
Analysis 1, Solutions to problem set 13

Problem 1 (Complex numbers)

Start by noticing that, for any n ∈ N and complex number z 6= 1,

1 + z + . . .+ zn =
zn+1 − 1

z − 1
. (1)

This formula follows from

(z − 1)(1 + z + . . .+ zn) = (z + z2 + . . .+ zn + zn+1) + (−1− z − . . .− zn) = zn+1 − 1

and can be rigorously proved via induction on n.
Now, let 0 < θ < 2π. Then eiθ 6= 1. The real part of the geometric sum with general term eiθ is given by

<
( n∑
k=0

(eikθ)k
)

= 1 + cos θ + cos 2θ + . . .+ cosnθ.

On the other hand, formula (1) implies that

n∑
k=0

(eiθ)k =
ei(n+1)θ − 1

eiθ − 1
=
ei(n+1/2)θ − e−iθ/2

eiθ/2 − e−iθ/2

=
ei(n+1/2)θ − e−iθ/2

2i sin(θ/2)

= i
e−iθ/2 − ei(n+1/2)θ

2 sin(θ/2)
.

We further have that

=
(
e−iθ/2 − ei(n+1/2)θ

)
= sin(−θ/2)− sin

[
(n+

1

2
)θ
]
,

whence

1 + cos θ + cos 2θ + . . .+ cosnθ =
sin(θ/2) + sin[(n+ 1

2 )θ]

2 sin( θ2 )
=

1

2
+

sin[(n+ 1
2 )θ]

2 sin( θ2 )
.

Remark. The collection of functions Dn(t) :=
sin[(n+ 1

2 )θ]

sin( θ
2 )

is called the Dirichlet kernel and plays a prominent

role in Fourier analysis. Here is a picture of the functions D1, D4 and D8 (in blue, red and yellow, respectively)
on the interval [−π, π]:
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Problem 2 (Taylor’s formula with the Lagrange form of the remain-
der)

(a) We shall proceed via induction on n. The base case n = 0 amounts to establishing the formula

f(x) = f(a) +

∫ x

a

f ′(t)dt

for an arbitrary continuously differentiable function f : I → R, which of course follows at once form an
appropriate version of the fundamental theorem of calculus. Let us now assume that the formula holds
for n− 1, i.e. with a remainder term of the form

Rn(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f (n)(t)dt.

Integrating by parts, we then have that

Rn(x) = −
∫ x

a

d

dt

( (x− t)n

n!

)
f (n)(t)dt = − (x− t)n

n!
f (n)(t)

∣∣∣t=x
t=a

+

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

=
f (n)(a)

n!
(x− a)n +

1

n!

∫ x

a

(x− t)nf (n+1)(t)dt,

and the result follows.

(b) We start by proving the following lemma, which sometimes goes in the literature under the name of
integral mean value theorem:1

Lemma 1. Let ϕ : [a, b] → (0,∞) be a nonnegative integrable function. For every continuous function
f : [a, b]→ R, there exists ξ ∈ [a, b] such that

∫ b

a

f(x)ϕ(x)dx = f(ξ)

∫ b

a

ϕ(x)dx.

Proof of Lemma 1. Start by noting that the function fϕ is still integrable. Define:

m := inf{f(x) : x ∈ [a, b]} and M := sup{f(x) : x ∈ [a, b]}.

It follows that mϕ ≤ fϕ ≤Mϕ, and therefore

m

∫ b

a

ϕ(x)dx ≤
∫ b

a

f(x)ϕ(x)dx ≤M
∫ b

a

ϕ(x)dx.

As a consequence, there exists µ ∈ [m,M ] such that∫ b

a

f(x)ϕ(x)dx = µ

∫ b

a

ϕ(x)dx,

and the result then follows from the intermediate value theorem.

The result follows at once form Lemma 1: in fact, since the corresponding assumptions are met, there
must necessarily exist ξ ∈ [a, x] (or ξ ∈ [x, a] if x < a) for which

Rn+1(x) =
1

n!

∫ x

a

(x− t)nf (n+1)(t)dt = f (n+1)(ξ)

∫ x

a

(x− t)n

n!
dt

=− f (n+1)(ξ)
(x− t)n+1

(n+ 1)!

∣∣∣x
a

=
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

1Compare it with the differential versions from Problem 4, ÜB 11.



Problem 3 (Binomial series)

(a) Start by noting that if α ∈ N the series is actually a finite sum (since in this case
(
α
n

)
= 0 if n > α) and

the result boils down to the binomial formula.

Let us go back to the general case α ∈ R. Start by computing the Taylor series of the function f(x) =
(1 + x)α around x = 0: since

f (k)(x) = α(α− 1)(α− 2) · . . . · (α− k + 1)(1 + x)α−k = k!

(
α

k

)
(1 + x)α−k,

it follows that

f (k)(0)

k!
=

(
α

k

)
,

and so the Taylor series of f at 0 is given by

T [f, 0](x) =

∞∑
k=0

(
α

k

)
xk. (2)

We claim that the series (2) converges for |x| < 1. To see this, let us make use of the quotient criterion.
For α /∈ N and x 6= 0, let an :=

(
α
n

)
xn. We have that:

∣∣∣an+1

an

∣∣∣ =
∣∣∣ ( α
n+1

)
xn+1(

α
n

)
xn

∣∣∣ = |x|
∣∣∣α− n
n+ 1

∣∣∣.
It follows that

lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x| lim
n→∞

∣∣∣α− n
n+ 1

∣∣∣ = |x| < 1,

and so for every θ such that |x| < θ < 1, there exists n0 for which∣∣∣an+1

an

∣∣∣ ≤ θ for every n ≥ n0.

It follows that the Taylor series (2) converges for |x| < 1.

The third and last step is to check that the Taylor series (2) converges to the value of the function f at
x. By Problem 2 above, it will be enough to show that for |x| < 1 the remainder term Rn+1(x) converges
to 0 as n→∞. By Problem 2(a), we have that

Rn+1(x) =
1

n!

∫ x

0

(x− t)nf (n+1)(t)dt = (n+ 1)

(
α

n+ 1

)∫ x

0

(x− t)n(1 + t)α−n−1dt.

Let us assume first that 0 ≤ x < 1. Set C := max{1, (1 + x)α}, and note that, for 0 ≤ t ≤ x,

0 ≤ (1 + t)α−n−1 ≤ (1 + t)α ≤ C.

Consequently,

|Rn+1(x)| = (n+ 1)
∣∣∣( α

n+ 1

)∣∣∣ ∫ x

0

(x− t)n(1 + t)α−n−1dt

≤ (n+ 1)
∣∣∣( α

n+ 1

)∣∣∣C ∫ x

0

(x− t)ndt = C
∣∣∣( α

n+ 1

)∣∣∣xn+1.

We have already shown that the series
∑∞
k=0

(
α
k

)
xk converges for |x| < 1, and so

lim
k→∞

∣∣∣(α
k

)∣∣∣xk = 0.

It follows that
lim
n→∞

Rn+1(x) = 0,

as desired. The case −1 < x < 0 can be handled with minor modifications only and is therefore omitted.

(b) We start by proving an auxiliary result which characterizes the asymptotic behavior of the sequence |
(
α
n

)
|:



Lemma 2. Let α ∈ R \ N. Then there exists a constant c = c(α) > 0 such that 2

∣∣∣(α
n

)∣∣∣ ∼ c

n1+α
as n→∞.

Proof of Lemma 2. We split the analysis into two cases:

Case 1. α < 0. Setting x := −α, we have that

∣∣∣(α
n

)∣∣∣ =
∣∣∣(−x

n

)∣∣∣ =
∣∣∣−x(−x− 1) . . . (−x− n+ 1)

n!

∣∣∣ =
x(x+ 1) . . . (x+ n− 1)(x+ n)

n!(x+ n)
,

and so

lim
n→∞

n1−x
∣∣∣(−x

n

)∣∣∣ = lim
n→∞

x(x+ 1) . . . (x+ n)

n!nx
n

n+ x
=

1

Γ(x)
.

The computation of this last limit requires some justification which will be provided in the course of the
solution to Problem 4(c) below, see (7). Assuming it for the time being, we get the desired result with
c(α) := Γ(−α)−1.

Case 2. k− 1 < α < k for some natural number k ≥ 1. In this case we can apply Case 1 to α′ = α−k < 0
to get that

lim
n→∞

∣∣∣(α− k
n

)∣∣∣n1+α−k =
1

Γ(k − α)
and lim

n→∞

∣∣∣(α− k
n− k

)∣∣∣n1+α−k =
1

Γ(k − α)
.

Since (
α

n

)
=
α(α− 1) . . . (α− k + 1)

n(n− 1) . . . (n− k + 1)

(
α− k
n− k

)
,

we conclude that

lim
n→∞

∣∣∣(α
n

)∣∣∣n1+α = lim
n→∞

nkα(α− 1) . . . (α− k + 1)

n(n− 1) . . . (n− k + 1)

∣∣∣(α− k
n− k

)∣∣∣n1+α−k
=
α(α− 1) . . . (α− k + 1)

Γ(k − α)
=: c(α).

(b1) By a previous remark, we lose no generality in assuming that α ∈ (0,∞) \ N. By Lemma 2, there
exists a constant C > 0 such that ∣∣∣(α

n

)∣∣∣ ≤ C

n1+α
for every n ≥ 1.

Since the series
∞∑
n=1

1

n1+α
<∞

converges for α > 0, the result follows.

(b2) For −1 < α < 0 one has that (
α

n

)
= (−1)n

∣∣∣(α
n

)∣∣∣.
The convergence of the binomial series at x = 1 follows from the Leibniz criterion for alternating
series since Lemma 2 implies that

lim
n→∞

∣∣∣(α
n

)∣∣∣ = 0 if α > −1.

The divergence of the binomial series at x = −1 follows from the fact that the series

∞∑
n=1

1

n1+α
=∞

diverges if α < 0.

2Given two positive sequences {an} and {bn}, we write an ∼ bn to mean that

lim
n→∞

an

bn
= 1.



(b3) From Lemma 2 it follows that

lim
n→∞

∣∣∣(α
n

)∣∣∣ 6= 0 if α ≤ −1.

As a consequence, if α ≤ −1, both of the following series diverge:

∞∑
n=0

(
α

n

)
and

∞∑
n=0

(
α

n

)
(−1)n.

Problem 4 (Beta function)

(a) Start by noting that the integral defining the Beta function is only improper if 0 < x < 1 or 0 < y < 1,
for otherwise we are integrating a continuous function over a bounded interval.

Let us assume without loss of generality that the first case holds, i.e. 0 < x < 1, and show that the limit

lim
ε↘0+

∫ 1/2

ε

tx−1(1− t)y−1dt

exists as a real number. The function t 7→ (1 − t)y−1 is continuous on the closed interval [0, 1/2] and
therefore bounded. As a consequence, there exists C ∈ (0,∞) for which

|tx−1(1− t)y−1| ≤ Ctx−1, for every 0 ≤ t ≤ 1

2
,

and the result follows from the convergence of the improper integral∫ 1/2

0

tx−1dt

for x > 0 (which was established in Problem 3(b), ÜB 12).

(b) Let us start by establishing the functional equation

xB(x, y) = (x+ y)B(x+ 1, y). (3)

Integrating by parts,3

xB(x, y + 1) =

∫ 1

0

xtx−1(1− t)ydt = y

∫ 1

0

tx(1− t)y−1dt = yB(x+ 1, y).

On the other hand,

B(x, y + 1) =

∫ 1

0

tx−1(1− t)(1− t)y−1dt

=

∫ 1

0

tx−1(1− t)y−1dt−
∫ 1

0

tx(1− t)y−1dt

=B(x, y)− B(x+ 1, y).

These two identities together yield (3).

Now, let us fix y > 0 and prove that

B(λx1 + (1− λ)x2, y) ≤ B(x1, y)λB(x2, y)1−λ

for every x1, x2 > 0 and 0 < λ < 1. As with the Gamma function (see the solution of Problem 4(c)
from ÜB 12), our main tool will be Hölder’s inequality. To set the stage, define p, q via λ =: p−1 and
1− λ =: q−1. If

f(t) := t(x1−1)/p(1− t)(y−1)/p and g(t) := t(x2−1)/q(1− t)(y−1)/q,
then

f(t)g(t) = tλx1+(1−λ)x2−1(1− t)y−1.
We conclude that

B(λx1 + (1− λ)x2, y) =

∫ 1

0

f(t)g(t)dt ≤
(∫ 1

0

f(t)pdt
)1/p(∫ 1

0

g(t)qdt
)1/q

= B(x1, y)λB(x2, y)1−λ,

as desired.
3Notice that the boundary terms vanish since the function t 7→ tx(1− t)y vanishes at both endpoints t = 0 and t = 1.



(c) We make use of Problem 4 from PÜ 11, formulating it as a theorem and proving it below:

Theorem 1. Let F : (0,∞)→ (0,∞) be a function satisfying the following conditions:

(i) F (1) = 1;

(ii) F (x+ 1) = xF (x) for every 0 < x <∞;

(iii) F is logarithmically convex.

Then F (x) = Γ(x) for every 0 < x <∞.

Proof of Theorem 1. Since the Gamma function Γ does satisfy conditions (i) − (iii) above (see Problem
4, ÜB 12), it will be enough to show that a function satisfying these conditions is uniquely determined.

From (ii) it follows that
F (x+ n) = x(x+ 1) . . . (x+ n− 1)F (x) (4)

for every real x > 0 and natural n ≥ 1. In particular, F (n+ 1) = n! for every n ∈ N, and so it suffices to
show that F (x) is uniquely determined on the interval 0 < x < 1. Since

n+ x = (1− x)n+ x(n+ 1),

the logarithmic convexity and the functional equation for F imply that

F (n+ x) ≤ F (n)1−xF (n+ 1)x = F (n)1−x(nF (n))x = (n− 1)!nx. (5)

On the other hand, the convex combination

n+ 1 = x(n+ x) + (1− x)(n+ x+ 1)

implies likewise that

n! = F (n+ 1) ≤ F (n+ x)xF (n+ x+ 1)1−x = F (n+ x)(n+ x)1−x. (6)

Inequalities (5) and (6) can be combined to yield

n!(n+ x)x−1 ≤ F (n+ x) ≤ (n− 1)!nx,

and so from (4) it follows that

an(x) :=
n!(n+ x)x−1

x(x+ 1) . . . (x+ n− 1)
≤ F (x) ≤ (n− 1)!nx

x(x+ 1) . . . (x+ n− 1)
=: bn(x).

Since

lim
n→∞

bn(x)

an(x)
= lim
n→∞

(n+ x)nx

n(n+ x)x
= 1,

it follows by squeezing that

F (x) = lim
n→∞

(n− 1)!nx

x(x+ 1) . . . (x+ n− 1)
.

We conclude that F is uniquely determined, as desired.

Remark. As a consequence of the proof of Theorem 1, we have the following representation for the Gamma
function:

Γ(x) = lim
n→∞

n!nx

x(x+ 1) . . . (x+ n)
for every x > 0. (7)

Back to the solution of the original problem: let y > 0 be fixed and define the function F : (0,∞)→ (0,∞)
via

F (x) := B(x, y)
Γ(x+ y)

Γ(y)
.

The plan is to show that the function F satisfies conditions (i), (ii) and (iii) of Theorem 1. As a conse-
quence, F (x) = Γ(x) for every real x > 0, and the result follows.

Start by noting that

F (1) = B(1, y)
Γ(1 + y)

Γ(y)
= yB(1, y) = y

∫ 1

0

(1− t)y−1dt = −(1− t)y
∣∣∣1
0

= 1,

and so condition (i) is fulfilled. From (3) and the functional equation for the Gamma function, we also
have that



F (x+ 1) = B(x+ 1, y)
Γ(x+ y + 1)

Γ(y)
=

x

���x+ y
B(x, y)

(���x+ y)Γ(x+ y)

Γ(y)
= xF (x),

which proves (ii). Finally, F is logarithmically convex because it is the product of (a constant Γ(y)−1

times) two logarithmically convex functions, namely x 7→ B(x, y) and x 7→ Γ(x+ y). This establishes (iii)
and concludes the proof.

We finish with a sketch of the function (x, y) 7→ B(x, y) on the region (0, 1)× (0, 1):
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