). We define the extension F in the same way. Then we have to prove
that for |a| < k the distributional derivative is given by the distribution
defined by the distributional derivatives on both sides. By an application of
the theorem of Fubini and using distributional derivatives in d — 1 variables
this is true for all o with ag = 0. Again by Fubini it suffices to consider
d=1. Let 1 <k <k and ¢ € D(R). Then, with

o f ifx<0
OFF = kb . .

> a5 (f(—jw) iz >0

]:
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we obtain
2 k+1
(=1)* /Fd)dx / fd Hq&dm—i— Zaj/ f(—

k+1

N /0 f% [(_1)% + Zj“_lajcb(—x/j)} dz
. 2

0 d,{ k+1

[ )= Y ost-ar ol s
dH

= F dz.

| ol
In last equality we observe that
! k+1
dx"”v Z“a )"le(—w /) =

for = 0 and ' < k by the definition of the a;: Indeed, we observe that

k+1

(1 - Za] Jrr —1)¢<“’>(0) ~0.

Hence it is in W’ ((—o0,0)) by Lemma and we can approximate it by
functions in D((—o0,0)). For those we can move the derivatives to f. [

Corollary 4.43. Suppose that U is a open, bounded with Lipschitz bound-
ary, k € N and 1 < p < oo. Then the restrictions of C§°(RY) functions is
dense in WFP(U).

21.12.2016]
23.12.2010]

Theorem 4.44 (Traces). Let U be a bounded domain with C* boundary and
let f € WHP(U), 1 < p < oo. Then there is a unique trace g € LP(OU) so
that

/ ZFﬂzﬂgdﬂd 1 /fZ(%F’dm +/ZBI7fFJdm (4.2)
8U
7j=1 7j=1

where F7 € CY(U) and v denotes the outer normal vector of OU. It satisfies

p—1 1

l9llzoov) < el @I DI IDFllLe = 111D, )] |20
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Proof. If f € CY(U) then g = f|su has the desired properties. By a partition
of unity we may assume that U is below the graph of a C,} function ¢, and
that f has compact support. Then, if p < oo,

903000y = [ loPam®=" = [ P+ 199 ! )
—pRe [ (14 Vo(a) )3 70! 0, !
U

1 _
<psup(L+ [V'o )2 | £, [10s,f |-

We approximate f by smooth functions, and go to the limit. Then we obtain
a function g at the boundary so that holds. We fix a vector field F' so
that F-v > 0 at the boundary. Let h € C1(0U) and it has an extension to
CY(U), which we denote again by h. We apply with F = hF. Then
the right hand side of (with F replaced by F') determines

/ (F - v)hgdH*!
oUu

for h € CY(AU). This determines g uniquely. The case p = oo is simpler.

O
4.6 Finite differences
Here we want to relate the analogue of finite differences to Sobolev functions.

Theorem 4.45. a) Let 1 <p < oo. If f € LP and

.+ h)—
sup 1f(-+R) = fllLo@aey <C
h |h|

(4.3)
then f € WLP and

< C.
Lr(R4) —

(. +tej)
100, s < sup L2

b) Now let 1 < p < oo and f € WP, Then

Cdte;) — (. (L
f(+ei) f()—u‘?jf m{p/ Zgiz

Proof. Suppose that (4.3]) holds. Then
o et ter) — (@)

t—0 t

— Oy, f

as distribution:

75,6) = [ (Fla+ter) = f@)ola)dm® = Ty(7 (6o — ter) = 6(2)))
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and in D(R?)
%((ZS(SC - tel) - ¢($)) — _81‘1(25(3:)

The difference quotient defines an element in L%(Rd)*. It is bounded by
_p_
C' uniformly with respect to t. Then also d,, f defines an element in (L»—1)*
with norm at most C'. By the representation theorem there exists d,, f € LP.
This proves the first direction and
f(te f
102, /1| ey < lim inf Hﬂ—‘

Consider now f € WHP(U), 1 < p < oo and we would like to show ([4.3)).
By the fundamental theorem of calculus and Minkowski’s inequality

1FC+B) = FO Lo = | / Zhaf (- + sh)ds| oggey < [RIIIDF|]12o

for C* N WP functions. Density completes the argument for p < oo. For
p = oo we use that by the previous argument

_‘/01 /Rdzdjam].f(x+th)hj¢(x)dmd(x)dt
=1

<PV Flll e[|l o1

| [ +1) = saot@yin

and hence
fl@+h)— f(2)

oo < V£l zoe-
O

Corollary 4.46. [Poincaré inequality] Let U C {x € R :a < 21 < b} and
feWyP(U). Then

If ey < 10— alll|V £l ooy

Proof. Extend f by 0 to R? and apply the previous theorem. O

w=f fam® = ()" [ fam.

Lemma 4.47 (Poincaré inequality on ball). If 1 < p < oo and f €
WP(Bg(0)) then

We define

d
If = fBro)lLr(Br)) < 27 RIIDfll1r(BR(0))-
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Proof. Tt suffices to consider R = 1 by replacing f by f(x/R). We calculate
again by Minkowski’s and Jensen’s inequality

mé p
(m(B,(0)) /B

:/1

Bi1(0) |/ B
< / F(@) — f()Pdm®(z)dm(y)
B1(0)xB1(0)

B /Bl (O) ><Bl (0)

1
§2p/ / IV f(z 4ty — z))Pdm®(x)dm®(y)dt
0 JB1(0)xB1(0)

|f - fBl(O)‘pdmd($)
(0)

dm®(z)

1

/ (F(2) — F(y)dm(y)
1(0)

p

1
/0 Vi(z+ty —x))dt] |z —ylPdm®(z)dm(y)

1
_9op . 2/2 / IV f(x+t(y — a:))|pdmd(w)dmd(y)dt
0 JB1(0)xB1(0)

where we used symmetry in x and y in the last equality. However, if y €
Bi(0) and 0 <t < % then

/ Vf (o + iy — o)) Pdmi(z) < 2¢ / IV ()P dm(x)
B1(0) B1(0)
by the transformation formula. O

23.12.2016]
[11.01.2017]

There has been an omission in the proof of Theorem [£.45} We have not
shown that the difference quotient converges in L? to the derivative - only
as a distribution.

4.7 Sobolev inequalities and Morrey’s inequality

Lemma 4.48. Let f € Co(R), f' € L'. Then the Sobolev inequality

1
Flhoup < 51152 (44)
holds. If f' € LP, 1 < p < oo then every point is a Lebesque point and

up @) = )]

7 |z =yl

< 1f'llze- (4.5)
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Proof. 1t suffices to prove the estimate for smooth functions with compact
support. The inequality (4.4) is a consequence of the fundamental theorem
of calculus:

f@= [ == [ rwa.
and we derive (4.5)) by Holder’s inequality

Y / / 1-L o
[f(z) = ()l S/ [ @ldz < 1 FllerliX@all 20 = 2 =yl 7 1]l

This proof applies to f € C'. The general statement follows as in Morrey’s
inequality below. ]

The Sobolev inequality and Morrey’s inequality are the versions of these
inequalities (4.4)), (4.5) in higher space dimension.

Theorem 4.49 (Morrey). Let U be open. Suppose that p > d and f €
WYP(U). Every point is a Lebesgue point and the canonnical representative
f is continuous. There exists ¢ depending on p and d so that the following
is true: Let x,y € U with

|z — y| < dist(z, R\U).

Then

1—4

@) = FO) < ela =y 1V oz, -
Proof. The inequality follows from

1—4

|F (W) = IBazo)| < CR 2 IV Il Lo(Br(ao) (4.6)

for |y — 9| < R (and Lebesgue points y) with a constant C(p,d) which is
bounded as p — co by

1f(y) = f(20)| < |F(Y) = fBr@o| + [F(20) = fBao)]

and two applications of (4.6)) if y and xy are Lebesgue points.
It remains to prove (4.6) and to prove that every point is a Lebesgue
point. We have for Br/s(y) C Br(o)

‘(md(BR))l / flxo+2) = fy + 2/2)dm?(z)
Br(0)

d -1 . d
= |(m“(BRr)) /BR(O) /0 ]z::l(:vo +2/2 =)0, f(wo + (1 —t/2)z + t(y — xo))dtdm®(z)

< R2Y(m(Bp))~* / IV fldm(z)

Br(zo)

_1 _d
< 2/(m4(B1(0)))"* R'* |V f |l Lo(B(a0))
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first for smooth functions, and then by approximation for Sobolev functions.
By a geometric series and an iterative application of the above inequality

with (zo,y) = (-1, 2;):
|f(y) - fBR($())| = ZfBQ*J‘R(wj) - fleij(zjfl)

j=1
< Z |fB2_]-R(a:]-) - fle—]'R(m]'—l)‘
j=1

AN (14
<cR'2 Y 2DV | Lo (B a(mo)
j=1

provided y is a Lebesgue point and for a suitable converging sequence of x;.
This however follows from the convergence for every point. ]

Theorem 4.50 (Rademacher). I) Lipschitz continuous functions are almost
everywhere differentiable.

II) Functions in WYP(U) with p > d are almost everywhere differentiable.
The derivative almost everywhere is the same as the weak derivative.

Proof. Part I is an exercise and we prove Part II. Let f € WP, By Morrey’s
theorem [4.49| we know that every point is a Lebesgue point and there is a
uniformly continuous representative. By Theorem there exists a set A
whose complement has zero measure so that every x € A is a Lebesgue point
and

r—0

lig (B, () [ [94(0) - V@) Pdm(y) = o
Br(x)

We apply the Morrey’s inequality Theorem to
d
v(y) = fle+y) = fz) =D 0 f(@)y
j=1

on B, (0) where again x € A . Then

lv(y)| <erl™h (/ IVf(z+2) - Vf(x)lpdmd(2)>
B(0)

=

=cr (md<Br<m>>‘1 / IV f(z) - Vf(w)\pdmd<Z)>
By (x)
=o(r).

This implies that f is differentiable at = € A. O

77 [FEBRUARY 10, 2017]



Theorem 4.51 (Sobolev). Suppose that 1 < p < d and
1 1 1

g d p
Then
[ flaay < clllDfIll Lo way
whenever f € L4(RY) and |Df| € LP(RY).
Proof. We prove the estimate first for p = 1 and ¢ = d%‘ll.
we prove the estimate

More precisely
d

A s <27 T 1031l ey (4.7)
LT (R4) =1

by induction on the dimension. The case d = 1 has been contained in Lemma
Suppose we have proven the estimate for d < k — 1. Then by Fubini
and Hélder’s inequality (since 15 + % =1)

_k 1
I = / / |f|m|f|dm’f—1dm1<m1>
LF=T (RF)

1
< [ s el g, A (o)
<sup (o1, )] /Hf 21, g g A (2)
1
k k-1
_ 1 —(f—
<2 k_lHamf”Ll(Rk)/R 2~k 1)HHa:cjf(xlv')HLl(Rk_l) dml(xl)
=2

We take the inequality to the power k — 1, and apply Holder’s inequality

in the form
k—1

k k
/H\gjl’“lldm1 < H/!gj\dml
Jj=2 Jj=2
to arrive at

")

k
k —k
I gy < 2 TL 103l

(d—1)
Now let 1 < p < d. We apply the above inequality (4.7) to |f] =
Then

(d— l)p

(d—1)p
1 oy =IF 0 ey

R4)
(d=1)p
<D T s gy < / 15 D fldm

(d ) d(p—1)
HfHLq gy 1D f | e (a)

78 [FEBRUARY 10, 2017]



where we first argue for smooth functions, and where we used Holder’s in-
equality in the last step. O

[11.01.2017]
[13.01.2017]

4.8 Applications to PDE

Let U C R? be open and bounded, f : U x R x R — R be continuous and
suppose that there exists 1 < p <r < oo such that

1+1>1
i~

and
|f(z,u, P)| < (1 + [u]" + [PP). (4.8)

If u € WHP(U) then
x = f(x,u(z), Vu(z))

is measurable and integrable since
[ 1 uta), Vutplan < (@) + [ jupdm + [ [Fupan)
U
< 6L+ Nlullzr ) + el @)

where we put all the constants into C. If 1 < p < d by Holder’s, Poincaré’s
and Sobolev’s inequality, with & rias d = and

1_1
a=T—7
P q
we have
lull L@y < Nl i lull oy < Cllullwrowy,s

where ¢ is the exponent of the Sobolev 1nequahty. Here we assume that
either U C R? such that Whitney extension Theorem holds true, or
ue WP (U).

Definition 4.52. Let U C R? be open and bounded,
FI feCU xR xRY)

for 1 < j < d and suppose these functions to satisfy (4.8)). Then u €
WLP(U) is called weak solution to

d
Z 0 F7 (z,u,Vu) = f(z,u, Vu)

j=1
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if this identity holds in the sense of distributions. This holds iff

d
/ ZFj(:n,u, Vu)0j¢ + f(x,u, Vu)pdm? =0
Ui

for all g € DU).

Remark 4.53. We may replace the condition ¢ € D(U) by ¢ € C1(U) with
dlov = 0. If 1 < p we may replace it by ¢ € Wol’q(U) where % + % =1.

We turn to a particular case. Let
a e L®(U)
FI feLP(U)

for 1 <i,j < d. Then u € WIP(U) is a weak solution to

d d
> 0@ (x)du) = 0 FT + f

1,j=1 Jj=1

if and only if

d d
/U Z a' (2)0ud;d — Z Fi(2)0;¢ + fddm? =0
. =

7,7=1

for all ¢ € C1(U) with ¢|sy = 0.
If g € WHP(U) we say u = g on U in the WP sense if

u—ge Wol’p(U).

Definition 4.54. We call the (aij)lgi,jgd elliptic if there exists k > 0 so
that

d
Re Y a" ()6 > kl¢)
i,j=1

for almost all x € U and all £ € C?.

Let F/,f € L2(U), g € WY2(U). We consider the boundary value
problem

d d
> 0@iu) =Y 0;FI+f  inU

1,j=1 7j=1

u=g on OU
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Theorem 4.55. There exists exactly one weak solution u € WH2(U) which
satisfies the boundary condition in the WH? sense. The map

(L2UNT x WH(U) 3 (F, f,9) = ue WH(U)
18 a continuous linear map.

Proof. Step 1: Reduction Formally setting w = u — g it suffices to find
w e Wol’z(U) such that

d
Z Oi(a9;w) =Y 9;(F =Y d'oig)+f  inU
4,j=1 Jj=1 =1

which reduces the problem to the case g = 0.

Step 2: The Hilbert space We recall that Wol’z(U) is a Hilbert space
- we can consider it as a closed subspace of (L?(U))%*!, and closed subspaces
of Hilbert spaces are Hilbert spaces. The inner product is

d
(u,v) :/ Zﬁjuﬂdmd
Ui

Step 3: The quadratic form We define the quadratic form

A(u,v) / Za”@ ud;vdm?.

3,j=1

The quadratic form is continuous - there exists C' > 0 so that
[A(u, 0)| < Cllullwrz@w) lvllwrzw)

and it satisfies
Re A(u,u) > Ii/ |Vu|?dm?
U

for all u,v € WL2(U). By the Poincaré inequality in W01’2(U) (since U is
bounded) there exists ¢ > 0 so that

ull2@y < clVullze
and thus there exists & > 0 so that
Re A(u,u) > RH“”IQ/V(}’Q(U)'

Step 4: The linear form Let F' and f be as in the theorem. Then
d .
’U—)LU:/ fZFjajvafv
U -
7=1
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satisfies
Iy < IE 2@y + 12w

Step 5: The lemma of Lax-Milgram. By the Lemma of Lax-Milgram
there is a unique u € Wol’Q(U) such that

A(u,v) = L(@), Yo e Wy?(U),

which is then a weak solution. The map L — u is linear and continuous.
Step 6: The bound Let v = u and take the real part. Then

Rl Vullze <IFllpzVull g2 + 1]zl 22
<IFll2VullLz + ClAl 2Vl 2

and hence
K[| Vullpz < [[Flzz + C[l fllz2-

we complete the bound by a second application of the Poincaré inequality.
O

There is a particular case a” = §7 and F' = 0. It becomes the Poisson
problem
—Au=f inU

u=gq on U

We obtain a unique weak solution for U open and bounded, f € L?(U) and
g€ Wh2(U).
If there is a barrior at every boundary points then the problem

—Au=0 in U

u=yg on OU

has a unique solution v € C1(U) N C(U) for every continuous g. We call
this solution classical.
A classical solution is not necessarily in W12, and a weak solution is not

necessarily in C(U). In most important cases both solutions are identical.

[13.01.2017]
[18.01.2017]

5 Linear Functionals

In this section we will study the dual space X* of Banach spaces X.
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5.1 The Theorem of Hahn-Banach

Definition 5.1. Let X be a K wvector space. A map p : X — R is called
sublinear if

1. p(Ax) = A\p(z) forz € X and A >0,

2. p(z +y) < p(x) +p(y) forz,y € X.

Examples:

1. The norm of a normed space is sublinear.
2. If K =R, any element of X* is sublinear.

3. The Minkowski functional of a convex set. Let KX C X be convex such
that for every x € X there exists A > 0 so that Ax € X. we define

1

A

It is not difficult to verify that pg is sublinear. A norm is the Minkowski
functional of the unit ball.

pr(z) =inf{\>0: —z € K} € [0,00).

Theorem 5.2 (Hahn-Banach, real case). Let X be a real vector space, Y C
X a subvector space, p: X — R sublinear and [ : Y — R linear such that

l(y) < ply) forally €Y.
Then there exists L : X — R linear so that
1. l(y) = L(y) forally €Y
2. l(z) < p(x) for allxz € X.

Proof. There are two very different steps.
Suppose that Y # X. Then there exists zop € X\Y. Let Y7 be the space
spanned by Y and zg. Every element of Y7 can uniquely be written as

y+rzy, yeY,rekR.

We want to find a linear map 7 : Y7 — R such that
1. Li(y) =l(y) foryeY

2. l1(y + sxo) < p(y + szp) forsc Rand y € Y.
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By the first condition and linearity we have to find ¢ = l;(xg) so that
l(y) + st < p(y + sx0)

for all y € Y and s € R. We consider s > 0. Then this inequality is
equivalent to

st < s(p(y/s +xo) — U(y/s))
foralls >0and y € Y

=t < irylfp(y + z9) — l(y).
Similarly the inequality holds for s < 0 if and only if

t > supl(y) — p(y — zo).
)

We can find ¢ if and only if

I(y) — p(y — x0) < p(§ + z0) — 1(7) forall y,geY

which follows from the inequality on Y and sublinearity of p:

W(y) +1g) =y +9) <ply+9) <ply+x0) + p(7 — 20)-

This completes the first step.

For the second step we need the axiom of choice in the form of Zorn’s
lemma.

Let Z be a partially ordered set which contains an upper bound for every
chain. Then there is a mazximal element.

A chain is a totally ordered subset, i.e. a subset A so that always either
a <borb<a. An element b is an upper bound for the chain A, if a < b for
all a € A. An element a € Z is maximal if b € Z, b > a implies b = a.

We define

Z={Wiw):Y C W, lwly =1, lw(w) < p(w) for w e W},
with the ordering
Wiw) < (Vly) W cCV  andly|lw =lw.

This is a partial order. If Z is a chain then
v= |J W
(W,lw)EZ

with the obvious Iy being an upper bound for the chain. Now let (V,ly)
be a maximal element. If V = X we are done. Otherwise we obtain a
contradiction by the first step. O
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There is a complex version. It relies on the observation

Lemma 5.3. Let X be a complex vector space andl : X — R be R linear.
Then it is the real part of the linear map

lc(x) = U(x) —il(iz).
The real part determines Ic.

Proof. We have to show complex linearity. Real linearity is obvious. We
compute

lc(iz) = l(ix) — il(iix) = i(l(x) — il(iz)) = ilc(z).
0

Theorem 5.4 (Complex Hahn Banach). Let X be a complex vector space,
Y a subvector space, p sublinear and l:Y — C linear so that

Rel(y) <p(y) fory Y.
Then there exists L : X — C linear so that
1. Lly =1
2. Re L(x) < p(x).

Proof. We apply the real theorem of Hahn Banach to the real part, and
extend it to a complex linear map by Lemma [5.3] To complete the proof we
observe that L and L are the same iff the real parts are the same. O

We formulate the consequences for normed vector spaces, making use of
the fact that norms are sublinear.

Theorem 5.5. Let X be a normed K vector space, Y a subspace and [ :
Y — K a continuous linear map. Then there exists L : X — K linear and
continuous so that

1. Lly =1
2. [Lllx+ = [lefly=-
Proof. We define
p(x) = Uyl x.

Then
Rel(y) < p(y)

for all y € Y. We apply the theorems of Hahn-Banach to obtain L € X™ so
that L|y =1 and
Re L(z) < p(z).
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This implies
|L(z)| = ReaL(x) = Re L(ax) < plax) = p(z) = [[l|ly-[lx]x
for some a € C with |a| = 1. Thus

[0l x= = [ty

5.2 Consequences of the theorems of Hahn-Banach

Lemma 5.6. Let X be a normed space and x € X. There exists z* € X*
with ||z*||x+ =1 and z*(z) = ||z|| x -

Proof. Let x € X\{0} and let Y be the span of z. Y is one dimensional
and we define y* € Y* by y*(rxz) = r||z||x. Then ||y*|y~ = 1. We apply
Theorem [5.5] to obtain z*. If z = 0 we choose x¢ # 0 and find z* for zg. [

Corollary 5.7. Let X be a normed space. If v € X then
|z||x = sup{Rex™(z) : ¥ € X", ||x*|| x» = 1}.
If x* € X* then
|z*||x+ = sup{Rez*(x) : x € X, ||z||x = 1}.

Proof. The first claim is a consequence of Lemma[5.6, The second statement
is an immediate consequence of the definition. O

Lemma 5.8. If X is a normed space and Y C X is a closed subspace,
Y # X, then there exists z* € X*, * # 0 with z*|y = 0.

Proof. Let o ¢ Y. We define
Iy +txg) =t
and extend it to X by Theorem O

Corollary 5.9. Let X** be the dual space of X*. There is a cannonical
1sometry
J: X = X" J(x)(z¥) = 2" (2).

Proof. Only the isometry has to be shown

|[J(x)||x = sup Red(z)(z*)= sup z*(x)=]|z|x-.

[l* | x==1 llz*f| x =1

O]
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Remark 5.10. If X = LP(u), 1 < p < oo then X* is isomorphic to L%(u)
and J is surjective.

Lemma 5.11. (I°°)* # !,

Proof. The space of converging sequences c is a closed subspace of [*°. Let
[ : ¢ — K be defined by
) = li i
(@) = lim z;
Then
[1((z5))] < ([ () [leee

for every converging sequence. By Theorem it has an extension L to [*°.
Clearly L(e;) = l(ej) = 0. We claim that it cannot be represented in the
form

L((x)) = )y
j=1

for (y;) € I' - if it were represented in this fashion then all y; would have to
vanish. O

In particular J : I* — (I')** is not surjective.

[18.01.2017]
[20.01.2017]

Lemma 5.12. If X is a normed space and X* is separable then X is sepa-
rable.

Proof. Since X* is separable, and a subset of a separable set is separable
also the unit sphere is separable. Let x;k be a dense sequence of unit vectors.

We choose a sequence of unit vectors z; with « (xj) > % We claim that the

span U of the z; is dense. Otherwise, by Lemma there exists z* € X*
of norm 1 which vanishes on the closure of U, and in particular z*(z;) =0

for all j. By density there exists j such that ||z* — 27||x+ < § and hence

< Rea}(z;) = Re(a*(;) + (25 — ") () <

N | =
N =

This is a contradiction. O

Lemma 5.13. Let U C R% be open, 1 < p < oo and k € N. The map

J:Lr T (U xSg) 3 (ga) = (f = Y ga0°f) € (WFP(U))*

o<k

18 bounded and surjective.
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Proof. The map
WHP(U) 3 f — (0% f)jaj<k € LP(U x )

map WFP isometrically to a closed subspace. Any y* € (WFP)* defines a
linear functional on this closed subspace. By Theorem [5.5 we can extend
it to the whole of LP(U x Xj). This can be represented by a function in

Lﬁ(U X ). We have seen that J has norm 1 in an exercise. O

5.3 Separation theorems

Lemma 5.14. Let X be a normed space and K C X convex. If 0 is in
the interior of K then for every x € X there exists A > 0 so that A\x € K.
Moreover there exists C' > 0 so that

pr(z) < Cllzx.

If X is a Banach space, and for every x there exists A > 0 so that \x € K
then 0 is in the interior of K.

Proof. 1f 0 is in the interior of K there exists € > 0 so that B.(0) C K. An
easy calculation shows that then px (z) < 71z x.

Suppose that X is Banach and that for every x there exists A > 0 so
that Ax € K. In particular 0 € K. Let

1 —
An:{xeX:ﬁxEK}.

The set A, are closed, convex, 0 € A4, and X = (JA,. By the Baire
category theorem one and hence all of the A, have nonempty interior. In
particular there exist x and ¢ > 0 so that B.(x) C A;. There exists 4,
so that —z € A, hence —x/n € A;. The convex hull of B.(z) and —x/n

contains a ball around 0. Hence 0 is in the interior of A1 C K. O
2

Lemma 5.15. Let X be a normed vector space and V convex, open with
0 ¢ V. Then there exists x* € X* with

Rex™(xz) <0 ifreV

Proof. 1t suffices to consider K = R. The complex case is a consequence of
Lemma Let zg € V and define the translate U = V — zy. Let py be the
Minkowski functional of U. It is sublinear. Let yp = —x9 ¢ U and Y the
span of yo. We define

I(tyo) = tpy(yo)  teR,
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Then [(y) < p(y) for all y € Y. By Theorem there exists L € X* with
Lly =1, L(z) < p(z) for z € X (here we use Lemma [5.14). In particular
L(yp) >1and forx € Vand u =z + yp

L(z) = L(u) — L(yo) < pu(u) —1 <0.
O]

Theorem 5.16 (Separation theorem 1). Let X be a normed space, V' and
W disjoint convex sets with V open. Then there exists * € X* such that

Rez*(v) < Rez™*(w) for everyv e Viw e W

Proof. Let U =V —W. It is convex and open. Since V and W are disjoint
0 ¢ U. By Lemma there exist 2* € X* so that Rez*(z) < 0 for z € U.
This implies the desired inequality. O

Theorem 5.17 (Separation theorem 2). Let X be a normed space, V' convez
and closed, x ¢ V. Then there exists x* € X* such that

=¥ (z) < ngf/ z*(v). (5.1)

Proof. We may assume x = 0. Since V is closed there exists € > 0 so that
B.(0) NV ={}. We apply Theorem to see that there is z* € X* with

Rez*(u) < Rez™(v) for u € B:(0),v eV
There exists x € B:(0) so that
Rez*(z) > el|lz*||x+/2 > 0 = 2" (0)

which implies (5.1 . O

Corollary 5.18. Let X be a normed vector space, K C X comvex and
x € OK. Then there exists a half space containing K with x a boundary
point.

Proof. Exercise O

5.4 Weak* topology and the theorem of Banach-Alaoglu

Let X be a normed space. The dual space X* is a Banach space, and hence
a metric space. The metric defines open sets, and hence a topology which
we call norm topology.

Definition 5.19. Let A be a set. A family T of sets is called topology if

1. {},Aer.
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2. B,C €1 implies BNC € 7.

3. If A is a set, and for every X € A there is a set By € T then |Jycp Bx €
T.

We call the elements of T open. A map is called continuous if the preimage
of open sets is open. A set is called compact, if it is Borel and every open
covering contains a finite subcover.

We want to define a topology on X*. Desired properties are

1. For every x the map X* 5 2* — 2*(z) € Kis continuous. Equivalently,
for every open set U €e K and z € X

U; ={z":2"(x) e U}

is open.

2. The weakx topology is the weakest topology with this property. This
means that the open sets are the smallest subset of the power set, such
that all sets above are contained in it, and arbitrary unions and finite
intersections are contained in it.

Finite intersections of sets of the first type are sets
W, (5.2)
j=1

and open sets are arbitrary unions of such sets. This follows from a multiple
application of the distributive law of union and intersection.

Definition 5.20. A local base S of a topology is a family of open sets so
that for every x and every open set U there exists V € S so thatx € V C U.
A subbase is a collection of open sets so that finite intersections form a local
base.

Examples.

1. In metric space the balls { B/, (z) : z € X,n € N} are a base.
2. The sets (5.2)) form a base.

3. The sets {U} : 2 € X,U C K open } are a subbase.

Lemma 5.21 (Alexander). If S is a subbase of a topology, then X is com-
pact if every S cover has a finite subcover.
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Proof. We argue by contrapositive and assume that X is not compact. Let
P be the collection of all covers without finite subcover. By assumption P
is not empty. We take the partial order by inclusion. The union of every
element of a chain is an upper bound. By Zorn’s lemma there is a maximal
cover I' without finite subcover.

Now let I' = I'NS. It has no finite subcover since it is a subset of . We
show that T’ covers X, which gives the conclusion.

Arguing by contradiction assume that x € X is in none of the elements
of . T covers X hence there is W € I' so that = € . Since S is a subbase
there are V; € S so that ﬂ;-V:le C W. Since z is not covered by f‘, V; ¢ I'.By
maximality for each j I' U {V;} has a finite subcover

N M;
x=Jvwuy
j=1k=1
Hence
N M;
x=wulJ Vi
j=1k=1
is a finite subcover of I' which is a contradiction. O
[20.01.2017]
[25.01.2017]

Let D be a set, suppose that for every a € D there is a set X,. The
cartesian product
X =] Xa

aeD

is the set of all 'maps’ which assign to each a the element of X,. There are
the obvious projections
To ' X = Xo

Suppose that all spaces X, are topological spaces. Let 7 be the smallest
topology (subset of the power set) containing all preimages of open sets in
X, under m,.

Lemma 5.22. The preimages of open sets in X, under 7, define a subbase

S ofrT.

Proof. We define the collection of arbitrary unions of finite intersections of
such sets. Then arbitrary unions and finite intersections have this form.
Thus every open set in 7 is a union of finite intersections of such sets. Thus
these sets are a subbase. O

Theorem 5.23 (Tychonoff). Any cartesian product X of compact sets X,
with topology T is compact.
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Proof. Let I' be a S cover. Let I', consists of the sets whose preimages
under 7, are in I'. Assume that no I', covers X,. Then for all « there exists
Zo € X4 so that x4 is not covered by I', . Then x € X with m,(z) = x4
is not covered by I' . This is a contradiction. Hence at least one I',, covers
X,. Since X, is compact, a finite subset of I',, covers X, and hence the
preimages of this finite subset under m, covers X. By Alexander’s theorem
X is compact. [

Theorem 5.24 (Banach-Alaoglu). Let X be a normed space. The closed
unit ball A C X* is compact in the weak® topology.

Proof. Denote BiX(0) = {z € X | ||z||x < 1} and B;(0) C K. Then

Z ={f:B{(0) = Bi(0)}

is the Cartesian product of compact sets. We consider A as subset of Z.
Then A carries two topologies: The weak topology, and the topology as
subset of Z. We claim that the two are the same. But this is an immediate
consequence of the definitions of the topologies.

Now let fo be in the closure of A (closed sets are complements of open
sets, and the closure is the smallest closed set containing A). We claim that
fo is linear. Let ||z||x, ||yl x < 1 such that ||az + By|x <1 and e > 0. The
set of all f € A with

max{|f(z) — fo(x)|, |f(y) = fo(y)| |f(ax + By) — folax + By)[} <e

is open and contains a linear f of norm 1. Hence

| folax + By) — afo(z) — Bfo(y)| < e+ |ale +|Ble
for all € > 0. Hence

folaz + By) = afo(z) + Bfo(y)

for all such x,y,a, 8 and thus fy is linear. Similarly the norm of fy < 1.
Thus A is closed in the compact set Z. Any closed subset of a compact set
is compact. O

Definition 5.25. Let X be a Banach space and X* its dual. We say a
sequence ), € X* is weak™ convergent to x* if

*
n

for all z € X. We write

N
We say x, € X converges weakly to x € X if
for all x* € X*. We then write

Ty — .
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Lemma 5.26. Weak and weak*® convergent sequences are bounded.

Proof. The statement follows for the weak* converging subsequences by the
uniform boundedness principle. We may consider weakly converging se-
quences as weak# converging sequences in X** hence they are bounded. [J

Theorem 5.27. Let X be a Banach space and K € X a closed bounded
convex set. Let (xj) be a weakly convergent sequence in K with weak limit
z. Then z € K.

Proof. Let g ¢ K. By Theorem 5.17 there exists * € X* such that

x*(xo) < inf x*(x).

zeK
Thus z¢ cannot be a weak limit. ]
Thus
xy =" r* = ||lo*||x+ < liminf ||z} || x= (5.3)
n—oo

and

Tp =T == |lz||x <liminf ||z, x. (5.4)

n—oo

Again (5.4]) follows form (5.3)) by the cannonical embedding J : X — X**.
Inequality (5.3)) follows from

27|+ < sup [l [ x-,
which is a consequence of Theorem applied with K a closed ball.

Lemma 5.28. Suppose that X is separable. Then there exists a metric on
the closed unit ball of X* so that the topology as metric spaces is the weakx

topology.

Proof. Let z; be a dense sequence in Bi* (0). We define

d(z*,y") = max 277 min{1, [ () — y"(z;)|}-
J

This is a metric. Convergence of bounded sequences in this metric is the
same as weak convergence. Moreover open balls are open in the weak topol-
ogy, and they form a base of the weak topology. O

Theorem 5.29. [Weak* compactness of bounded sequences] Fvery bounded
sequence x; € X* where X is separable contains a weakly convergent subse-
quence.

We will provide two proofs of this important fact.
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Proof 1. Banach Alaoglu implies that the closed balls are weak* compact.
By Lemma the weak™* topology comes from a metric which makes X*
with the weak™ topology a metric space. For metric spaces the different
notions of compactness are equivalent. ]

Proof 2. Let (z;) be a dense sequence on the unit ball of X. Let (27}) be a
bounded sequence of element of X*. Then there is a subsequence such that

(7, (1))

converges to y; such that
\x;‘k (x1) — | < 27k,

Taking repeated subsequences we find a subsequence and a sequence y; such
that
* B —k
|25 (1) =yl <2

for k > I. Since z7 is bounded the y; define a unique continuous linear map
z* : X — K. Moreover 2 —* z*. O

25.01.2017]
[27.01.2017]

Definition 5.30. We call a Banach space X reflexive, if J : X — X** is
surjective.

Hilbert spaces are reflexive. If 1 < p < oo, LP(u) is reflexive as a
consequence of Theorem 3.19.
We define the weak topology in the same fashion as the weak™ topology.

Lemma 5.31. Suppose that X is reflexive. Then the weak toplogy of X is
the same as the weak™* topology of X**.

Proof. Both are the smallest topology such that z — z*(z) = J(x)(2*) are
continuous for all * € X*. O]

Corollary 5.32. Let (X, d) be a 0 compact metric space, p a Radon measure
on X and 1 < p < co. Then every bounded sequence in LP(u) has a weakly
convergent subsequence. If u is o-finite any bounded sequence in L*°(u) has
a weak™® convergent subsequence.

Proof. By Corollary 3.37 LP(u) is separable if 1 < p < oco. By Theorem

3.19 and Corollary 3.20 Lﬁ(u) is isomorphic to the dual space of LP(u)
and vice versa when 1 < p < co. By Lemma the weak and the weak*
topology are the same when 1 < p < co. By Theorem [5.29| every bounded
sequence has a weak™® convergent subsquence. O
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Lemma 5.33. Suppose the closed unit ball of a Banach space X is compact.
Then its dimension is finite.

Proof. Let X be not of finite dimension. We claim that there is a sequence of
unit vectors of distance > % We construct them recursively. Let (zp,)n<n
be chosen and let Xy denote their span. It is a closed subspace and by
Theorem there is * € X* of norm 1 so that z*|x, = 0. Thus there
exists xy 41 of norm 1 so that Rez*(zyy1) > %. Then

3 *

= < Rea(wni1 — o) < onsr — ol

for n < N. This yields the result. O
We collect a number of examples and remarks.

1. A closed subspace Y of a reflexive space X is reflexive. This is seen
as follows: Let 0 # y™ € Y**. It defines an element z** € X** by
¥ (x*) = y™(«*|y). Since X is reflexive there exists x € X with
x**(z*) = x*(x). We claim that € Y. If not there exists x* € X*
such that 2*(z) = 1 and z*|y = 0. This would imply

which is a contradiction, and hence y := x € Y. If y* € Y* and
x* € X* satisfies x*|y = y* then

Y (y) = 2% (z) = 2™ (") =y (v").
Thus J : Y — Y™ is surjective.
2. Let 1 <p < oo, UCR? u,,uc LP(U). Then

Up, = U <= sup||uy|rr < oo and u,, — u  as distributions.
n

To see this, assume that u, — u. Then sup,, ||uy||Lr < 0o and for all

¢ € DU) C L1 (V)
/ungf)daz — /ud)dx

Vice versa: Suppose that sup,, ||u||rr < co. The same is true for every
subsequence. Then every subsequence (uy,) has a weakly converging
subsequence, u,; — . Then for all ¢ € D(U)

/(a—u)¢dx =0

and thus @ = w. This is independent of the subsequence, and hence
up — u. A similar statement holds for L>°(U) and weak™ convergence.
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3. Let ¢ € C°(R) with [ ¢dz = 1. We define

un() = $(a — ).

Then u,(x) — 0 for all x and |up||» = ||[uollLer) # 0 for 1 < p < oco.
Clearly, for all ¢ € D(R), [u,pdz — 0 as n — oo,

U, — 0 as distributions,

hence u, — 0 in LP for 1 < p < oco. However u, does not converge
in LP(R) since the norm limit is also the weak limit if the first exists,
but 0 cannot be the norm limit since the norm of u,, does not depend
on n.

4. Let un(2) = €™ x(01- Then [luy|zr = 1. If ¢ € D(R) then

1
/unqﬁ dx :/ e pda:
0

| 1
- iyl g Z(emp(1) — 0
o | et @6 (1)~ 6(0)
—0 as n — oo.

Thus u,, — 0 as distribution and as above u,, — 0 as n — oo.

5. Let 1 < p < 0o and

Then
o o
/|un|pdaj = n/ e ) gy :/ e Prdr = |lui||},.
0 0
It is not hard to see that for all ¢ € D(R)
—1
/un¢d:c = n_pT(¢(0) +0(n 1) =0 as n — oo.
Thus again u, — 0 as n — co.
6. Let
Again [Jun||zr = [[u1llzr,
1
[unlsup =n"» =0

and as above u, — 0 as n — oo.
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5.5 The direct method in the calculus of variations

To motivate the study below we consider a specific problem. Let U C R?
be open and bounded, f € L?(U), g € W12(U). We define

E(u) —/U;]Du\Q + fudx
for u € WH2(U). Let
A={ueWW2(U):u—-geWy*U)}.
Suppose that v € A minimizes F(u) in A. If w € W&’Q(U) and t € R then
E(v) <E(v+ tw)

—/ %\D(v+tw)]2+f(u+tw)dx
U

d
1
=E t E . 00y dz + =t* | |Dw|*dz.
(v) + /Ujlajvajw—i—fw a:—|—2 /U w|“dx

This is true for all ¢ hence

d
/ Z@xjvaxjw + fwdx =0
Uis

for w € D(U) € Wy*(U). Thus
Av=f

in the sense of distributions, and v = g at AU in the Sobolev sense.
We attempt to find solutions to such equations by minimzing an energy
like F.

Lemma 5.34. Let U C R? be open and bounded, 1 < p < oo and either
X = Wol’p(U) or X = WY (U) under the assumption that the Whitney
extension property holds. Let (u,) € X be a bounded sequence. Then there
is a subsequence (uy) and u € X satisfying

1. uy, converges weakly to u in WiP(U).
2. Og,uy, converges weakly to Oy, u.
3. uy converges to u in LP(U).

Proof. We consider W1P(U) resp. I/VO1 P(U) as closed subspace of LP(U x
Y). Let (up) be a bounded sequence. Then there is a weakly convergent
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subsequence by Corollary with weak limit u. A linear space is convex
and by Theorem [5.27] we can consider u as element of X.

In both cases there is an extension to WP (R%) functions with fixed sup-
port, see Theorem 4.42 and Corollary 4.43. This yields a bounded sequence
support in a fixed ball in WP(R%). By Theorem 4.45 there exists C' such
that

oty (- + B) = 51l o ey < CIAL

Now we apply the Theorem 3.39 of Kolmogorov and obtain convergence of
a subsequence in LP(U). A norm limit is also a weak limit, and hence the
limit is wu. O

27.01.2017]
[01.02.2017]

Lemma 5.35. Let 1 < p < oo, F : R* — R be nonnegative and suppose
that ¢ > 1 and

F(z) <c(l+ |z|)P for all x € R%.
Suppose that © € R, v € R and
F(x+h)— F(x) > (v,h) (5.5)

for all h € RY. Then
[0 < 2Pe(1 + |a|)P

Proof. There is nothing to show if |v| < 1. Suppose that |v| > 1 and let
h =241y Then

[v]

1 1 P
(2] + 1) < F(z + |“’|| J’r v) < c(1 + ‘x Lzl T U() < 2e(1+ |z))?
v v
and we obtain the desired conclusion. O

Let 1 < p < 0o, U C R? open and bounded and let
F:UxRxR?—= RU{o0}
be measurable. We assume that for all z € U
(u, P) = F(x,u, P)
is continuous and for every x € U and u € R the map
P — F(z,u,P)
is convex. We assume that there exists C' > 0 so that

0 < F(z,u, P) < C(1 + |PJP) (5.6)
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Theorem 5.36 (Weak lower semicontinuity). Ifu € WYP(U) then F(z,u(x), Vu(z))
is measurable and integrable. Moreover, if u, — u in WLP(U) then

E(u) < limninfE(un) with E(u) = /UF(a:,u(ac),Vu(x)) dm(z).

Proof. We prove the result under the additional assumption that
P — F(z,u,P)
is differentiable for all z and that

OF
(U7P) - 7((IZ,U,P)
P,

is continuous for all # and j.
Measurability and integrability follows as in Subsection [£.8] Let u,, be
as in the assumptions. By Lemma

Up — U in LP(U)

and by the proof of Theorem [3.17] a subsequence converges almost every-
where. Without relabelling we assume that w, converges almost everywhere.
We write

E(up)—FE(u) = / F(x,up, Vup)—F(x,up, Vu)+F(z,u,, Vu)—F(z,u, Vu)dmd
U

Then
F(x,up(z), Vu(z)) = F(z,u(x), Vu(x))

almost everywhere. Moreover
C(1+|Vu(z))

is majorant and by the convergence theorem of Lebesgue
/F(x, Up, V) — F(x,u, Vu)dm® — 0.

For every x the map
P — F(x,up(z), P)
is convex. Hence

F(x,up(x), Vup(x)) — F(z,u,(x), Vu(x))
OF

> 8—P($, un(x), Vu(x)) - (Vunp(x) — Vu(z)).
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By Lemma
oF
— | <c1 Pl
‘8Pj’_c( + [Vu(x)[P~)

We observe that

OF oF
ﬁ(:z:,un(x),Vu(:c)) — ﬁ(x,u(x),Vu(x))
J J
for almost all . Moreover
oF oF
o 0t Vu(e)) — 51, Vo) < 1+ (Tu(a) )
J J
and hence by Lebesgue
oF F
—(z,up, Vu(z)) — == (z, u, Vu(x)) — 0.
o " o
Since
Viu, —Vu —0 in LP
we obtain

lim /gg(m,un,Vu(x))ﬁj(un — u)dm®(z)

n—00

= lim /311;;(36’ u, Vu(x))0j (up, — u)dm?(z) = 0.

n—0o0

O
Essentially without changing the proof we may relax (5.6)) by
= Clu| < F(z,u, P) < C(1+|P]" + [uf’) + f(z) (5.7)

for some integrable function f.

Theorem 5.37. Suppose that in addition to the assumptions of Theorem
the function F is coercive: There exists C > 0 sich that

F(z,u,P) > C|P|".
Let g € WYP(U). Then there exists u which satisfies
u—geWy"(U)

and
E(u) = inf{E(v) : v — g € WP (U)}.
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Proof. Let
A={ueW"U):u—-ge W PU)}.

Let u; be a minimizing sequence. Then
E(uj) > C/|Vuj]pdmd,

and hence by Poincaré’s inequality

lwjllwre <llujlle + [[VugllLe
<llgllze + lluj — glle + ([ Vgl e
<llgller + AV (u; — g)llLr + IV e

1
<c (Ilglwro + B(u;)?)

and hence
sup [|u;lyp @) < 0o
j
By Theorem u; — g has a weakly convergent subsequence, which con-
verges in LP(U), and thus the same is true for u;. Thus

E(u) < liminf E(u;) = inf{E(v) : v € A}
and u € A since subspaces are convex. ]

Theorem 5.38 (Euler-Lagrange equations). Suppose in addition that for
every x, F is continuously differentiable with respect to u and P and that

OF
ou

P (2, P)| c(1 + | P|)P. (5.8)

Let v be a minimizer in A. Then u is a weak solution to

d

;8w] g]}__j (x,u, Vu) + gfj(a;,u, Vu) = 0.

Proof. We argue as for the Dirichlet integral, choose v € D(U) and define

n(t) = E(u+tv). Then n(t) > n(0) = E(u). We claim that it is differentiable
with respect to t:

F
—(z,u,Vu 8]v+a—(x,u, Vu)v

1
;(F(x,u+tv,Vu+th)f x,u, Vu)) P iy

HM&
’11

almost everywhere. Moreover

1
E(F(x,u + tv, Vu + tVv) — F(x,u, Vu + tVv))| < (1 + |Vu| + |Vv|)?
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by the fundamental theorem of calculus and assumption (5.8). Moreover
1
‘t(F(a:,u, Vu +tVv) — F(z,u, Vu))| < c(1 + |Vau| + |Vo|)P~!

by the fundamental theorem of calculus and Lemma Then by the

convergence theorem of Lebesgue

oF OF
’ _ ) d
0=17'(0)= ap; (z,u, Vu)ojv + oy (x,u, Vu)vdm

Lemma 5.39. The minimizer is unique if in addition
(u, P) = F(z,u, P)
is striclty convex for every x.

We call F strictly convex if for all 0 < A < 1 and z,y
AF(z)+ (1= AN)F(y) > F(Az + (1 = Ny).
Proof. We claim that
A>u— E(u)
is strictly convex. It suffices to verify that

1Y) < L(B) + EW)

E(

unless © = v which is equivalent to

u+v Vu-+ Vo
2 7 2

/ F(z,u,Vu)+ F(z,v,Vv) — 2F(z, ydm? > 0.
Rd

The integrant is nonnegative, and the integral is positive unless it vanishes

almost everywhere. But this is equivalent to u = v. O

(01.02.2017]
03.02.2016]

6 Linear Operators

6.1 Dual and adjoint operators

Definition 6.1. Let X and Y be Banach spaces, T € L(X,Y). We define
the dual operator T € L(Y*, X*) by

(T'y") ) =y*(Tz)  fory* €Y',z eX.
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This formula defines a unique map X — K. It is clearly linear and
bounded, hence it is in X*.
Examples and properties

I.1<p<oo, X=Y=1LP(u),ge L>® Tf=gqgf, T :Lr1 — Lr1,
T'h = gh.

2. X =Y =10PZ), T: X — X the shift operator, Te; = e;41. Then
T’ej =€5j—-1.

3. X =Y =1P(N), T : X — X the shift operator, Te; = e;41. Then
T'ej =ej_;1 if j > 2 and T'e; = 0.

4. J: X — X*, J : X** — X* is the restriction, if we identify X with
a closed subspace of X**.

5. Consider K = R,
—Au=f ulpy =0

T:L*> f—ueL?
Then T" =T.
6. (AT + pS) = ANT" + pS’, i.e. the map T'— T’ in complex linear.
7Ty sx+ = 1Tl x—y

Definition 6.2. Let H, and Hy be Hilbert spaces, T € L(Hy,Hs). The
adjoint operator is defined by

(T'z,y) = (2, T"y)
Definition 6.3. Let T € L(X,Y). We define its range ranT as
ranT = {y € Y : there exists x with T(x) =y} CY

and
kerT = {z € X : Tx = 0}.

If Xg C X is a subspace then
X ={z*eX*:2*(x)=0 forzec Xy}
and if X C X* is a subspace then
(Xg)L ={zeX :2"(x)=0 foralxz*ec Xj}.
Lemma 6.4. Let X and Y be Banach spaces and T € L(X,Y). Then

ranT = (ker T")

103 [FEBRUARY 10, 2017]



Proof. Let Tx; —y € ranT and y* € Y* with T"y* = 0. Then

y*(y) = lim y*(Tz;) = lim T'y*(xj) =0.

j—0o0 j—0o0

Thus
ranT C (kerT") .

Now suppose that
y € (kerT") |

By Hahn Banach there exists y* such that y*|;an7 = 0 and
y*(y) = dist(y,ran T)).
But y* € ker T” since y*|;an7 = 0, hence y*(y) = 0 = dist(y,ranT). O
Corollary 6.5. Suppose that T € L(X,Y) has closed range. Then
Tr=f
s sovable if and only if
T'y* = 0= y*(f) = 0.

Theorem 6.6. Let X and Y be Banach spaces and T € L(X,Y). The
following statements are equivalent:

1. ranT is closed,
2. ranT’ is closed,
3. ranT = (ker "),
4. ranT’ = (ker T)*.

Proof. Step 1: I] <
Let g* € (ranT)*. By Hahn-Banach we may extend it to y* € Y*. Since

T'y*(x) = y*(Tz) = §*(Tz) = T{§" (v),

the range of T’ € L(Y*,X*) and T} € L(ranT , X*) are the same. Without
loss of generality we may assume that ranT =Y.

Step la: Now suppose that ranT is closed. We want to prove that ran7”
is closed. By the consideration above it suffices to consider the case that T
is surjective. By the open mapping theorem Theorem there exists ¢ so
that for every y € Y there exists x € X with

lzllx <cllylly and Tz =y.
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Thus
()] = |y" (T2)| = [Ty ()| < |zl x1T"y" || < cllylly [Ty | x-

and

ly*ly+ < el Ty || x-

and hence ranT” is closed.

Step 1b: Now suppose that ranT” is closed. We want to prove that ranT

is closed. Again it suffices to consider the case that ran7 is dense in Y.
Suppose there is sequence y, — 0 such that y, ¢ T'(B1(0)). By the

separation theorems there exists y) € Y* with ||y}|y» = 1 such that

Rey,(yn) > sup Reyl(Tz) = sup ReT'y)(x).

lzllx <1 fl]l x <1
Thus
1Tyl < Nynlly llynlly= = llynlly — 0.

However, by the Open Mapping Theorem [£.3] there exists ¢ > 0 such that
if * € ranT” there exists y* € Y* so that

[y lly= < ella”|lx-, T'y"=a"
However T” is injective since ranT = Y by Lemma Hence
1= [lyplly= < ellT"y; ) x» — 0.
This is a contradiction. Thus there exists r > 0 so that
B;(0) ¢ T(B1(0)).

Let y € BY (0). There exists z with ||zo||x < 1and |[y—Txo|ly < 7/2. Then
there exists z1 with ||lz1]x < 3 and ||y — T'(zo + z1)||y < 272r. Recursively
we obtain a sequence x; with ||z;]|x <277 and

N-1
ly =T Z Znlly <27V

n=0

Then

00
n=0

and the range intersected with BY (0) is closed. Hence the range is closed.
Step 2: 1] < [3]:

This is a consequence of Lemma [6.4
Step 3: 2| <—

<= Wl is trivial since (ker T)* is closed.
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So assume that ran7” is closed and hence ran T is closed. It is obvious
that ran T’ C (ker T)*. Let 2*|xerr = 0. If y = Tz we define

y(y) = 2" (x)

This is well defined since x* vanishes on the null space of T. Since we may
assume that T is surjective we obtain from the open mapping theorem that
for y € Y there exists x € X with Tz =y and ||z||x < C||y|ly. Thus

v ()] < Clla™|[x-[lylly

and there is a unique continuous extension and we may consider y* € Y*.
But then z* = T'y* € ranT". O

[03.02.2016]
[08.02.2017]

Theorem 6.7. IfT € L(X,Y) is invertible iff T" € L(Y™, X™*) is invertible.

Proof. Suppose that T is invertible. Thus the range is closed. By Theorem
also ranT” is closed. Again by Lemma T’ is injective since Y =
ranT = (ker T") ;. Moreover ranT’ = (ker T)* = X*. The same argument
gives the reverse implication.

O

6.2 Compact operators

Definition 6.8. Let X and Y be Banach spaces, T € L(X,Y). We call
T compact if for every bounded sequence (x;), (T'x;) contains a convergent
subsequence.

Lemma 6.9. The following are equivalent
1. T is compact.

2. The image of the closed unit ball is relatively compact (the closure is
compact).

3. The image of a bounded set is relatively compact.

4. The image of a bounded set is precompact.

Proof. Suppose that T is compact. Let K = T(B1(0)). Let z; € Bi*(0) and
y; = Tx;. Then (x;) is a bounded sequence and since 7" is compact (T'z;)
contains a convergent subsequence. Thus the image of the ball of radius 1
is relatively compact.

The second statement obviously implies the third. The closure of a
relatively compact set is compact, and hence precompact. Now assume
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that TB;*(0) is precompact. Then the closure is compact, and if (z;) is a
sequence with ||z;||x < 1 then (Tz;) is a sequence in a precompact set, and
hence there is a convergent subsequence and 7' is compact. O

Lemma 6.10. If T is compact, S and U are continuous, then STU is
compact. If (Tj) € L(X,Y) are compact and

T, =T  inL(X,Y)

then T is compact. If T has finite rank it is compact. If an invertible map
is compact then X and Y are finite dimensional.

Proof. Let S € L(Y,Z),T € L(X,Y) and U € (V,X) as above and (v;) a
bounded sequence in V. Then (Uvj) is a bounded sequence in X since U is
bounded, (T'Uw;,) is a converging subsequence in Y since 7" is compact and
(STUx;,) is a convergent sequence in Z since S is continuous.

Let Tj; — T a convergent sequence of compact operators and let (z,) be
a bounded sequence. For simplicity we assume that it is bounded by 1.

We claim that for every e > 0 there exists a subsequence xp; so that

|Txp, — Ty |y <e.

Suppose the claim is true. We apply it iteratively with e = 277. We choose
Iy, then from the nth iteration. Then Tz, is a Cauchy sequence.

Let ¢ > 0. There exists ng so that ||T' — T, ||lx>y < /3 for n > nyg.
Since Tj,, is compact there exists a subsequence so that T),,xy; is a Cauchy
sequence and [y so that

HTNO(le - xjm)HY < 5/3

for I, m > ly. Thus
1Ty, —@5,)lly <&

for I,m > Iy.

Now let T" be an operator of finite rank. Let (x;) be a bounded sequence.
Then (T'z;) is a bounded sequence in a finite dimensional space and there
exists a convergent subsequence.

An invertible linear operator is compact if and only if every bounded
sequence has a convergent subsequence, which by Heine-Borel holds iff the
space has finite dimension.

O

Lemma 6.11. Let T' € L(X, X) be compact. Then ran(lx —T') is closed.

Proof. Suppose that (z; — T'z;) is a convergent sequence where ||z;||x = 1.
Then
zj = Taj+ (zj — T(x;))
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The second term converges by assumption and the first has a convergent
subsequence. Without changing the notation we assume that x; — x. Then

zj—Tx; - x—Tx eran(l -T).
Adding an element of the null space ker(1 — 7') we may assume that
|lzn]| < 2dist(zy,,ker(1 —T)).
If ||z, is unbounded, there is a subsequence so that

dist(zn,, ker(1 —T')) > n;.

~ 1
Let z; = 7“:5”]_‘@”].. Then
~ - Ty, — Ty,
T, —-Tij=—"—">—0
[0,
and, since ||Z;|| = 1 there is another subsequence T'Z;, converges to 2> € X

Tj, =I5 —Tx; +Txj; — ™.

Then [|Z°°|x = 1, dist(2*,ker(1 — 7)) > 1 which is a contradiction to
T =Tz>. O

Theorem 6.12 (Schauder). Let X,Y be Banach spaces, T € L(X,Y).
T  compact <= T compact

Proof. Let T be compact, y;-‘ € Y* a bounded sequence and

K =TB;(0) CY.

K is compact since T' is compact and the functionals y7 define uniformly
continuous bounded functions on K. By the theorem of Arzela Ascoli
there exists a convergent subsequence y7 . But then

lejl e X*

is a Cauchy sequence. If T” is compact then also T” and also T since
JyT =T"Jx. ]

Lemma 6.13. Suppose that T € L(X) is compact and ker(1 —T) = {0}.
Then there exists € > 0 so that

ellzl] < llz — T
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Proof. If not there exists (z,,) with ||@,[| = 1 and ||z, — Tzs|| < 1|z,
There is a subsequence and zo € X with T'zy,; — Zoo. Then

Tp; = (Tn; — Tn;) +Tn; — Too
and ||zso|lx = 1 and oo — T'To = 0. This is a contradiction with the
assumption of the lemma. ]

Lemma 6.14. Let X be a Banach space, T € L(X) such that ker T = {0}
and T is not surjective. Then ranT™! C ranT™ but ran T"+! # ran T".

Proof. We have always
ran 7"t = T"(TX) C ranT"X.

Since ran T # X there exists x ¢ ranT. If T"z = T"" !y for some y € X
then
T"(x—Ty) =0

and since T is injective x = T'y, a contradiction. O

Lemma 6.15. Let T € L(X) be compact. If ker(1 —T) = {0} then ran(1 —
T)=X and 1 — T is invertible.

Proof. Let S=1—T. Then
S"=(1—1T)" :ZH: <T,L>(—T)j = 1+zn: (7)(—T)J’ —1-T
i=o =1 N

with T’ compact. Then ker " = {0} and the range of S” is closed by Lemma
If S is not surjective then by Lemma there exists a sequence ¥,
so that ||y,|| =1, yn € ran S™ and

dist(yp, ran S™ 1) >

DN | =

We claim that )
HTyn - Tym” > 5

if n < m. This is a contradiction to compactness and it remains to prove
the claim. It follows from

Tyn — Tym :yn_ym_s(yn_ym)

and
Ym + S(Yn — Ym) € ran gntl

Thus S is injective and surjective, and invertibility follows now from the
theorem of the inverse, Corollary [{.4] O
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Theorem 6.16 (Riesz-Schauder). Let T' € L(X, X) be compact. X\ # 0 is
an eigenvalue of T iff it is an eigenvalue of T".

Proof. By Lemma [6.15| 7" — 1 is invertible iff 1 is not an eigenvalue. By
Theorem T' is compact iff T is compact. By Theorem T—-11s
invertible iff 7" — 1 x« is invertible. Again by Lemma T' —1 is invertible
iff 1 is not an eigenvalue of T7”. This completes the proof since T'— A1, XA # 0
is invertible iff A\=!7" — 1 is invertible. O

Theorem 6.17 (Fredholm alternative). Let T : X — X be compact. Then
either for f € X the problem

r—Tx=f
has a unique solution or
xr—Tx=0
has a nontrivial solution.
In general
x—Tx=f

is solvable iff x*(f) =0 for all x* € ker T".

Proof. If t—Tx = 0 has a nontrivial solution and if x—Tz = f has a solution
then it has infinitely many solutions. If x —7Tz = 0 has no nontrivial solution
then 1 — T is invertible by Lemma [6.15] The last statement follows from
Lemma [6.6 O

[08.02.2017]
[10.02.2017]

6.2.1 Examples of compact operators

Let 1 <p<ooand X =[P(N;C), (a,) € cop. We define T' € L(X) by

T((xn)nEN> = (an$n>neN-

We claim that T is compact. Let a)) = a, if n < N and a = 0 otherwise
and Ty (x,,) = (az,). Then rk Ty < N, hence Ty is compact and Ty — T

in L(X). Thus T is compact by Lemma

Lemma 6.18 (Compact embeddings). Let U be bounded and 1 < p < oo.
Then the embedding W(}’p(U) — LP(U) is compact. The same is true for the
embedding WHP(U) — LP(U) under the Whitney extension assumption.
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Proof. In either case there is an extension operator. We focus on VVO1 PU):
E WP (U) - WP(RY)

such that every function in the range is supported in a fixed ball. By the
difference characterisation of Sobolev functions

1
sup  sup ——[|Ef(. +h) = Efllpmay < cl[flly1e
1l 10y <1 70 B PR Wy P (U)
and
sup  [[Efllrrey < CHfHWOLp(U).

”f”wLP(U)Sl

By Theorem and Corollary the unit ball in WP (U) is compact in
LP(U). O

Lemma 6.19. Let U be open and bounded. If f € L*(U) there exists a
unique u € WOI’Q(U) which satisfies

—Au=f
as distribution. The map f — u defines a compact operator
T:L*U) — L*U).
If z ¢ (0,00) the equation
—Au=zu+f (6.1)
has a unique solution in W01’2(U) for all f € L*(U).

Proof. By the Lemma of Lax-Milgram, the operator T : L*(U) > f —
u € WO1 ’2(U) is continuous. Hence the composition of T' with the compact
embedding W01’2(U) — L?(U) is compact. That is, T : L>(U) > f - u €
L?(U) is compact.

We rewrite (6.1)) as

u—z2Tu=f:=Tf. (6.2)

Since T is compact, (6.2) is uniquely solvable for every f € L*(U) iff u —
zTw = 0 has only the trivial solution. This equation u = T'(zu) can be
reformulated as weak solution to

—zu—Au=0

which is equivalent to
d
0= /Z Oz ; U0y, v — Zub dm?
j=1
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which with v = u gives

O:/\Du|2dmd—z/\u|2dmd.

This equation has only the trivial solution u = 0 unless z € (0,00). Thus
(6.2) is uniquely solvable and the solution is the unique weak solution to

6.
O

Finally let X = L?([0,1]) and

(Tf)(x) = /0 )y, xe0.1].
Then
T:L?((0,1)) = WY2((0,1))

and it is compact as an operator to L2((0,1)) since the embedding is com-
pact. We claim that there is no eigenvalue. If

T

zf(x) = [ fly)dy

0
then, if z £ 0

By Gronwall’s lemma

—1

|f(z)] < e £(0)] = 0.

Hence f = 0 and z # 0 is not an eigenvalue. On the other hand if z = 0
then

/ " fw)dy =0,

This implies that any antiderivative of f is constant, and hence f = 0. We
obtain

Lemma 6.20. The operator T is compact. It has no eigenvalues.

6.2.2 Eigenvalues and spectrum

Lemma 6.21. The set of invertible operators in L(X,Y") is open.

Proof. Suppose that T € L(X,Y) is invertible. Take S € L(X,Y) with
”S||L(X,Y)||T_1”L(Y,X) < 1. We define

A=Y (TS
n=0
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Since
T T M vixy < T Moo 1S e ) 1T v
the partial sums converge. A straightforward calculation shows that
(T — S)A =1y, AT -S)=1x.

Thus the operator T'—.5 is invertible and hence the set of invertible operators
is open. O

Theorem 6.22 (Spectrum of compact operators, Riesz-Schauder). Let T' €
L(X) be compact and 0 # X. If X is not an eigenvalue then T'— X is invertible.
Suppose that X is an eigenvalue, then there exists kg € N such that

1. ker(T — \)F = ker(T — Nk =: N if k > ko.
2. ran(T — \)F =ran(T — \)ko =: R if k > k.
3. T:N—=Nand T : R — R. The second map is invertible.

dim N = dim ker(T" — M)k < oo .

A

Fvery © € X can uniquely be written as x = y + z with y € N and
z € R.

6. 0 is the only possible accumulation point of the eigenvalues. T — X is
invertible if X is neither an eigenvalue nor zero.

Proof. Let X be an eigenvalue. We claim that dimker(T — \) < co. If the
eigenspace of the eigenvalue A is infinite dimensional, then the closed ball
in the eigenspace with radius |A| - the image of the closed ball with radius
1 under T - is not compact.

Let Ry, = ran(T — A\)*. Then there exists kg so that Ry = Ry, if k > ko.
We argue as in Lemma [6.15

Thus ker(T” — \)* = ker(T” — \)*0. Reversing the role of T and T" we
see that there exists ko so that also ker(T — \)* = ker(T' — M) for k > k.

Let 2 € N, then (T — A\)*Tx = T(T — M\)*z = 0 and hence Tz € N. If
x € R then (T'— XN)z € (T — A\)R = R and hence Tz € R.

If 2 € R = ran(T — \)* then there exists y such that (T — \)Foy = z.
Suppose that also x € N = ker(T — A\)¥. Then

(T — )\)%Oy =0=(T- )\)koy = 2.

Thus RNN = {0} and T : R — R is injective and surjective, and hence
invertible.

We apply the same reasoning to (7 — A\)* and obtain N’ and R’ in X*.
Then N/ — N’|y € N* is injective (otherwise there would be a nontrivial
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element in N'NR’). Similarly N — (N')* is injective (otherwise NN R would
be nontrivial). Since dim N and dim N < oo we must have dim N = dim N’
and N’ — N'|y is bijective.

Now let € X. Then there exists n € N so that z*(z —n) = 0 for all
z* € N'. But then z —n € R.

We denote by T : R — Rand Ty : N — N. Then Tr — ulp is invertible
for | — A| small. Moreover Ty — ply is invertible for p # X since Ty — A
is nilpotent. Thus 7" — u is invertible for |y — A| small g # A. Also T — p is
invertible unless u is an eigenvalue.

O

This we can apply to problem ((6.1)) and conclude that there is a monotone
sequence of eigenvalues, with co as only possible limit, and (6.1]) is uniquely
solvable unless z is an eigenvalue.
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