

Functional Analysis and Partial Differential Equations

Sheet Nr.8	Due: 16.12.2016

Exercise 1

Let $X = C_b([0,1])$.

Dr. Xian Liao

- a) Let X_n be the set of continuous piecewise affine functions f whose derivative satisfies $|f'(x)| \ge n$ almost everywhere (i.e. $f \in X_n$ if there exists $0 = t_0 < t_1 < \cdots < t_N = 1$ so that f is affine on $[t_j, t_{j+1}]$ with $|f'(t)| \ge n$ for $t \in (t_j, t_{j+1})$). Prove that $X_n \subset C_b([0, 1])$ is dense.
- b) Let

$$Y_n = \{f \in C_b([0,1]) : \text{ there exists } x_0 \text{ so that } |f(x) - f(x_0)| \le n|x - x_0|\}.$$

Prove that Y_n is closed.

Prof. Dr. Herbert Koch

Winter Term 2016/2017

- c) Prove that the interior of Y_n is empty.
- d) Let $A \subset C_b([0,1])$ be the set of functions which are nowhere differentiable. Then A is dense.

Exercise 2

Let $\lambda > 0$ and

$$g(x) = \frac{1}{2\lambda} e^{-\lambda |x|}.$$

Prove that

$$-\partial_{xx}^2 g + \lambda^2 g = \delta_0$$

and deduce a formula for a soution to

$$-u_{xx} + \lambda^2 u = f$$

where $f \in C_b(\mathbb{R})$. Prove that $T : f \to u$ defines for $1 \leq p \leq \infty$ (by an abuse of notation) $T \in L(L^p(\mathbb{R}), L^p(\mathbb{R}))$ and estimate $||T||_{L^p(\mathbb{R}) \to L^p(\mathbb{R})}$ by Schur's lemma or Young's convolution estimate.

Exercise 3

Let $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by

$$g(t,x) = \begin{cases} \frac{1}{2} & \text{if } |x| < -t \\ 0 & \text{if } |x| \ge -t \end{cases}$$

Prove that

$$(\partial_{tt}^2 - \partial_{xx}^2)g = \delta_0(t, x).$$

Deduce D'Alembert's formula.

Hint: Consider the factorisation of $(\partial_{tt}^2 - \partial_{xx}^2) = (\partial_t - \partial_x)(\partial_t + \partial_x)$.

Exercise 4

Let X be a Banach space and X^\ast be its dual space. We say that

$$x_n^* \xrightarrow{*} x^*$$

weakly in X^* if

$$x_n^*(x) \to x^*(x)$$

for all $x\in X.$ Prove that then the sequence (x_n^\ast) is bounded.