Analysis 1, Solutions to problem set 13

Problem 1 (Complex numbers)

Start by noticing that, for any n € N and complex number z # 1,
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This formula follows from
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and can be rigorously proved via induction on n.
Now, let 0 < @ < 27. Then €* # 1. The real part of the geometric sum with general term e*? is given by
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On the other hand, formula ((I]) implies that
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We further have that
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Remark. The collection of functions D, (¢t) := is called the Dirichlet kernel and plays a prominent

sin(g)
role in Fourier analysis. Here is a picture of the functions Dy, D4 and Dg (in blue, red and yellow, respectively)
on the interval [—m, 7]:




Problem 2 (Taylor’s formula with the Lagrange form of the remain-
der)

(a) We shall proceed via induction on n. The base case n = 0 amounts to establishing the formula

o) = fla)+ [ " e

for an arbitrary continuously differentiable function f : I — R, which of course follows at once form an
appropriate version of the fundamental theorem of calculus. Let us now assume that the formula holds
for n — 1, i.e. with a remainder term of the form

Ro(a) = — ; /I(I—t)”’lf(”)(t)dt-

(n—1
Integrating by parts, we then have that

n

Ro(z) = — /: L] (%)Jc(n) (t)dt = _Mf(n) (t) = n /: @f("“)(t)dt

and the result follows.

(b) We start by proving the following lemma, which sometimes goes in the literature under the name of
integral mean value theoremEI

Lemma 1. Let ¢ : [a,b] — (0,00) be a nonnegative integrable function. For every continuous function
f :]a,b] — R, there exists £ € [a,b] such that

[ rwretwac =16 [ oty

Proof of Lemma 1. Start by noting that the function f¢ is still integrable. Define:
m = inf{f(z) : x € [a,b]} and M := sup{f(z) : = € [a, b]}.

It follows that my < fo < My, and therefore

m / " pla)ida < / ' fle)pa)z < M / ’ pla)dz.

As a consequence, there exists u € [m, M| such that

/ ’ fa)p(a)ds = g / ’ pl@)da,

and the result then follows from the intermediate value theorem. O

The result follows at once form Lemma 1: in fact, since the corresponding assumptions are met, there
must necessarily exist £ € [a, ] (or £ € [z,a] if x < a) for which

Ryi1(x) :% /30 (z — t)"f(”+1)(t)dt — f(n+1)(§) /z (x ;!t)" di
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LCompare it with the differential versions from Problem 4, UB 11.
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Problem 3 (Binomial series)

(a) Start by noting that if & € N the series is actually a finite sum (since in this case () = 0 if n > &) and
the result boils down to the binomial formula.

Let us go back to the general case a € R. Start by computing the Taylor series of the function f(z) =
(14 2)* around z = 0: since

@)y =ala—D(a—2)...-(a—k+1)(1+z)*F = k'(Z) (14 )k,
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and so the Taylor series of f at 0 is given by
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it follows that

We claim that the series converges for |z| < 1. To see this, let us make use of the quotient criterion.
For o ¢ N and = # 0, let a,, :== (Z)x” We have that:

ans1| _ |57 ”“‘ o[22,
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It follows that
a
lim "—H’ = |z| lim =|z|] <1,
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and so for every 6 such that |z| < 6 < 1, there exists ng for which

an+1
Qn

< 0 for every n > ny.

It follows that the Taylor series (2)) converges for |z| < 1.

The third and last step is to check that the Taylor series (2]) converges to the value of the function f at
2. By Problem 2 above, it will be enough to show that for || < 1 the remainder term R, 1(x) converges
to 0 as n — co. By Problem 2(a), we have that

Rn+1(x)—:bl/0x (z — )" D (1)t = (n+1)<nj‘_1> /Om (@ — )" (1 + £)*1dt.

Let us assume first that 0 < x < 1. Set C':= max{1, (1 + z)*}, and note that, for 0 < ¢ < z,

0< (140> " <1+t <C.

Consequently,

|Rpi1(x)] = (n+1) ( )‘/ (z—t)"(1+H)> " at

g(n+1( ) -yt = 0‘( )x

We have already shown that the series >~ (¢)2* converges for |z| < 1, and so
a
I ok 0.

lim Ryi1(z) =0,
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It follows that

as desired. The case —1 < & < 0 can be handled with minor modifications only and is therefore omitted.

(b) We start by proving an auxiliary result which characterizes the asymptotic behavior of the sequence |(Z) |:



Lemma 2. Let a € R\ N. Then there exists a constant ¢ = ¢(a)) > 0 such that E|
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~ as n — oQ.
n n1+a

Proof of Lemma 2. We split the analysis into two cases:

Case 1. a < 0. Setting x := —«, we have that
‘ e! ‘_‘ -z ‘_‘—x(—x—l)...(—x—n—&—l) _z(z4+1)...(z+n—1)(z+n)
n)l I\ n /)l n! B nl(x 4+ n) ’
and so
lim e (% ‘: lim zz+1)...(z+n) n _ 1 .

The computation of this last limit requires some justification which will be provided in the course of the
solution to Problem 4(c) below, see . Assuming it for the time being, we get the desired result with
c(a) =T (-a)~ L

Case 2. k—1 < a < k for some natural number k > 1. In this case we can apply Case 1 toa’ = a—k <0
to get that
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we conclude that
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(b1) By a previous remark, we lose no generality in assuming that « € (0,00) \ N. By Lemma 2, there
exists a constant C' > 0 such that

Vo >1
‘ ; ‘—n1+a or every n > 1.

Since the series
oo
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The convergence of the binomial series at x = 1 follows from the Leibniz criterion for alternating
series since Lemma 2 implies that

converges for a > 0, the result follows.
(b2) For —1 < o < 0 one has that

lim Cg‘:oﬁa>—L
n—oo |\ N

The divergence of the binomial series at x = —1 follows from the fact that the series
= 1
Z nlta =
n=1

diverges if a < 0.

2Given two positive sequences {an} and {b,}, we write a, ~ b, to mean that



(b3) From Lemma 2 it follows that
lim <a)‘ £0ifa< 1.
n

n—oo

As a consequence, if a < —1, both of the following series diverge:

ni <Z) and 2 <z)(1)n.

Problem 4 (Beta function)

(a)

Start by noting that the integral defining the Beta function is only improper if 0 < x < 1 or 0 < y < 1,
for otherwise we are integrating a continuous function over a bounded interval.

Let us assume without loss of generality that the first case holds, i.e. 0 < z < 1, and show that the limit
1/2

lim 11— )yt
eNOT /¢

exists as a real number. The function ¢ — (1 — ¢)¥~! is continuous on the closed interval [0,1/2] and
therefore bounded. As a consequence, there exists C' € (0, 00) for which

[t" 11— )y < Ot" 7, for every 0 < t <

)
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and the result follows from the convergence of the improper integral

1/2
/ " dt
0

for 2 > 0 (which was established in Problem 3(b), UB 12).
Let us start by establishing the functional equation
zB(z,y) = (z +y)B(z + 1,y). 3)

Integrating by partsﬂ

1 1
2Bz, y+1) = / ot 71— t)¥dt = y/ t*(1 =) tdt = yB(z + 1,y).
0 0

On the other hand,
1
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These two identities together yield .
Now, let us fix y > 0 and prove that
B<)\x1 + (1 - A)-T27y) < B(',I"l»y)AB(x??y)l_)\
for every z1,22 > 0 and 0 < A < 1. As with the Gamma function (see the solution of Problem 4(c)
from UB 12), our main tool will be Hélder’s inequality. To set the stage, define p,q via A\ =: p~! and
1—-A=:¢ L If
f(t) := t@=D/P(1 — )W=D/P and g(t) = t@2=D/a(1 — )w=N/a,

then
f)g(t) = rmt =Nzl gyt

We conclude that

B(Az1 + (1 — \)aa,y) = /01 F(t)g(t)dt < (/01 f(t)Pdt)l/p(/Ol g(t)th)l/q — B(z1,4) Blaa, ),

as desired.

3Notice that the boundary terms vanish since the function t + t*(1 — ¢)¥ vanishes at both endpoints t = 0 and ¢ = 1.



(¢c) We make use of Problem 4 from PU 11, formulating it as a theorem and proving it below:
Theorem 1. Let F': (0,00) — (0,00) be a function satisfying the following conditions:
(i) F1) =1
(ii) F(x 4+ 1) = aF(z) for every 0 < z < 00;

(iii) F is logarithmically convex.

Then F(z) =T(z) for every 0 < z < 0.

Proof of Theorem 1. Since the Gamma function I' does satisfy conditions (i) — (iii) above (see Problem
4, UB 12), it will be enough to show that a function satisfying these conditions is uniquely determined.

From (i¢) it follows that
Flz4+n)=z(z+1)...(x+n—-1)F(x) 4)

for every real > 0 and natural n > 1. In particular, F'(n + 1) = n! for every n € N, and so it suffices to
show that F'(z) is uniquely determined on the interval 0 < z < 1. Since

n+z=(1-2)n+z(n+1),
the logarithmic convexity and the functional equation for F' imply that
Fin+2) < Fn)' “F(n+1)" = F(n)'"*(nF(n))* = (n — 1)!n". (5)
On the other hand, the convex combination
n+l=z(n+z)+(1—-2)n+z+1)
implies likewise that
nl=Fn+1)<Fn+2)*Fn+z+1)""=Fn+az)(n+z) " (6)
Inequalities and (@ can be combined to yield
nln+2)* ' < Fln4z) < (n—1)n%,
and so from it follows that
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it follows by squeezing that

e (nfl)!nx
F(x)—nlgngox(x+1)...(x+n—1)'

We conclude that F' is uniquely determined, as desired. O

Remark. As a consequence of the proof of Theorem 1, we have the following representation for the Gamma

function: o
i nln
F@ = D @ oy e>0 @

Back to the solution of the original problem: let ¥ > 0 be fixed and define the function F' : (0, 00) — (0, 00)
via

Iz +y)
I'(y)

The plan is to show that the function F' satisfies conditions (i), (4¢) and (#i¢) of Theorem 1. As a conse-
quence, F(z) = T'(x) for every real > 0, and the result follows.

Start by noting that

F(z) = B(z,y)

1

=yB(1,y) = y/o (1—t)¥ tdt = —(1—t)Y = b

I(1+vy)
I'(y)

and so condition (7) is fulfilled. From and the functional equation for the Gamma function, we also
have that

F(1) =B(1,y)
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Fz+1)=B(z+1,y) (ty+l) = B(w,y)w:xpm
I'(y) z+7 I'(y)

which proves (ii). Finally, F is logarithmically convex because it is the product of (a constant I'(y)~*

times) two logarithmically convex functions, namely x — B(z,y) and « — I'(x + y). This establishes (i)

and concludes the proof.

We finish with a sketch of the function (x,y) — B(z,y) on the region (0,1) x (0,1):




