
Analysis 1, Solutions to problem set 7

Problem 1 (Sequences: sup, inf, lim sup, lim inf)

In what follows, let n be a natural number greater than or equal to 1.
A preliminary observation, common to all the items below, is that (−1)n = 1 if n is even and (−1)n = −1 if n
is odd.

(a) In light of the preliminary observation, note that

xn =

{
(2 + 3

n ) if n is odd,
−(2 + 3

n ) if n is even.

The sequence (2+ 3
n )n≥1 is monotonically decreasing, and so the sequence (−(2+ 3

n ))n≥1 is monotonically
increasing. Moreover we have that

lim
n→∞

(
2 +

3

n

)
= inf

n≥1

(
2 +

3

n

)
= 2 and lim

n→∞

{
−
(

2 +
3

n

)}
= sup

n≥1

{
−
(

2 +
3

n

)}
= −2.

The proof of these facts entirely parallels the proof that limn→∞
1
n = 0, and as such will be omitted.

It follows that

sup
n≥1

xn = x1 = 2 +
3

1
= 5

and that

inf
n≥1

xn = x2 = −
(

2 +
3

2

)
= −7

2
.

Moreover,

sup
n≥m

xn =

{
2 + 3

m if m is odd,
2 + 3

m+1 if m is even,

and

inf
n≥m

xn =

{
−(2 + 3

m+1 ) if m is odd,

−(2 + 3
m ) if m is even.

It follows that

lim sup
n→∞

xn = inf
m≥1

(
sup
n≥m

xn

)
=

 infm≥1

(
2 + 3

m

)
if m is odd

infm≥1

(
2 + 3

m+1

)
if m is even

 = 2.

and that

lim inf
n→∞

xn = sup
m≥1

(
inf
n≥m

xn

)
=

 supm≥1

{
−
(

2 + 3
m+1

)}
if m is odd

supm≥1

{
−
(

2 + 3
m

)}
if m is even

 = −2.

(b) The crucial observation is that

xn =


6 if n = 4k + 1 for some k ∈ N,
−4 if n = 4k + 2 for some k ∈ N,
0 if n = 4k + 3 for some k ∈ N,
2 if n = 4k + 4 for some k ∈ N.

Assuming this, it follows at once that

sup
n≥1

xn = lim sup
n→∞

xn = 6

and that
inf
n≥1

xn = lim inf
n→∞

xn = −4.

The proof of the claim amounts to a straightforward analysis of the four different cases that arise. For
instance, if n = 4k + 1 for some natural number k, then

xn = 1 + 2(−1)n+1 + 3(−1)
n(n−1)

2 = 1 + 2(−1)(4k+1)+1 + 3(−1)
(4k+1)(4k)

2

= 1 + 2(−1)2(2k+1) + 3(−1)2k(4k+1) = 1 + 2 · 1 + 3 · 1 = 6

since both 2(2k+ 1) and 2k(4k+ 1) are even numbers. The analysis of the other three cases is similar and
is left to the reader.



(c) Note that

xn =

{
n if n is even,
1
n if n is odd.

In particular, the subsequence (x2n = 2n) is monotonically increasing and unbounded, and

sup
n≥1

xn = lim sup
n→∞

xn =∞.

On the other hand, the subsequence (x2n+1 = 1
2n+1 ) is monotonically decreasing and satisfies

lim
n→∞

x2n+1 = 0.

It follows that
inf
n≥1

xn = lim inf
n→∞

xn = 0.

Problem 2 (Series)

(a) Start by noticing that, for every natural number n ≥ 1,

(n+ 1)n

nn+1
=

1

n

(n+ 1)n

nn
=

1

n

(
1 +

1

n

)n
.

In Problem 4(a) from Übungsblatt 6 we showed that the sequence αn := (1 + 1
n )n is monotonically

increasing. In particular, αn ≥ α1 for every n ≥ 1. Since α1 = 2, it follows that

(n+ 1)n

nn+1
=

1

n

(
1 +

1

n

)n
≥ 2

n
,

and so
∞∑

n=1

(n+ 1)n

nn+1
≥
∞∑

n=1

2

n
= 2

∞∑
n=1

1

n
. (1)

We know from Problem 3(c) of Übungsblatt 6 that the harmonic series
∑∞

n=1
1
n diverges. From (1), it

follows that the series
∞∑

n=1

(n+ 1)n

nn+1
=∞

diverges as well.

(b) For n ∈ N, define an := n3

n! . Let us compute the quotient

an+1

an
=

(n+ 1)3

(n+ 1)!

n!

n3
=

����(n+ 1)(n+ 1)2

����(n+ 1)n!

n!

n3
=

(n+ 1)2

��n!

��n!

n3
=

(n+ 1)2

n3
=

1

n

(
1 +

1

n

)2
.

Observe that the sequence

an+1

an
=

1

n

(
1 +

1

n

)2
=

1

n

(
1 +

2

n
+

1

n2

)
=

1

n
+

2

n2
+

1

n3

is monotonically decreasing and that

a4
a3

=
1

3

(
1 +

1

3

)2
=

16

27
< 1.

It follows that
an+1

an
≤ 16

27

for every n ≥ 3, and so the conditions of Problem 2(b), Übungsblatt 6 are fulfilled (for N = 3 and
y = 16/27). We can use that result to establish the convergence of the sequence

∞∑
n=0

n3

n!
<∞.



(c) We proceed similarly to part (b). For n ∈ N, define bn := (n!)2

(2n)! . Then

bn+1

bn
=

((n+ 1)!)2

(2(n+ 1))!

(2n)!

(n!)2
=

(n+ 1)��n!(n+ 1)��n!

(2n+ 2)!

(2n)!

��n!��n!
= (n+1)2 ���(2n)!

(2n+ 2)(2n+ 1)���(2n)!
=

(n+ 1)2

(2n+ 2)(2n+ 1)
.

Again, the sequence

bn+1

bn
=

(n+ 1)2

(2n+ 2)(2n+ 1)
=

1

2

n+ 1

2n+ 1
=

1

2

(
1− n

2n+ 1

)
=

1

2

(
1− 1

2 + 1
n

)
is monotonically decreasing, and

b1
b0

=
(0 + 1)2

(2 · 0 + 2)(2 · 0 + 1)
=

1

2
< 1.

Problem 2(b) from Übungsblatt 6 (with N = 0 and y = 1/2) implies that the series

∞∑
n=0

(n!)2

(2n)!
<∞

converges.

(d) Start by observing that, for every natural number n ≥ 1,

√
n+ 1−

√
n

n
=

(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)

n(
√
n+ 1 +

√
n)

=
(�n+ 1)−�n

n(
√
n+ 1 +

√
n)

=
1

n(
√
n+ 1 +

√
n)
.

Moreover, we have that
1

n(
√
n+ 1 +

√
n)
≤ 1

n
√
n

since
√
n ≤
√
n+ 1 +

√
n. Since this holds for every natural n ≥ 1, it follows that

∞∑
n=1

1

n(
√
n+ 1 +

√
n)
≤
∞∑

n=1

1

n
√
n
.

From Problem 3(c), Übungsblatt 6, we know that the series

∞∑
n=1

1

n
√
n

=

∞∑
n=1

1

n3/2
<∞

converges since 3/2 > 1. It follows that the series

∞∑
n=1

1

n(
√
n+ 1 +

√
n)

<∞

converges as well.

Problem 3 (Fubini without Tonelli)

Let f = (fn(m))m,n, where m ∈ N designates the number of the (horizontal) row and n ∈ N designates the
number of the (vertical) column, be the following infinite matrix:

0 1
2

1
4

1
8

1
16

1
32 · · ·

− 1
2 0 1

2
1
4

1
8

1
16 · · ·

− 1
4 − 1

2 0 1
2

1
4

1
8 · · ·

− 1
8 − 1

4 − 1
2 0 1

2
1
4 · · ·

...
...

...
...

...
...

. . .

 .

In other words,



fn(m) =

 2m−n if n > m,
0 if n = m,
−2n−m if n < m.

It follows that, for m = 0, 1, 2, . . .,

∞∑
n=0

fn(m) =
��

����m−1∑
n=0

(−2n−m) + 0 +
�
�����2m∑

n=m+1

2m−n +

∞∑
n=2m+1

2m−n =

∞∑
n=2m+1

2m−n

=

∞∑
k=1

2−m−k = 2−m
∞∑
k=1

2−k = 2−m
1

2

∞∑
k=0

2−k = 2−m
1

2

1

1− 1/2
= 2−m,

where in the passage from the first to the second line we changed summation index k = n− 2m. It follows that

∞∑
m=0

∞∑
n=0

fn(m) =

∞∑
m=0

2−m =
1

1− 1/2
= 2.

On the other hand, for n = 0, 1, 2, . . .,

∞∑
m=0

fn(m) = −2−n
1

2

∞∑
k=0

2−k = −2−n,

and so

∞∑
n=0

∞∑
m=0

fn(m) =

∞∑
n=0

(−2−n) = −2.

Since 2 6= −2, the sequence (of sequences) f does the required job. Note that, in light of Theorem 3.40 (Fubini-
Tonelli), such a result could never hold if instead we considered sequences of (extended) positive real numbers.

Problem 4 (A – perhaps surprising? – convergent series)

For a natural number n ≥ 1, define the set

Sn := {k ∈ N : k ≥ 1 and k has exactly n digits and none of them is 9}.

Our first claim is that the set Sn has 8 · 9n−1 elements. This can be verified via induction on n. For n = 1, we
have that

S1 = {1, 2, 3, 4, 5, 6, 7, 8},

and so S1 has 8 = 8 · 91−1 elements, as desired. Let us assume that the set Sn has 8 · 9n−1 elements, and prove
that the set Sn+1 has 8 · 9n elements. Any elements of Sn+1 can be obtained in a unique way from an element
of Sn by concatenating a single digit to its end. Conversely, any element of Sn gives rise to an element of Sn+1

by concatenation of a single digit to its end. For each element of Sn, there are 9 possibilities for doing this (one
chooses one of 0,1,2,3,4,5,6,7,8). It follows that the number of elements of Sn+1 is exactly 9 times the number
of elements of Sn, which by induction hypothesis is 8 · 9n−1. Therefore the number of elements of the set Sn+1

is 9 · (8 · 9n−1) = 8 · 9n, as desired.
Our next observation is that any element of Sn is at least 10n−1. This follows from noting that

10n−1 = 100 . . . 0︸ ︷︷ ︸
n digits

∈ Sn,

and that
10n−1 − 1 = 99 . . . 9︸ ︷︷ ︸

n−1 digits

∈ Sn−1.

As a consequence, the elements of the set Sn contribute to the original sum by less that 8·9n−1

10n−1 . Indeed, denoting
the number of elements of the set Sn by #Sn, we have that∑

k∈Sn

εn
n
≤
∑
k∈Sn

1

10n−1
=

1

10n−1

∑
k∈Sn

1 =
1

10n−1
(#Sn) =

8 · 9n−1

10n−1
.



We can finally conclude that

∞∑
n=1

εn
n

=

∞∑
n=1

( ∑
k∈Sn

εn
n

)
≤
∞∑

n=1

8 · 9n−1

10n−1
= 8

∞∑
n=1

( 9

10

)n−1
= 8

∞∑
m=1

( 9

10

)m
= 8

1

1− 9/10
= 80 <∞.

Note that we proved a stronger result. Not only does the series converge, but we also have the quantitative
estimate

∞∑
n=1

εn
n
≤ 80.

As a final remark, let us mention that this series is an example of what in the literature goes under the name of
“Kempner series”. It can be shown that, up to 10 decimals, the actual sum is 22.9206766193, but the methods
for proving that result are beyond the scope of this class.


