Analysis 1, Solutions to problem set 12

Problem 1 (Complex numbers)
depicted (together with the unit circle) in the following picture:

(a) The set A consists of the open annulus centered at the point 5i of inner radius 1 and outer radius 2, as
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To determine the set B, start by noting that, if 2 = x + yi, then 22 = (22 — y?) + (2zy)i. It follows that

the condition R(2?) < 0 is equivalent to 22 — y? < 0, which in turns holds if and only if |z| < |y|. Thus B
coincides with the interior of the colored region depicted in the following picture:
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By the fundamental theorem of algebra, the set C' consists of at most 3 points. We claim that C' consists
of exactly 3 points, which in turn can be determined by noting that z; :

—1 is a root of the polynomial
p(z) == 2%+ 2%+ 92 +9.
By polynomial division,




and so the other two points zg, z3 are solutions of the quadratic equation 9 + 22 = 0, and are thus given
by zo = 3i and z3 = —3i. The three points {z1, 20,23} = {—1,3i, —3i} are represented in the following
picture:
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(b) The reader whose memory has survived the Christmas break will recognize that all the work has already
been done in UB11, Problem 1(b). Namely, the identity

1=z — Jw— 2 = (1 = Jwl*)(1 - [2)

provides a quantitative version for the qualitative statement which we are trying to prove. Instead of
finishing it here, let us instead offer an alternative solution, and sketch how yet another (higher-level)
approach could be implemented:

Alternative solution. Let w € C with |w| < 1 be given. Given z € C, there exist » > 0 and 6 € [0, 27)
such that z = re’?. Having fixed 6, we can now write w = we® for some complex number w of the same
modulus as w. In particular, w still lies inside the unit disc. It follows that
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Therefore, if |z| < 1, we lose no generality in assuming that z = r is a real number such that 0 < r < 1.
We want to show that |r —w| < |1 — ©r|, which happens if and only if

(r—w)(r—w) <(1-wr)(l—wr).

Expanding both sides, making all the necessary cancellations and moving all the terms to the right-hand
side, we see that this inequality is equivalent to

0<(1=7r)(1— |wf),

which holds since r = |z] < 1 and |w| = |w| < 1. Incidentally, this concludes the exercise since the same
argument applied to any |z| > 1 leads to the reversed inequality

0> (1-7r3)(1 - |wpP).

Sketch of another alternative solution. Given w € C inside the open unit disc, define a map

w:C — C
Z—w
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It is easy to check that ¢,, is a continuous map that carries the unit circle onto itself and the origin into
a complex number of modulus less than 1 (namely, —w). Moreover, ¢,, is a bijection whose inverse is
given by ¢t = ¢_,. The result now follows from the maximum modulus principle of complex analysis,
or from the more elementary fact (which still requires a short proof) that the continuous image of a
(path-)connected set is still (path-)connected.

Maps like the ones given by the family {¢,, } are examples of the so-called fractional linear transformations
(or Mobius transformations) and constitute an important starting point of the study of several more
advanced areas of mathematics.



Problem 2 (Euler-Mascheroni)

Start by noting that, for any k € N\ {0},

1

-

)= (1) -+ - )
1 1

= In ( )—m(m)—m'

The interval (0, 1] can be partitioned in the following way:

01=0 (8

It follows that
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We will be done once we show that this limit exists (as a finite real number). With this goal in mind, compare
the integral
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with its lower and upper Riemann sums to conclude that
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and that the difference of two consecutive elements of the sequence {7, } satisfies
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The sequence {7, } is therefore monotonically decreasing. Since it is bounded from below by 0, it converges to
a finite real number, say «y. It can be shown that

v = ILm Yrn = 0.57721566490153286061.

Going back to the original question, we finally conclude that



n

lim /1 f(x)dz = lim (ln(n) -3 %) — 1y ~0.42278.
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Remark. The constant v is known in the literature as the Euler-Mascheroni constant. Despite its multiple
appearances in different branches of mathematics, it remains a rather mysterious number. For instance, it is
not even known whether + is irrational or not!

Problem 3 (Improper integrals)

(a) The integral floo i—x converges if s > 1. In this case, note that the function F(x) = ’”:;:11 is such that

and compute: given a large R > 0,

/1R - /1R F'(z)dz = F(R) — F(1) =

xS
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Since limp_,00 R™5TH = 0, it follows that

[ 5= 6>
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On the other hand, if s < 1, then the integral floo i—x does not converge. Perhaps the easiest way to see
this is to note that, for s =1,
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which blows up as R — co. By comparison, it then follows that, for every s < 1,
/ * dx /  dx
s =0
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(b) The situation becomes reversed with respect to part (a) in terms of the ranges of s for which the integral
converges/diverges. In more detail: if s < 1, choose a small € > 0 and note that

diverges as well.
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On the other hand,
bda
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diverges, and so does fol i—” for any s > 1.

Problem 4 (Gamma function)

(a) Let > 0. The strategy will be to break up the integral defining I'(x) into two pieces,

[e'e] to [e%e]
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(to < oo will be chosen below) and to estimate each piece separately.

For the first piece, observe that e=* < 1if 0 < ¢t < ty, and so
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Let 5 > 0 be chosen large enough such that
t* et < E—ﬁti>t
S e = to.
Then the second piece can be easily estimated as follows:
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The result follows. Below is a picture of the function I' on the positive real axis:

(b) Let us start by establishing the functional equation
2l'(z) =T(xz + 1), for every z > 0. (1)

Integrating by parts, we have that

2T (x) :/ (xt™ Ve dt :/ (t™Y e tdt O f/ t*(e”t) dt :/ tYe tdt = T'(x + 1).
0 0 0
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Notice that no boundary terms are picked up in (!) because of the vanishing of the function ¢ — t*e~* at
t =0 and at t = oo. This establishes .

As a consequence,
nl'(n) =T'(n+ 1) for every n € N\ {0}. (2)

The claimed formula T'(n+1) = n!, valid for every n € N, follows from ([2)) by induction, if one just realizes
that

1) = / e tdt=—e NP =0—(-1)=1.
0
Thus T is a continuous extension of the factorial sequence to the whole interval (0, 00).

(¢) Start by noting that T'(x) > 0 for every 2 > 0. This follows from the integral definition of T.
Now, let x,y € (0,00) and 0 < A < 1. The goal is to show that

InT(Az+ (1 —XNy) < AInT(z) + (1 — A InT(y). (3)
Set p = % and q = ﬁ, so that
1 1
T4 s =1
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It suffices to show that : oy ) )
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for then the desired inequality follows by taking logarithms on both sides:
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To verify , consider the auxiliary functions
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f@) = % e % and g(t) ==t"7T e 5,



which satisfy .
F(D)g(ty = 7576t f(o)P = 7o, and g(1)? = Ve, (5)

Choose a small € > 0 and a large R < co. Then Holder’s inequality on the bounded interval [e, R] implies

that
/ER F(Hgt)dt < (/R f(t)pdt) v (/Rg(t)th) ‘,

Letting € \, 07 and R  co, we have that

[ sstwar< ([ span)’ ([ atorar)’

which in light of translates into
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Recalling the integral definition of T', we see that is exactly our desired estimate (4}). The proof is complete,
and we complement it with the following illustration of the function InT":




