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Problem 1 (Cauchy criterion for converging sequences)

Let us start by proving that a sequence that converges to a finite limit satisfies Cauchy’s criterion. With that
purpose in mind, let f : N→ X be a sequence for which

lim inf
n→∞

f(n) = lim sup
n→∞

f(n) <∞. (1)

As usual, consider the auxiliary sequences g, h : N→ X defined by

g(n) := inf{f(m) : m ≥ n}
h(n) := sup{f(m) : m ≥ n}.

The sequence g is monotonically increasing and the sequence h is monotonically decreasing. Let

A := sup
n∈N

g(n) and B := inf
n∈N

h(n).

By hypothesis, A = B < ∞. By Theorem 2.36 and a straightforward modification thereof (for monotonically
decreasing sequences), we know that

∀ε > 0,∃n1 ∈ N : ∀m > n1, g(m) ≤ A < g(m) + ε, (2)

∀ε > 0,∃n2 ∈ N : ∀m′ > n2, h(m′) < A+ ε ≤ h(m′) + ε. (3)

Moreover we have that, for every n ∈ N,

g(n) ≤ f(n) ≤ h(n).

Now, let ε > 0 be given. Since ε/2 > 0 as well, we know from (2) and (3) that there exist natural numbers
n1, n2 ∈ N with the following properties:

g(m) ≤ A < g(m) + ε/2 if m > n1, and

h(m′) < A+ ε/2 ≤ h(m′) + ε/2 if m′ > n2.

Let n := max{n1, n2}. Then, for m,m′ > n, we have that

A < g(m) + ε/2 ≤ f(m) + ε/2 ≤ h(m) + ε/2 < A+ ε,

A < g(m′) + ε/2 ≤ f(m′) + ε/2 ≤ h(m′) + ε/2 < A+ ε,

and so in particular

f(m) ≤ A+ ε/2, and

A < f(m′) + ε/2.

Since A <∞, we conclude from adding these two inequalities that

f(m) < f(m′) + ε.

The proof that f(m′) < f(m) + ε is analogous and left to the reader.

Now we prove that a sequence that satisfies Cauchy’s criterion converges to a finite limit. With that purpose
in mind, let f : N→ X be a sequence satisfying

∀ε > 0∃n ∈ N∀m ≥ n,m′ ≥ n : f(m) < f(m′) + ε ∧ f(m′) < f(m) + ε, (4)

and consider the auxiliary sequences g and h as defined above. Let ε > 0 be given. Applying (4), we conclude
the existence of a natural number n3 ∈ N such that



f(m) < f(m′) + ε/4 ∧ f(m′) < f(m) + ε/4 if m,m′ > n3.

In what follows, we will summarize this by writing more succinctly

|f(m)− f(m′)| < ε/4 if m,m′ > n3. (5)

We claim that |g(n3)− h(n3)| < ε/2. This implies that |g(n)− h(n)| < ε/2 for every n ≥ n3. In fact, since g is
monotonically increasing and h is monotonically decreasing, if n ≥ n3, then

g(n3) ≤ g(n) ≤ f(n) ≤ h(n) ≤ h(n3),

and so

|h(n)− g(n)| ≤ |h(n3)− g(n3)| < ε/2.

It remains to verify the claim. Suppose not, i.e. suppose that |h(n3)− g(n3)| ≥ ε/2. Since h(n3) ≥ g(n3), this
can be rewritten as

h(n3) ≥ g(n3) + ε/2.

By definition, g(n3) = inf{f(m) : m ≥ n3} and h(n3) = sup{f(m) : m ≥ n3}. Recalling that the infimum of
a set is its largest lower bound, and the supremum of a set is its smallest upper bound, we see that, for every
δ > 0, and so in particular for δ := ε/100, there exist natural numbers m,m′ > n3 such that

g(n3) + δ > f(m) and f(m′) + δ > h(n3).

It follows that

f(m) + ε/2 < g(n3) + δ + ε/2 ≤ h(n3) + δ < f(m′) + 2δ.

Recalling that δ = ε/100, it follows that

f(m′) + ε/50 = f(m′) + 2δ > f(m) + ε/2,

and so

f(m′) > f(m) + 12ε/25 > f(m) + ε/4,

which is absurd in light of (5). This establishes the claim.
So now we know that

|g(n)− h(n)| < ε/2 for every n ≥ n3. (6)

Denoting as before A := supn g(n) and B := infn h(n), we will be done once we show that A = B. It will suffice
to show that A ≥ B, for the reverse inequality holds for a general sequence f in light of Theorem 3.4. We claim
that A+ ε ≥ B, and establish this by contradiction. Suppose not, i.e. suppose

A+ ε < B.

Since g(n3) ≤ A and B ≤ h(n3), we would then have that

g(n3) + ε ≤ A+ ε < B < h(n3),

and so
g(n3) + ε < h(n3),

in contradiction to (6). The contradiction shows that A+ ε ≥ B. Since ε > 0 could have been chosen arbitrarily
small, this implies that A ≥ B, and so A = B, as desired. The proof is now complete.



Problem 2 (Series, quotients and inequalities)

(a) From Problem 2(c) in Übungsblatt 2 we have an expression for the partial sums of the series we are trying
to compute, namely

n∑
k=0

xk =
1− xn+1

1− x
.

Note carefully that up to now only the condition x 6= 1 was used. Now, since 0 < x < 1, we have that
limn→∞ xn+1 = 0, and so

∞∑
n=0

xn = lim
n→∞

n∑
k=0

xk = lim
n→∞

1− xn+1

1− x
=

1

1− x
.

(b) Let N ∈ N be as promised by the hypothesis of the problem. We claim that aN+k ≤ ykaN for every k ∈ N.
This can be verified by induction, the base case k = 0 amounting to the identity aN = aN . Assuming the
statement has been proved for k, compute:

aN+(k+1) = a(N+k)+1 ≤ yaN+k ≤ y(ykaN ) = yk+1aN ,

as desired. Here we used the assumption of the problem and the induction hypothesis, respectively.

It follows that:

∞∑
n=0

an =

N−1∑
n=0

an +

∞∑
n=N

an =

N−1∑
n=0

an +

∞∑
k=0

aN+k

≤
N−1∑
n=0

an + aN

∞∑
k=0

yk =

N−1∑
n=0

an +
aN

1− y
. (7)

Here, we just changed indices n = N + k, applied the claim, and appealed to part (a) (which is legitimate
since 0 < y < 1). The right-hand side of (7) is clearly a finite number, and the proof is complete.

(c) By the elementary inequality proved in Problem 3(d) from Übungsblatt 1 we have that, for each n ∈ N,

anbn ≤
1

2
a2n +

1

2
b2n.

It follows that

∞∑
n=0

anbn ≤
1

2

∞∑
n=0

a2n +
1

2

∞∑
n=0

b2n, (8)

and so the series on the left-hand side of this inequality is finite provided both of the series on the
right-hand side are finite, as desired.

For the second part, let us appeal to a common “normalization” trick. If neither of the sequences a, b is
made up of all zeros (in which case the inequality we are after holds trivially), then we can introduce the
modified sequences

ãn = an/
( ∞∑
k=0

a2k

)1/2
and b̃n = bn/

( ∞∑
k=0

b2k

)1/2
.

These are “normalized” in the sense that

∞∑
n=0

ã2n =

∞∑
n=0

{
a2n/
( ∞∑
k=0

a2k

)}
=

∑∞
n=0 a

2
n∑∞

k=0 a
2
k

= 1,

and similarly

∞∑
n=0

b̃2n = 1.

Applying (8) to the sequences ã and b̃ yields

∞∑
n=0

ãnb̃n ≤
1

2

∞∑
n=0

ã2n +
1

2

∞∑
n=0

b̃2n,



which can be rewritten in terms of the original sequences a and b as

∞∑
n=0

{
an/
( ∞∑
k=0

a2k

)1/2}{
bn/
( ∞∑
k=0

b2k

)1/2}
≤ 1

2
· 1 +

1

2
· 1 = 1.

Clearing denominators, we find our old friend Cauchy-Schwarz, this time covering the case of possibly
infinite sequences:

∞∑
n=0

anbn ≤
( ∞∑
n=0

a2n

)1/2( ∞∑
n=0

b2n

)1/2
.

(d) Using the Cauchy-Schwarz inequality proved in part (c), we have that

∞∑
n=1

an
n
≤
( ∞∑
n=1

a2n

)1/2( ∞∑
n=1

1

n2

)1/2
.

Since the series
∑∞
n=0 a

2
n < ∞ by hypothesis, we have that

∑∞
n=1 a

2
n < ∞, and so will be done once we

check that
∑∞
n=1

1
n2 <∞. For that purpose, let us follows the hint. Start by noting that, if n ≥ 2,

1

n2
≤ 1

n(n− 1)
.

On the other hand, for the same range of n,

1

n(n− 1)
=

1

n− 1
− 1

n
.

It follows that the series with general term (n(n− 1))−1 telescopes, i.e. its partial sums obey

N∑
n=2

1

n(n− 1)
=

N∑
n=2

( 1

n− 1
− 1

n

)
=
(

1− 1

2

)
+
(1

2
− 1

3

)
+
(1

3
− 1

4

)
+ . . .+

1

N − 2
− 1

N − 1
+
( 1

N − 1
− 1

N

)
=1 +

( 1

2
− 1

2︸ ︷︷ ︸
=0

)
+
( 1

3
− 1

3︸ ︷︷ ︸
=0

)
+ . . .+

( 1

N − 1
− 1

N − 1︸ ︷︷ ︸
=0

)
− 1

N

=1− 1

N
.

It follows that

∞∑
n=2

1

n(n− 1)
= lim
N→∞

N∑
n=2

1

n(n− 1)
= lim
N→∞

(
1− 1

N

)
= 1,

and so
∞∑
n=1

1

n2
= 1 +

∞∑
n=2

1

n2
≤ 1 +

∞∑
n=2

1

n(n− 1)
= 1 + 1 = 2 <∞.



Problem 3 (α−test)
(a) Let n be a natural number greater than or equal to 1. By definition of maximum, we have that L(n) ∈
{k ∈ N : 2k ≤ n}, and so

2L(n) ≤ n.

On the other hand,
n < 2L(n)+1,

for if 2L(n)+1 ≤ n, then L(n) + 1 would be an element of the set {k ∈ N : 2k ≤ n} which is strictly larger
than L(n), thereby contradicting the assumption that L(n) is the maximum of that set. Therefore we
have that

2L(n) ≤ n < 2L(n)+1,

as desired.

(b) The crucial combinatorial observation is that, for j ∈ {0, 1, . . . , k − 1}, there are 2j numbers for which
L(n) = j. In fact, these are the elements of the set {2j , 2j + 1, 2j + 2, . . . , 2j + (2j − 1)}. Additionally note
that

k−1∑
j=0

2j =
1− 2k

1− 2
= 2k − 1,

and so the original sum can be decomposed as

2k−1∑
n=1

( 1

2L(n)

)α
=

k−1∑
j=0

( ∑
n∈N\{0}:
L(n)=j

( 1

2L(n)

)α)
.

In the right-hand side of this last identity, for each j ∈ {0, 1, . . . , k − 1}, the inner summation runs over
all natural numbers n ≥ 1 such that L(n) = j. It follows that

2k−1∑
n=1

( 1

2L(n)

)α
=

k−1∑
j=0

( ∑
n∈N\{0}:
L(n)=j

( 1

2L(n)

)α)
=

k−1∑
j=0

1

2jα
2j =

k−1∑
j=0

2j(1−α) =

k−1∑
j=0

(21−α)j .

If α 6= 1, then 21−α 6= 1, and appealing again to the formula for the sum of the first k terms of a geometric
series one gets that

2k−1∑
n=1

( 1

2L(n)

)α
=

k−1∑
j=0

(21−α)j =
1− (21−α)k

1− 21−α
.

If 0 ≤ α < 1, then 21−α > 1,

lim
k→∞

(21−α)k =∞

and

∞∑
n=1

( 1

2L(n)

)α
= lim
k→∞

2k−1∑
n=1

( 1

2L(n)

)α
= lim
k→∞

1− (21−α)k

1− 21−α
=∞.

If, on the other hand, 1 < α <∞, then 21−α < 1 and

lim
k→∞

(21−α)k = 0.

It follows that

∞∑
n=1

( 1

2L(n)

)α
= lim
k→∞

2k−1∑
n=1

( 1

2L(n)

)α
= lim
k→∞

1− (21−α)k

1− 21−α
=

1

1− 21−α
<∞.

Finally, if α = 1, then



2k−1∑
n=1

1

2L(n)
=

k−1∑
j=0

(21−1)j =

k−1∑
j=0

1 = k,

and so the series
∞∑
n=1

1

2L(n)
= lim
k→∞

2k−1∑
n=1

1

2L(n)
= lim
k→∞

k =∞

again diverges.

(c) This time we start with the case α = 1. It follows from part (a) that

∞∑
n=1

1

n
>

∞∑
n=1

1

2L(n)+1
=

1

2

∞∑
n=1

1

2L(n)
.

From the last paragraph of part (b) we know that this last series diverges, and so the harmonic series
diverges as well:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . . =∞.

If 0 ≤ α < 1, then parts (a) and (b) imply that

∞∑
n=1

1

nα
>

∞∑
n=1

( 1

2L(n)+1

)α
=

1

2α

∞∑
n=1

( 1

2L(n)

)α
=∞,

and so the series with general term n−α (0 ≤ α < 1) diverges as well.

Finally, if 1 < α <∞, then appealing again to parts (a) and (b), one has that

∞∑
n=1

1

nα
≤
∞∑
n=1

( 1

2L(n)

)α
=

1

1− 21−α
<∞.

All in all, we conclude that the series
∞∑
n=1

1

nα

converges if and only if 1 < α <∞.

Problem 4 (Quasi Stirling formula)

(a) Let us start by proving that the sequence {αn} is monotonically increasing. In light of Theorem 2.29, it
will be enough to show that αn ≤ αn+1 for every n ≥ 1, i.e.

(
1 +

1

n

)n
≤
(

1 +
1

n+ 1

)n+1

.

This follows from an elementary application of the AM-GM inequality (Problem 4, Übungsblatt 4) to the
n+ 1 positive real numbers

x1 = 1, and x2 = x3 = . . . = xn+1 = 1 +
1

n
,

for then

(
1+

1

n

)n
= x1x2x3 . . . xn+1 ≤

(x1 + x2 + x3 + . . .+ xn+1

n+ 1

)n+1

=
(1 + n(1 + 1

n )

n+ 1

)n+1

=
(

1+
1

n+ 1

)n+1

,

as desired.

Let us now focus on the sequence {βn}, for which we want to show(
1 +

1

n

)n+1

≥
(

1 +
1

n+ 1

)n+2



for every n ≥ 1. We shall use Bernoulli’s inequality which was already discussed in Präsenzübung 5. A
variant thereof (whose easy proof runs by induction on m and will therefore be omitted) states that if
m ∈ N and x ∈ X,

(1 + x)m ≥ 1 +mx.

Using this with x = 1
n2+2n and m = n+ 1, one gets that(

1 + 1
n

)n+1

(
1 + 1

n+1

)n+1 =
(

1 +
1

n2 + 2n

)n+1

≥ 1 +
n+ 1

n2 + 2n
≥ 1 +

1

n+ 1
.

It follows that (
1 +

1

n

)n+1

≥
(

1 +
1

n+ 1

)(
1 +

1

n+ 1

)n+1

=
(

1 +
1

n+ 1

)n+2

,

as desired.

(b) Start by noting that the sequence α converges since it is monotonically increasing. This is the partial
content of Theorem 3.5. It is also a bounded sequence since, for every natural number n ≥ 2,

(
1 +

1

n

)(
1− 1

n

)
= 1− 1

n2
≤ 1,

and so such numbers satisfy

αn =
(

1 +
1

n

)n
≤
(

1− 1

n

)−n
≤
(

1− 1

2

)−2
= 4. (9)

It follows that limn→∞ αn is a (finite) nonnegative real number, which we will denote by e.

Now we relate the sequences α and β. Note that, for n ≥ 2, the previous estimate (9) implies

βn − αn =
(

1 +
1

n

)n(
(1 +

1

n
)− 1

)
≤ 4

n
.

Since 1 + 1/n ≥ 1, we further have that βn ≥ αn, and so

αn −
4

n
≤ βn ≤ αn +

4

n

for n ≥ 2. It follows that

lim inf
n→∞

αn ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn ≤ lim sup
n→∞

αn.

Since we already know that lim infn→∞ αn = lim supn→∞ αn = e, it follows that

lim inf
n→∞

βn = lim sup
n→∞

βn,

and that the value of this common limit equals e.

Remark. It can be shown that e =
∑∞
n=0

1
n! ' 2.7182818284590452354...

(c) Let us start by proving that, for every natural number n ≥ 2,

(
1 +

1

1

)1(
1 +

1

2

)2(
1 +

1

3

)3
. . .
(

1 +
1

n− 1

)n−1
=
nn

n!
.

We use induction on n, the base case n = 2 being trivial:

(
1 +

1

1

)1
= 2 =

22

2!
.

Assuming the result holds for n, let us verify it for n+ 1:

(
1 +

1

1

)1(
1 +

1

2

)2(
1 +

1

3

)3
. . .
(

1 +
1

n− 1

)n−1(
1 +

1

n

)n
=
nn

n!

(
1 +

1

n

)n
=

��nn

n!

(n+ 1)n

��nn

=
(n+ 1)n

n!
=

(n+ 1)n

n!

n+ 1

n+ 1
=

(n+ 1)n+1

(n+ 1)!
.



This proves the first identity.

The second one states that, for every natural number n ≥ 2,

(
1 +

1

1

)2(
1 +

1

2

)3(
1 +

1

3

)4
. . .
(

1 +
1

n− 1

)n
=

nn

(n− 1)!
,

and we follow a similar route. The base case n = 2 amounts to checking that

(
1 +

1

1

)2
= 4 =

22

1!
.

Assuming that the statement has been verified for n, let us check it for n+ 1:

(
1 +

1

1

)2(
1 +

1

2

)3(
1 +

1

3

)4
. . .
(

1 +
1

n− 1

)n(
1 +

1

n

)n+1

=
nn

(n− 1)!

(
1 +

1

n

)n+1

=
nn

(n− 1)!

(n+ 1)n+1

nn+1

=
��nn

(n− 1)!

(n+ 1)n+1

n ·��nn
=

(n+ 1)n+1

n!
.

This proves the second identity.

(d) The first identity proved in part (c) translates into

α1α2α3 . . . αn−1 =
nn

n!
, (10)

whereas the second one translates into

β1β2β3 . . . βn−1 =
nn

(n− 1)!
. (11)

Since the sequence α is monotonically increasing, we have that

αn ≤ lim
n→∞

αn = e, for every n ∈ N \ {0}.

Similarly, since the sequence β is monotonically decreasing, we have that

lim
n→∞

βn = e ≤ βn, for every n ∈ N \ {0}.

It follows that

α1α2α3 . . . αn−1 ≤ en−1 ≤ β1β2β3 . . . βn−1,

and so (10) and (11) imply that

nn

n!
≤ en−1 ≤ nn

(n− 1)!
.

These inequalities can be rewritten as

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
,

and we are done.


