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Problem 1 (Continuity)

(a) Here’s what a graphical representation of the function f looks like:
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As expected, the only problematic points are x = 0 and x = 1
π , since the function f at all other points

is either (i) constant and therefore continuous (such is the case if x < 0 or x > 1
π ), or (ii) given by the

product of continuous functions and therefore continuous (such is the case if 0 < x < 1
π ).

At x = 0 we have that

lim
x→0+

f(x) = lim
x→0+

x · sin
( 1

x

)
= lim
x→0+

sin
(

1
x

)
1
x

= lim
t→+∞

sin t

t
= 0.

This last limit follows since the function x 7→ sinx is bounded from below and from above (by -1 and 1,
respectively) on the whole real line, and limt→+∞(1/t) = 0. As a consequence,

lim
x→0+

f(x) = 0 = lim
x→0−

f(x),

and the function f is continuous at 0.

If x = 1
π , then

lim
x→π−

f(x) = lim
x→π−

x · sin
( 1

x

)
=

1

π
sin(π) =

0

π
= 0 = lim

x→π+
f(x),

and the function f is continuous at 1
π .

We conclude that the function f is continuous at every point of its domain, and is therefore a continuous
function.

(b) We want to show that f is not of bounded variation. Since the function f can only be nonzero on the
bounded interval (0, 1

π ), this amounts to showing that f is not locally of bounded variation. Aiming at a
contradiction, suppose it is. By definition, this means that

f = f1 − f2,

for some monotonically increasing functions f1 and f2. Since the functions f1 and f2 are monotonically
increasing, the quantities

V (f1) := sup
P

n∑
i=1

|f1(xi)− f1(xi−1)| and V (f2) := sup
P

n∑
i=1

|f2(xi)− f2(xi−1)|

are finite. (In both cases, the supremum is taken over all finite partitions P = {0 = x0 < x1 < x2 <
. . . < xn−1 < xn = 1

π} of the interval [0, 1
π ].) To see why this is the case, note that xj < xj+1 implies

f1(xj) ≤ f1(xj+1) because of monotonicity, and similarly for f2. It follows that, for any partition 0 =
x0 < x1 < x2 < . . . < xn−1 < xn = 1

π of the interval [0, 1
π ],

n∑
i=1

|f1(xi)− f1(xi−1)| = (���f1(x1)− f1(x0)) + (���f1(x2)−���f1(x1)) + . . .+ (f1(xn)−�����f1(xn−1))

= f1(xn)− f1(x0) = f1(1/π)− f1(0)



since the sum telescopes. Since this value is independent of the chosen partition, and since f1(1/π)−f1(0) <
∞, we conclude that

V (f1) = f1(1/π)− f1(0) <∞.

Similarly for V (f2) <∞. Using the triangle inequality, it can be shown that

V (f) = V (f1−f2) = V (f1+(−f2)) ≤ V (f1)+V (−f2) = V (f1)+V (f2) = (f1(1/π)−f1(0))+(f2(1/π)−f2(0)) <∞.

On the other hand, we claim that V (f) = ∞. This is in contradiction to the previous line. The absurd
resulted from assuming that f is of (local) bounded variation. So we will be done once we verify the claim.

With that purpose in mind, define the sequence

αk =
1

π
2 + πk

,

choose a number n ∈ N (say, even) and consider the following partition of the interval [0, 1
π ]:

Pn :=
{

0 = x0 < αn < αn−1 < . . . < α3 < α2 < xn =
1

π

}
.

In other words, x0 = 0, xk = αn−(k−1) if k ∈ {1, 2, . . . , n− 1} and xn = 1
π . For the partition Pn, we have

that

n∑
i=1

|f(xi)− f(xi−1)| = |f(x1)− f(x0)|+ |f(x2)− f(x1)|+ |f(x3)− f(x2)|+ . . .+ |f(xn−1)− f(xn−2)|+ |f(xn)− f(xn−1)|

=
∣∣∣ 1
π
2 + πn

· 1− 0
∣∣∣+
∣∣∣ 1
π
2 + π(n− 1)

· (−1)− 1
π
2 + πn

· 1
∣∣∣+
∣∣∣ 1
π
2 + π(n− 2)

· 1− 1
π
2 + π(n− 1)

· (−1)
∣∣∣+ . . .

. . .+
∣∣∣ 1
π
2 + 2π

· 1− 1
π
2 + 3π

· (−1)
∣∣∣+
∣∣∣0− 1

π
2 + 2π

· 1
∣∣∣

≥ 1
π
2 + πn

+
2

π
2 + πn

+
2

π
2 + π(n− 1)

+ . . .+
2

π
2 + 3π

+
1

π
2 + 2π

.

Thus we have the lower bound

n∑
i=1

|f(xi)− f(xi−1)| ≥
n∑
k=2

1
π
2 + kπ

≥ 1

π

n∑
k=2

1

k + 1
.

By choosing n arbitrarily large, we see that the sum on the (LHS) of this chain of inequalities, corresponding to
the partition Pn, can become arbitrarily large (this uses a fact that should be well-known by now: the harmonic
series diverges). It follows that V (f) =∞, as claimed.

Problem 2 (Convexity and Hölder’s inequality)

(a) For the first time in this course we utilize the exponential function, x 7→ exp(x) := ex. More precisely, we
make use of the following bound

1 + x ≤ ex, (1)

which is valid for any x ∈ R. Estimate (1) is graphically clear:
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and it can be proved with the help of Bernoulli’s inequality (Problem 4(a), PB 5). The change of variables
x→ x− 1 translates bound (1) into

x ≤ ex−1, ∀x ∈ R. (2)



Applying this bound to each of the multiplicands xj for j = 1, 2, . . . , n, we find

xj ≤ exj−1 and so x
λj

j ≤ e
λjxj−λj .

Multiplying these bounds together (for 1 ≤ j ≤ n) yields

xλ1
1 xλ2

2 . . . xλn
n ≤ eλ1x1−λ1eλ2x2−λ2 . . . eλnxn−λn = exp

( n∑
j=1

λjxj −
n∑
j=1

λj

)
= exp

( n∑
j=1

λjxj − 1
)
,

and so

xλ1
1 xλ2

2 . . . xλn
n ≤ exp

( n∑
j=1

λjxj − 1
)
. (3)

This means that the quantity R(λ)(x1, x2, . . . , xn) := exp
(∑n

j=1 λjxj − 1
)

is an upper bound for the

geometric mean G := xλ1
1 xλ2

2 . . . xλn
n . Bound (2) with x :=

∑n
j=1 λjxj implies

n∑
j=1

λjxj ≤ exp
( n∑
j=1

λjxj − 1
)

= R(λ)(x1, x2, . . . , xn),

and so R(λ) is also a bound for the arithmetic mean A :=
∑n
j=1 λjxj . Combined, these two inequalities

yield

max{xλ1
1 xλ2

2 . . . xλn
n , λ1x1 + λ2x2 + . . .+ λnxn} ≤ exp

( n∑
j=1

λjxj − 1
)
. (4)

Our goal is to show that G ≤ A, and it may seem a bit surprising to know that we can do it from a
bound for the maximum between A and G (which is all that (4) gives). Once again (recall the proof of
Cauchy-Schwarz from ÜB 6), normalization comes to the rescue! Consider new variables

ak :=
xk
A

where A = λ1x1 + λ2x2 + . . .+ λnxn,

and apply bound (3) to these new variables. One gets that

(x1
A

)λ1
(x2
A

)λ2

. . .
(xn
A

)λn

≤ exp
({ n∑

j=1

λj
xj
A

}
− 1
)
. (5)

The right-hand side of this last inequality equals

exp
({ n∑

j=1

λj
xj
A

}
− 1
)

= exp
({ 1

A

n∑
j=1

λjxj

}
− 1
)

= exp
(A
A
− 1
)

= exp(0) = 1,

and so (5) translates into (x1
A

)λ1
(x2
A

)λ2

. . .
(xn
A

)λn

≤ 1,

which is equivalent to
x1
λ1x2

λ2 . . . xn
λn ≤ Aλ1+λ2+...+λn .

Since
∑n
j=1 λj = 1, this means that

G ≤ A.

The proof is complete.

(b) Let p, q > 1 be such that 1
p + 1

q = 1. Note in particular that pq = p+ q. From part (a) we know that, for
any positive real numbers a, b > 0,

ab ≤ 1

p
ap +

1

q
bq.

In particular, for any α > 0, this implies that

akbk = (αak)
(bk
α

)
≤ 1

p
αpapk +

1

q

bqk
αq
.

Summing this over k ∈ {1, 2, . . . , n} yields

n∑
k=1

akbk ≤
αp

p

n∑
k=1

apk +
1

qαq

n∑
k=1

bqk. (6)



We still have the freedom to choose α > 0, and we will do it in such a way as to equalize1 both summands
of the convex combination which is the right-hand side of inequality (6). In other words, choose α such
that

αp
n∑
k=1

apk =
1

αq

n∑
k=1

bqk.

This means that

αp+q =

∑n
k=1 b

q
k∑n

k=1 a
p
k

,

and so

αp =
(∑n

k=1 b
q
k∑n

k=1 a
p
k

) p
p+q

.

With this choice of α, estimate (6) translates into

n∑
k=1

akbk ≤
(1

p
+

1

q

)[
αp

n∑
k=1

apk

]
= 1 ·

[(∑n
k=1 b

q
k∑n

k=1 a
p
k

) p
p+q

n∑
k=1

apk

]
=
( n∑
k=1

apk

)1− p
p+q
( n∑
k=1

bqk

) p
p+q

=
( n∑
k=1

apk

) q
p+q
( n∑
k=1

bqk

) p
p+q

=
( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q

.

This completes the proof of the discrete version of Hölder’s inequality.

Problem 3 (Riemann Sums)

Let f, g : R→ R be defined via f(x) = x and g(x) = x2. Let a, b ∈ Yk0 be such that a < b, say

a =
n′

2k0
and b =

n′ +m′

2k0
.

If k ≥ k0, then a, b ∈ Yk as well. To compare the dyadic representations of a and b in Yk0 and Yk, respectively,
let j ∈ N be such that k0 + j = k. Then:

a =
n′

2k0
=

n′2j

2k0+j
=:

n

2k
and b =

n′ +m′

2k0
=

(n′ +m′)2j

2k0+j
=:

n+m

2k
. (7)

(This serves as the definition for n and m.)

(a) Having k, n,m at our disposal, we can follow Definition 6.1 and compute

Lk(f, a, b) =

m−1∑
`=0

1

2k
f
(n+ `

2k

)
=

m−1∑
`=0

1

2k

(n+ `

2k

)
=

1

2k · 2k
{
n

m−1∑
`=0

1 +

m−1∑
`=0

`
}

=
1

2k · 2k
{
nm+

(m− 1)m

2

}
and

Lk(g, a, b) =

m−1∑
`=0

1

2k
g
(n+ `

2k

)
=

m−1∑
`=0

1

2k

(n+ `

2k

)2
=

1

2k · 2k · 2k
{
n2

m−1∑
`=0

1 + 2n

m−1∑
`=0

`+

m−1∑
`=0

`2
}

=
1

2k · 2k · 2k
{
n2m+ n(m− 1)m+

(m− 1)m(2m− 1)

6

}
.

Here we used the formulas

m−1∑
`=0

` =
(m− 1)m

2
and

m−1∑
`=0

`2 =
(m− 1)m(2m− 1)

6
,

which were already proved by induction in ÜB2 and PB2, respectively.

1In the literature this is often referred to as “optimizing in α”.



(b) Still following Definition 6.1,

Uk(f, a, b) =

m−1∑
`=0

1

2k
f
(n+ `+ 1

2k

)
=

m−1∑
`=0

1

2k

(n+ `+ 1

2k

)
=

1

2k · 2k
{

(n+ 1)

m−1∑
`=0

1 +

m−1∑
`=0

`
}

=
1

2k · 2k
{

(n+ 1)m+
(m− 1)m

2

}
and

Uk(g, a, b) =

m−1∑
`=0

1

2k
g
(n+ `+ 1

2k

)
=

m−1∑
`=0

1

2k

(n+ `+ 1

2k

)2
=

1

2k · 2k · 2k
{

(n+ 1)2
m−1∑
`=0

1 + 2(n+ 1)

m−1∑
`=0

`+

m−1∑
`=0

`2
}

=
1

2k · 2k · 2k
{

(n+ 1)2m+ (n+ 1)(m− 1)m+
(m− 1)m(2m− 1)

6

}
.

(c) By Definition 6.2, ∫ b

a

xdx = sup
k>k0

Lk(f, a, b).

Note that the sequence (Lk)k>k0 is increasing in light of Observation 2 from p. 99 in the Skript, and so

sup
k>k0

Lk(f, a, b) = lim
k→∞

Lk(f, a, b).

From part (a) we know that

Lk(f, a, b) =
1

2k · 2k
{
nm+

(m− 1)m

2

}
=

1

2k · 2k
{2nm+m2 −m

2

}
=

1

2k · 2k
{n2 + 2nm+m2 − n2 −m

2

}
=

1

2k · 2k
{ (n+m)2 − n2 −m

2

}
=

1

2

{ (n+m)2 − n2 −m
2k · 2k

}
=

1

2

{(n+m

2k

)2
−
( n

2k

)2
− 1

2k
m

2k

}
.

Recalling the dyadic representations (7) for a and b, we finally have that

Lk(f, a, b) =
1

2

{
b2 − a2 − b− a

2k

}
.

Since b− a <∞,

lim
k→∞

b− a
2k

= 0,

and so ∫ b

a

xdx = lim
k→∞

Lk(f, a, b) =
b2 − a2

2
.

To compute the other integral, note that

Lk(g, a, b) =
1

2k · 2k · 2k
{
n2m+ n(m− 1)m+

(m− 1)m(2m− 1)

6

}
=

1

3 · 2k · 2k · 2k
(

3n2m+ 3nm2 +m3 − 3nm− 3

2
m2 +

m

2

)
=

1

3 · 2k · 2k · 2k
(

(n+m)3 − n3 − 3nm− 3

2
m2 +

m

2

)
=

1

3

{(n+m

2k

)3
−
( n

2k

)3
− 3

2k
n

2k
m

2k
− 3

2

1

2k

(m
2k

)2
+

1

2

1

2k · 2k
m

2k

}
=

1

3

{
b3 − a3 − 3

2k
a(b− a)− 3

2

1

2k
(b− a)2 +

1

2

1

2k · 2k
(b− a)

}
.

Again, since a and b− a are finite numbers, we have that

lim
k→∞

(
− 3

2k
a(b− a)− 3

2

1

2k
(b− a)2 +

1

2

1

2k · 2k
(b− a)

)
= 0.

We finally conclude that

∫ b

a

x2dx = lim
k→∞

Lk(g, a, b) =
b3 − a3

3
.



Problem 4 (A geometric inequality)

Consider a generic nondegenerate triangle in the plane whose side lengths are a, b, c. Label with α, β, γ the
angles opposite to the sides with lengths a, b, c, respectively, as illustrated in the following picture:

c

b a

α β

γ

Our starting point is the following general observation: all the trigonometric functions are convex (or concave)
if their arguments are restricted to an appropriate domain, and as a consequence there are many interesting
geometric consequences of Jensen’s inequality (Problem 4, PB9).
There are at least three different ways to express the area A in terms of the side lengths and trigonometric
functions of the interior angles, and we make use of them all:

A =
ab

2
sin γ =

bc

2
sinα =

ca

2
sinβ.

The different pairwise products of side lengths can therefore be expressed as

ab =
2A

sin γ
, bc =

2A

sinα
, ca =

2A

sinβ
.

Taking the average of these representations, we find that

max{ab, bc, ca} ≥ ab+ bc+ ca

3
=

2A
sin γ + 2A

sinα + 2A
sin β

3
= 2A

(1

3

1

sinα
+

1

3

1

sinβ
+

1

3

1

sin γ

)
. (8)

Now, the interior angles of any triangle in the plane add up to 180◦, and so

α+ β + γ = π,

or equivalently
α

3
+
β

3
+
γ

3
=
π

3
.

The last observation is that the function x 7→ f(x) := 1
sin x is convex on the interval (0, π). The following picture

illustrates this:
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Jensen’s inequality implies in particular that

f
(π

3

)
= f

(α
3

+
β

3
+
γ

3

)
≤ 1

3
f(α) +

1

3
f(β) +

1

3
f(γ) =

1

3

1

sinα
+

1

3

1

sinβ
+

1

3

1

sin γ
.

Going back to (8), we finally conclude that



max{ab, bc, ca} ≥ 2A
(1

3

1

sinα
+

1

3

1

sinβ
+

1

3

1

sin γ

)
= 2A

(1

3
f(α) +

1

3
f(β) +

1

3
f(γ)

)
≥ 2Af

(α
3

+
β

3
+
γ

3

)
= 2Af

(π
3

)
=

2A

sin(π/3)
=

2A√
3/2

=
4A√

3
.

In other words, each planar triangle of area A has at least two sides for which the product of the side lengths
is at least 4A/

√
3 ∼ 2.31A. This is what we wanted to show.

As a final remark, notice that the inequality is sharp: equilateral triangles turn it into an equality.


