

Functional Analysis and Partial Differential Equations

Sheet Nr 5	Due: 25 11 2016
	Due. 25.11.2010

Exercise 1

Prove Collorary 3.20.

Prof. Dr. Herbert Koch

Winter Term 2016/2017

Dr. Xian Liao

- a) To show surjectivity consider first the case $\mu(X) < \infty$ and use that then every p integrable function is integrable.
- b) Deduce the claim in the σ finite measure case.

Exercise 2

Provide precise formulations for the following assertions and prove them.

$$f * g = g * f, \tag{1}$$

$$(f * g) * h = f * (g * h),$$
 (2)

$$|f * g * h||_{L^{\infty}} \le ||f||_{L^{p}} ||g||_{L^{q}} ||h||_{L^{r}}.$$
(3)

Let η be integrable with integral 1 and let $\eta_{\varepsilon}(x) = \varepsilon^{-d} \eta(\varepsilon^{-1}x), x \in \mathbb{R}^d, \varepsilon > 0$. Show that

$$f * \eta_{\varepsilon} \to f, \quad \varepsilon \to 0.$$
 (4)

Exercise 3+4

A theorem of Weierstraß states the following:

Theorem Let a < b, $f \in C([a, b])$ and $\varepsilon > 0$. Then there exists a polynomial p so that

$$\|f - p\|_{C_b([a,b])} < \varepsilon.$$

Deduce that the Legendre polynomials (normalised by the factor $(n + 1/2)^{1/2}$) are an orthonormal basis on $L^2([-1,1])$ and that the Hermite polynomials (normalised by the factor $(2^n n! \sqrt{\pi})^{-1/2}$) are an orthonormal basis in $L^2(\mu)$ with

$$\mu(A) = \int_A e^{-|x|^2} dm^1.$$