
Analysis 1, Solutions to problem set 12

Problem 1 (Complex numbers)

(a) The set A consists of the open annulus centered at the point 5i of inner radius 1 and outer radius 2, as
depicted (together with the unit circle) in the following picture:
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To determine the set B, start by noting that, if z = x+ yi, then z2 = (x2 − y2) + (2xy)i. It follows that
the condition <(z2) < 0 is equivalent to x2 − y2 < 0, which in turns holds if and only if |x| < |y|. Thus B
coincides with the interior of the colored region depicted in the following picture:
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By the fundamental theorem of algebra, the set C consists of at most 3 points. We claim that C consists
of exactly 3 points, which in turn can be determined by noting that z1 := −1 is a root of the polynomial

p(z) := z3 + z2 + 9z + 9.

By polynomial division,
p(z)

z + 1
= 9 + z2,



and so the other two points z2, z3 are solutions of the quadratic equation 9 + z2 = 0, and are thus given
by z2 = 3i and z3 = −3i. The three points {z1, z2, z3} = {−1, 3i,−3i} are represented in the following
picture:
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(b) The reader whose memory has survived the Christmas break will recognize that all the work has already
been done in ÜB11, Problem 1(b). Namely, the identity

|1− wz|2 − |w − z|2 = (1− |w|2)(1− |z|2)

provides a quantitative version for the qualitative statement which we are trying to prove. Instead of
finishing it here, let us instead offer an alternative solution, and sketch how yet another (higher-level)
approach could be implemented:

Alternative solution. Let w ∈ C with |w| < 1 be given. Given z ∈ C, there exist r ≥ 0 and θ ∈ [0, 2π)
such that z = reiθ. Having fixed θ, we can now write w = ωeiθ for some complex number ω of the same
modulus as w. In particular, ω still lies inside the unit disc. It follows that

∣∣∣ z − w
1− wz

∣∣∣ =
∣∣∣ reiθ − ωeiθ

1− ω���e−iθr��eiθ

∣∣∣ =
∣∣∣eiθ(r − ω)

1− ωr

∣∣∣ =
∣∣∣ r − ω
1− ωr

∣∣∣.
Therefore, if |z| ≤ 1, we lose no generality in assuming that z = r is a real number such that 0 ≤ r ≤ 1.
We want to show that |r − ω| ≤ |1− ωr|, which happens if and only if

(r − ω)(r − ω) ≤ (1− ωr)(1− ωr).

Expanding both sides, making all the necessary cancellations and moving all the terms to the right-hand
side, we see that this inequality is equivalent to

0 ≤ (1− r2)(1− |ω|2),

which holds since r = |z| ≤ 1 and |ω| = |w| < 1. Incidentally, this concludes the exercise since the same
argument applied to any |z| > 1 leads to the reversed inequality

0 ≥ (1− r2)(1− |ω|2).

Sketch of another alternative solution. Given w ∈ C inside the open unit disc, define a map

ϕw : C → C
z 7→ z−w

1−wz .

It is easy to check that ϕw is a continuous map that carries the unit circle onto itself and the origin into
a complex number of modulus less than 1 (namely, −w). Moreover, ϕw is a bijection whose inverse is
given by ϕ−1w = ϕ−w. The result now follows from the maximum modulus principle of complex analysis,
or from the more elementary fact (which still requires a short proof) that the continuous image of a
(path-)connected set is still (path-)connected.

Maps like the ones given by the family {ϕw} are examples of the so-called fractional linear transformations
(or Möbius transformations) and constitute an important starting point of the study of several more
advanced areas of mathematics.



Problem 2 (Euler-Mascheroni)

Start by noting that, for any k ∈ N \ {0},∫ 1
k

1
k+1

f(x)dx =

∫ 1
k

1
k+1

1

x
dx−

∫ 1
k

1
k+1

⌊ 1

x

⌋
dx.

Now, if 1
k+1 < x ≤ 1

k , then k ≤ 1
x < k + 1, and so b 1xc = k. It follows that∫ 1
k

1
k+1

f(x)dx =

∫ 1
k

1
k+1

1

x
dx−

∫ 1
k

1
k+1

kdx

= ln
(1

k

)
− ln

( 1

k + 1

)
− k
(1

k
− 1

k + 1

)
= ln

(1

k

)
− ln

( 1

k + 1

)
− 1

k + 1
.

The interval (0, 1] can be partitioned in the following way:

(0, 1] =

∞⋃
k=1

( 1

k + 1
,

1

k

]
It follows that

lim
ε↘0+

∫ 1

ε

f(x)dx = lim
n→∞

n∑
k=1

∫ 1
k

1
k+1

f(x)dx

= lim
n→∞

n∑
k=1

{
ln
(1

k

)
− ln

( 1

k + 1

)
− 1

k + 1

}
= lim
n→∞

(
− ln

( 1

n+ 1

)
−

n∑
k=1

1

k + 1

)
= lim
n→∞

(
ln(n)−

n∑
k=2

1

k

)
.

We will be done once we show that this limit exists (as a finite real number). With this goal in mind, compare
the integral ∫ n

1

dx

x
= ln(n)

with its lower and upper Riemann sums to conclude that

n∑
k=2

1

k
≤ ln(n) ≤

n−1∑
k=1

1

k
.

It follows that

γn :=

n∑
k=1

1

k
− ln(n)

satisfies

1

n
≤ γn ≤ 1,

and that the difference of two consecutive elements of the sequence {γn} satisfies

γn−1 − γn = ln(n)− ln(n− 1)− 1

n
=

∫ n

n−1

dx

x
− 1

n
=

∫ n

n−1

( 1

x
− 1

n

)
dx > 0.

The sequence {γn} is therefore monotonically decreasing. Since it is bounded from below by 0, it converges to
a finite real number, say γ. It can be shown that

γ := lim
n→∞

γn ' 0.57721566490153286061.

Going back to the original question, we finally conclude that



lim
ε↘0+

∫ 1

ε

f(x)dx = lim
n→∞

(
ln(n)−

n∑
k=2

1

k

)
= 1− γ ' 0.42278.

Remark. The constant γ is known in the literature as the Euler-Mascheroni constant. Despite its multiple
appearances in different branches of mathematics, it remains a rather mysterious number. For instance, it is
not even known whether γ is irrational or not!

Problem 3 (Improper integrals)

(a) The integral
∫∞
1

dx
xs converges if s > 1. In this case, note that the function F (x) = x−s+1

−s+1 is such that

F ′(x) =
1

xs
,

and compute: given a large R > 0,

∫ R

1

dx

xs
=

∫ R

1

F ′(x)dx = F (R)− F (1) =
R−s+1

−s+ 1
− 1−s+1

−s+ 1
.

Since limR→∞R−s+1 = 0, it follows that∫ ∞
1

dx

xs
=

1

s− 1
. (s > 1)

On the other hand, if s ≤ 1, then the integral
∫∞
1

dx
xs does not converge. Perhaps the easiest way to see

this is to note that, for s = 1,

∫ R

1

dx

x
= ln(R),

which blows up as R→∞. By comparison, it then follows that, for every s < 1,∫ ∞
1

dx

xs
≥
∫ ∞
1

dx

x
=∞

diverges as well.

(b) The situation becomes reversed with respect to part (a) in terms of the ranges of s for which the integral
converges/diverges. In more detail: if s < 1, choose a small ε > 0 and note that

∫ 1

ε

dx

xs
=

1

1− s
1

xs−1

∣∣∣1
ε

=
1

1− s
(1− ε1−s).

Since limε↘0+ ε
1−s = 0, it follows that ∫ 1

0

dx

xs
=

1

1− s
. (s < 1)

On the other hand, ∫ 1

0

dx

x
= lim
ε↘0+

ln(x)|1ε = ln(1)− ln(0) =∞

diverges, and so does
∫ 1

0
dx
xs for any s > 1.

Problem 4 (Gamma function)

(a) Let x > 0. The strategy will be to break up the integral defining Γ(x) into two pieces,

∫ ∞
0

tx−1e−tdt =

∫ t0

0

tx−1e−tdt+

∫ ∞
t0

tx−1e−tdt,

(t0 <∞ will be chosen below) and to estimate each piece separately.

For the first piece, observe that e−t ≤ 1 if 0 ≤ t ≤ t0, and so∫ t0

0

tx−1e−tdt ≤
∫ t0

0

tx−1dt =
tx

x

∣∣∣t0
0

=
tx0
x
<∞.



Let t0 > 0 be chosen large enough such that

tx−1e−t ≤ 1

t2
if t ≥ t0.

Then the second piece can be easily estimated as follows:∫ ∞
t0

tx−1e−tdt ≤
∫ ∞
t0

dt

t2
=

1

t0
<∞.

The result follows. Below is a picture of the function Γ on the positive real axis:
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(b) Let us start by establishing the functional equation

xΓ(x) = Γ(x+ 1), for every x > 0. (1)

Integrating by parts, we have that

xΓ(x) =

∫ ∞
0

(xtx−1)e−tdt =

∫ ∞
0

(tx)′e−tdt
(!)
= −

∫ ∞
0

tx(e−t)′dt =

∫ ∞
0

txe−tdt = Γ(x+ 1).

Notice that no boundary terms are picked up in (!) because of the vanishing of the function t 7→ txe−t at
t = 0 and at t =∞. This establishes (1).

As a consequence,
nΓ(n) = Γ(n+ 1) for every n ∈ N \ {0}. (2)

The claimed formula Γ(n+1) = n!, valid for every n ∈ N, follows from (2) by induction, if one just realizes
that

Γ(1) =

∫ ∞
0

e−tdt = −e−t|∞0 = 0− (−1) = 1.

Thus Γ is a continuous extension of the factorial sequence to the whole interval (0,∞).

(c) Start by noting that Γ(x) > 0 for every x > 0. This follows from the integral definition of Γ.

Now, let x, y ∈ (0,∞) and 0 < λ < 1. The goal is to show that

ln Γ(λx+ (1− λ)y) ≤ λ ln Γ(x) + (1− λ) ln Γ(y). (3)

Set p = 1
λ and q = 1

1−λ , so that
1

p
+

1

q
= 1.

It suffices to show that
Γ
(x
p

+
y

q

)
≤ Γ(x)

1
p Γ(y)

1
q , (4)

for then the desired inequality (3) follows by taking logarithms on both sides:

ln Γ(λx+(1−λ)y) = ln
(

Γ
(x
p

+
y

q

))
≤ ln

(
Γ(x)

1
p Γ(y)

1
q

)
=

1

p
ln Γ(x)+

1

q
ln Γ(y) = λ ln Γ(x)+(1−λ) ln Γ(y).

To verify (4), consider the auxiliary functions

f(t) := t
x−1
p e−

t
p and g(t) := t

y−1
q e−

t
q ,



which satisfy
f(t)g(t) = t

x
p+ y

q−1e−t, f(t)p = tx−1e−t, and g(t)q = ty−1e−t. (5)

Choose a small ε > 0 and a large R <∞. Then Hölder’s inequality on the bounded interval [ε, R] implies
that ∫ R

ε

f(t)g(t)dt ≤
(∫ R

ε

f(t)pdt
) 1

p
(∫ R

ε

g(t)qdt
) 1

q

.

Letting ε↘ 0+ and R↗∞, we have that∫ ∞
0

f(t)g(t)dt ≤
(∫ ∞

0

f(t)pdt
) 1

p
(∫ ∞

0

g(t)qdt
) 1

q

,

which in light of (5) translates into∫ ∞
0

t
x
p+ y

q−1e−tdt ≤
(∫ ∞

0

tx−1e−tdt
) 1

p
(∫ ∞

0

ty−1e−tdt
) 1

q

.

Recalling the integral definition of Γ, we see that is exactly our desired estimate (4). The proof is complete,
and we complement it with the following illustration of the function ln Γ:
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