

Functional Analysis and Partial Differential Equations

Sheet Nr.11	Due: 27.01.2017

Exercise 1

Let $U \subset \mathbb{R}^d$ be open and bounded and $f, g \in W^{1,2}(U; \mathbb{R})$ with $g \ge f$. We consider the obstacle problem

$$u = g$$
 on ∂U
 $u \ge f$ in U
 $-\Delta u = 0$ or $u = f$ in U

We can encode it in a Sobolev setting in the following way. For $v \in W^{1,2}(U; \mathbb{R})$, we say $v \ge 0$ if

$$\int_U v \phi dm^d \geq 0$$

for all $\phi \in \mathcal{D}(U)$ with $\phi \ge 0$. Let

Prof. Dr. Herbert Koch

Winter Term 2016/2017

Dr. Xian Liao

$$\mathcal{A} = \{ u \in W^{1,2}(U; \mathbb{R}) : u - g \in W^{1,2}_0(U; \mathbb{R}), u - f \ge 0 \}$$

Prove that \mathcal{A} is convex and nonempty, and furthermore there exists a unique minimizer of

$$E(u) = \int |\nabla u|^2 dm^d$$

in \mathcal{A} .

Exercise 2

Find and sketch the unique solution $u \in C^1([-1,1])$ to

$$\begin{array}{ll} u(x) = 0 & \text{for } x = \pm 1 \\ u(x) \geq 1 - 2x^2 & \text{in } (-1,1) \\ -u''(x) = 0 \text{ or } u = 1 - 2x^2 & \text{in } (-1,1). \end{array}$$

Show that this u is the unique minimizer in Exercise 1.

Exercise 3

Find a different proof for Theorem 5.17 relying on Lemma 3.18 instead of Hahn-Banach for the normed spaces $L^p(\mu)$ and $W^{1,p}(U)$, 1 .

Exercise 4

Let $U \subset \mathbb{R}^d$ be open and convex and suppose $F : U \to \mathbb{R}$ is convex. Let $x_0 \in U$. Prove that there exists $v \in \mathbb{R}^d$ so that

$$F(x) \ge F(x_0) + \sum_{j=1}^d v_j (x - x_0)_j$$

by applying Theorem 5.16 to the set

$$V = \{(t, x) : x \in U, t > F(x)\}.$$