Analysis 1, Solutions to problem set 9

Problem 1 (Continuity)

(a)

Here’s what a graphical representation of the function f looks like:
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As expected, the only problematic points are x = 0 and =z = %, since the function f at all other points

is either (i) constant and therefore continuous (such is the case if # < 0 or z > 1), or (ii) given by the
product of continuous functions and therefore continuous (such is the case if 0 < & < )

At z = 0 we have that
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This last limit follows since the function x — sinz is bounded from below and from above (by -1 and 1,
respectively) on the whole real line, and lim;—, 1, (1/¢t) = 0. As a consequence,

lim f(z)=0= lim f(x),

z—0t z—0~

and the function f is continuous at 0.
Ifz = %, then

lim f(z) = lim x~sin(§>:lsin(w):9f0f lim f(x),

T T s ™ Tt
and the function f is continuous at %
We conclude that the function f is continuous at every point of its domain, and is therefore a continuous

function.

We want to show that f is not of bounded variation. Since the function f can only be nonzero on the
bounded interval (0, %)7 this amounts to showing that f is not locally of bounded variation. Aiming at a
contradiction, suppose it is. By definition, this means that

f:fl_f27

for some monotonically increasing functions f; and f;. Since the functions f; and fo are monotonically
increasing, the quantities

VI(fH) = SlJIDPZ [f1(@:) = fr(zi-1)] and V(f2) := S%PZ [fa(@:) = fa(@ioa)]
=1 =1

are finite. (In both cases, the supremum is taken over all finite partitions P = {0 = xg < 21 < x2 <

. < Zp—1 < @, = 1} of the interval [0, 1].) To see why this is the case, note that x; < ;41 implies
fi(z;) < fi(z;j41) because of monotonicity, and similarly for fo. It follows that, for any partition 0 =
o<1 <Ta< oo < Tpeq < Ty = % of the interval [0, %]7

Zlfl zi) = fi(zia)| = (feket) — fi(wo)) + (Srkera) — fkert)) + - + (fi(on) — folemT
= fi(zn) = fi(wo) = f1(1/7) = f1(0)



since the sum telescopes. Since this value is independent of the chosen partition, and since f1(1/7)—f1(0) <

o0, we conclude that

V(fi) = fi(1/m) — f1(0) < cc.

Similarly for V(f2) < co. Using the triangle inequality, it can be shown

V(f)=V(fi—f2) = V(fi+(=f2) SV(f1)+V(=f2) = V(f1)+V(f2) = (f1(1/7)=f1(0))+(f2(1/m)— f2(0)) < oo.

that

On the other hand, we claim that V(f) = oco. This is in contradiction to the previous line. The absurd

resulted from assuming that f is of (local) bounded variation. So we will
With that purpose in mind, define the sequence
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be done once we verify the claim.

choose a number n € N (say, even) and consider the following partition of the interval [0, %]

P, =

In other words, zo = 0, xx = -1y if k € {1,2,..
that

.,n—1} and x,

n

1
{0:x0<an<an,1<...<a3<a2<xn:—}.
T

%. For the partition P,, we have
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Thus we have the lower bound
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By choosing n arbitrarily large, we see that the sum on the (LHS) of this chain of inequalities, corresponding to
the partition P,, can become arbitrarily large (this uses a fact that should be well-known by now: the harmonic

series diverges). It follows that V' (f) = oo, as claimed.

Problem 2 (Convexity and Hoélder’s inequality)

(a) For the first time in this course we utilize the exponential function, = —
make use of the following bound
14z <e”,

which is valid for any x € R. Estimate is graphically clear:

exp(z) := e®. More precisely, we

(1)

and it can be proved with the help of Bernoulli’s inequality (Problem 4(a), PB 5). The change of variables

z — x — 1 translates bound into

z < ec”_l7 Ve € R.

(2)

(1)



Applying this bound to each of the multiplicands x; for j =1,2,...,n, we find
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x; < e I and so z;’ < MmN

Multiplying these bounds together (for 1 < j < n) yields
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and so

o ay? . adn <exp (Z Ajzj — 1). (3)
j=1

This means that the quantity R (z1,x0,...,2,) := exp (Z?zl Ajzj — 1) is an upper bound for the

: AL An . L n . .
geometric mean G := x7'z5* ... z,". Bound with z := 377 ) Ajz; implies

Z Ajzj < exp (Z Ajzj — 1) = R(’\)(xl,xg, cey ),
j=1 j=1

n

and so R is also a bound for the arithmetic mean A := > e

yield

Ajzj. Combined, these two inequalities

max{wiquQ o xi\zn’)\lxl + Aoy + ...+ )\nxn} < exp (Z )\j.’L‘j — 1). (4)
j=1

Our goal is to show that G < A, and it may seem a bit surprising to know that we can do it from a
bound for the mazimum between A and G (which is all that gives). Once again (recall the proof of
Cauchy-Schwarz from UB 6), normalization comes to the rescue! Consider new variables

ap = m—; where A = Az + Xoxo + ...+ A2y,
and apply bound to these new variables. One gets that

()G (3)" <e=(§

J

i AJ%}_Q. (5)

1

The right-hand side of this last inequality equals

exp ({Zj;)\gii} - 1) = exp ({ii)\jxj} - 1) = exp <% — 1) = exp(0) = 1,

and so translates into
x1 A Z2 A2 LTn An
) () () =
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which is equivalent to

Since 3-7_) Aj = 1, this means that
G <A

The proof is complete.

Let p,q > 1 be such that 1 + 1 = 1. Note in particular that pg = p + ¢. From part (a) we know that, for
any positive real numbers a,b > 0,

1 1
ab < —aP + —b9.
p q
In particular, for any « > 0, this implies that

by 1 102
o= o) (2) < Jora v 1k
Summing this over k € {1,2,...,n} yields
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We still have the freedom to choose a > 0, and we will do it in such a way as to equalizeﬂ both summands
of the convex combination which is the right-hand side of inequality @ In other words, choose a such
that
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With this choice of «, estimate @ translates into
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This completes the proof of the discrete version of Holder’s inequality.

Problem 3 (Riemann Sums)

Let f,g: R — R be defined via f(z) = z and g(x) = 22. Let a,b € Y, be such that a < b, say
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If k > ko, then a,b € Y}, as well. To compare the dyadic representations of a and b in Yy, and Yy, respectively,
let 5 € N be such that kg 4+ 7 = k. Then:

n' n'27 n n'+m'  (n+m) n+m
a = 270 = 2kg+j =: 27 and b = 2k0 = 2k0+j = 2k . (7)

(This serves as the definition for n and m.)

(a) Having k,n,m at our disposal, we can follow Definition 6.1 and compute
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Here we used the formulas

m—1 m—1

_(m—1)m _ (m—=1)m(2m —1)
€—#and 262—

= £=0

which were already proved by induction in UB2 and PB2, respectively.

1In the literature this is often referred to as “optimizing in o”.



(b) Still following Definition 6.1,

and

Uk(g7a>b) =

(¢) By Definition 6.2,
b
/ xdx = sup Li(f,a,b).
a

k>ko

Note that the sequence (Lg)g>k, is increasing in light of Observation 2 from p. 99 in the Skript, and so

sup Li(f,a,b) = lim Lg(f,a,b).
k>ko k—roo

From part (a) we know that
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Recalling the dyadic representations for @ and b, we finally have that

2

Li(f,a,b) = %{bZ e b;ka}.

Since b — a < o0,

b—a
klggo 2k 0,
and so
b b2 — g2
/ xdx = lim Lg(f,a,b) = .
a k—o0 2

To compute the other integral, note that

B 5 (m—1)m(2m — 1)
Li(g,a,b) = m{n m+n(m—1)m+ 5 }
3 m
= 3ok, 2k 2k<3n m + 3nm? + m? —3nm—§m + 2)
3 m
3 2
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=3{ -0 - b -0 - 5500+ 55 G- a) )
Again, since a and b — a are finite numbers, we have that
. 3 31 1 1
dim (= gpalb—a) = Sor- @) + 5o b -a) =0
We finally conclude that
b 3_ .3
b3 —
/ r?dr = lim Ly(g,a,b) = a,
a k—o0 3



Problem 4 (A geometric inequality)

Consider a generic nondegenerate triangle in the plane whose side lengths are a,b,c. Label with «, 3,7 the
angles opposite to the sides with lengths a, b, ¢, respectively, as illustrated in the following picture:

Our starting point is the following general observation: all the trigonometric functions are convex (or concave)
if their arguments are restricted to an appropriate domain, and as a consequence there are many interesting
geometric consequences of Jensen’s inequality (Problem 4, PB9).

There are at least three different ways to express the area A in terms of the side lengths and trigonometric
functions of the interior angles, and we make use of them all:

b b
A= %sin’y = Ecsinoz = %sinﬁ.
The different pairwise products of side lengths can therefore be expressed as
2A 2A 2A
ab=——, bc= ——, ca = — .
sin 7y sin av sin 8

Taking the average of these representations, we find that

ab + be + ca Si2r1Aﬂ/+siQI;4(x+Si2[;4ﬁ_2A(1 1 1 1 1 1 )

b,b > = 3 3 3
max{ab, bc, ca} > 3 3 3sina | 3sinfB | 3siny

Now, the interior angles of any triangle in the plane add up to 180°, and so

(8)

at+pf4y=m,
or equivalently
a p 1_7
373737y
The last observation is that the function  — f(z) := —1— is convex on the interval (0, ). The following picture

illustrates this:
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Jensen’s inequality implies in particular that

FE) =G+ 2+ T) < i@ + 370 + 350

Going back to (8), we finally conclude that
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bab7 >2A( o9 - o
max{ab, be, ca} > 3 sina * 3sinf  3sinvy

= 24(3f(0) + 5 (8) + 550)
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In other words, each planar triangle of area A has at least two sides for which the product of the side lengths
is at least 4A/\/§ ~ 2.31A. This is what we wanted to show.

As a final remark, notice that the inequality is sharp: equilateral triangles turn it into an equality.



