

Functional Analysis and Partial Differential Equations

Sheet Nr.4	Due: 18.11.2016

Exercise 1

Let (X, \mathcal{A}, μ) be a measure space. Let $1 \leq p < r < q \leq \infty$.

- a) Suppose that $f \in L^p(\mu) \cap L^q(\mu)$. Show that $f \in L^r(\mu)$.
- b) Suppose that $g \in L^r(\mu)$. Construct $g_1 \in L^p(\mu)$ and $g_2 \in L^q(\mu)$ such that

$$||g_1||_{L^p} + ||g_2||_{L^q} \le 2||g||_{L^q}$$

and $g = g_1 + g_2$.

Prof. Dr. Herbert Koch

Winter Term 2016/2017

Dr. Xian Liao

c) Suppose that $\mu(X) < \infty$. Prove that there exists a constant C > 0 so that

$$||f||_{L^p} \le C ||f||_{L^q} \text{ for all } f \in L^q.$$

d) Prove that

$$||(x_j)||_{l^q} \le ||(x_j)||_{l^p}$$
 for all $(x_j) \in l^p$.

Exercise 2

(Tschebyscheff inequality). Let (X, \mathcal{A}, μ) be a measure space and let $f \in L^p(\mu)$, $1 \le p < \infty$. Show that for any positive number t > 0,

$$\mu\Big(\big\{x \in X : |f(x)| \ge t\big\}\Big) \le \frac{1}{t^p} \int_X |f|^p \, d\mu.$$

Exercise 3

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ finite measure spaces. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let k(x, y) be $\mu \times \nu$ measurable such that

$$K := \left\| \|k(x,y)\|_{L^{q}(\nu)} \right\|_{L^{p}(\mu)} = \left[\int_{X} \left(\int_{Y} |k(x,y)|^{q} d\nu(y) \right)^{p/q} d\mu(x) \right]^{1/p} < \infty.$$

Show that the linear map

$$Tf(x) := \int_Y k(x, y) f(y) \, d\nu(y)$$

is welldefined for $f \in L^p(\nu)$ and it satisfies

$$T: L^p(\nu) \mapsto L^p(\mu)$$
 and $||T||_{L^p(\nu) \mapsto L^p(\mu)} \leq K.$

Exercise 4

Let us take p = q = 2 in Exercise 3. Then the operators of the last exercise are called Hilbert-Schmidt operator. We define

$$||T||_{HS} = ||k||_{L^2(\mu \times \nu)}.$$

Prove that

- a) $||T||_{HS}$ defines a norm;
- b) Let $(\tilde{X}, \tilde{A}, \tilde{\mu})$ be a third σ finite measure space. Let $S : L^2(\mu) \mapsto L^2(\tilde{\mu})$ be another Hilbert-Schmidt operator defined by

$$Sf(\tilde{x}) = \int_X s(\tilde{x}, x) f(x) d\mu(x), \quad s(\tilde{x}, x) \in L^2(\tilde{\mu} \times \mu).$$

Prove that

$$||ST||_{HS} \le ||S||_{HS} ||T||_{HS};$$

c) Let $H_1 = \mathbb{C}^{d_1}$ and $H_2 = \mathbb{C}^{d_2}$ be the Hilbert space with the inner products $\langle x, y \rangle = \sum_{j=1}^{d_l} x_j \overline{y_j}$, and let $\{e_j\}_{j=1}^{d_1}$ be an orthonormal basis of H_1 . Let $T : H_1 \mapsto H_2$. Prove that

$$||T||_{HS} = \left(\sum_{j=1}^{d_1} ||Te_j||^2\right)^{\frac{1}{2}} = \left(\sum_{n=1}^{d_1} \lambda_n^2\right)^{\frac{1}{2}},$$

where $\lambda_n \ge 0$ and $\{\lambda_n^2\}_{n=1}^d$ are the eigenvalues (with multiplicity) of T^*T . The numbers (λ_n) different from 0 are called the singular values.