Analysis 1, Solutions to problem set 6

Problem 1 (Cauchy criterion for converging sequences)

Let us start by proving that a sequence that converges to a finite limit satisfies Cauchy’s criterion. With that
purpose in mind, let f: N — X be a sequence for which

liminf f(n) = limsup f(n) < co. (1)

n—00 n—00

As usual, consider the auxiliary sequences g, h : N — X defined by

g(n) :=1inf{f(m) : m >n}
h(n) :=sup{f(m): m >n}.

The sequence ¢ is monotonically increasing and the sequence h is monotonically decreasing. Let

A:=supg(n) and B := inf h(n).
neN neN

By hypothesis, A = B < co. By Theorem 2.36 and a straightforward modification thereof (for monotonically
decreasing sequences), we know that

Ve>0,3n1 e N:Vm >nq, g(m) <A<g(m)+e, (2)
Ve > 0,3ns € N:Vm' > no, h(m') < A+e<h(m')+e. (3)

Moreover we have that, for every n € N,

g9(n) < f(n) < h(n).

Now, let € > 0 be given. Since €/2 > 0 as well, we know from and that there exist natural numbers
ni,ns € N with the following properties:

gim) <A <g(m)+e/2if m>ng, and
h(m") < A+¢/2 < h(m') +¢€/2if m' > ns.

Let n := max{ny,ny}. Then, for m,m’ > n, we have that

A<g(m)+e/2< f(m)+€/2<h(m)+€/2<A+e,
A<gm)+e/2< f(m')+e/2<h(m')+€/2<A+e,

and so in particular

flm) <A+4¢€/2, and
A< f(m)+e/2.

Since A < 0o, we conclude from adding these two inequalities that

f(m) < f(m') +e.
The proof that f(m’) < f(m) + € is analogous and left to the reader.

Now we prove that a sequence that satisfies Cauchy’s criterion converges to a finite limit. With that purpose
in mind, let f: N — X be a sequence satisfying

Ve >03dn e NYm >n,m’ >n: f(m) < f(m') +eA f(m') < f(m) +e, (4)

and consider the auxiliary sequences g and h as defined above. Let € > 0 be given. Applying , we conclude
the existence of a natural number n3 € N such that



fim) < f(m')+¢e/4N f(m') < f(m) + ¢/4 if mym' > ns.

In what follows, we will summarize this by writing more succinctly

|f(m) — f(m)] < e/4if m,m’ > ns. (5)
We claim that |g(n3) — h(ns)| < €/2. This implies that |g(n) — h(n)| < €/2 for every n > n3. In fact, since g is
monotonically increasing and h is monotonically decreasing, if n > ng, then

g9(n3) < g(n) < f(n) < h(n) < h(ns),

and so

[h(n) — g(n)| < [h(ns) — g(ns)| < €/2.

It remains to verify the claim. Suppose not, i.e. suppose that |h(n3) — g(ns)| > €/2. Since h(ngz) > g(ns), this
can be rewritten as

h(ns) > g(ns) + €/2.

By definition, g(ng) = inf{f(m) : m > ns} and h(ns) = sup{f(m) : m > ns}. Recalling that the infimum of
a set is its largest lower bound, and the supremum of a set is its smallest upper bound, we see that, for every
d > 0, and so in particular for § := €/100, there exist natural numbers m, m’ > n3 such that

g(n3) +6 > f(m) and f(m’) + 6 > h(ns).

It follows that

f(m)+e/2<g(ns)+86+¢/2<h(nz)+6< f(m')+26.
Recalling that § = €/100, it follows that

f(m') +¢/50 = f(m') +25 > f(m) +¢/2,

and so

f(m') > f(m)+12¢/25 > f(m) + €/4,
which is absurd in light of (5)). This establishes the claim.
So now we know that

lg(n) — h(n)| < €/2 for every n > ns. (6)
Denoting as before A := sup,, g(n) and B := inf,, h(n), we will be done once we show that A = B. Tt will suffice
to show that A > B, for the reverse inequality holds for a general sequence f in light of Theorem 3.4. We claim
that A+ € > B, and establish this by contradiction. Suppose not, i.e. suppose

A+e<B.

Since g(n3) < A and B < h(n3), we would then have that

g(ng) + e < A+e€ < B < h(ng),

and so
g(n3) + € < h(ngz),

in contradiction to @ The contradiction shows that A+e¢ > B. Since € > 0 could have been chosen arbitrarily
small, this implies that A > B, and so A = B, as desired. The proof is now complete.



Problem 2 (Series, quotients and inequalities)

(a)

From Problem 2(c) in Ubungsblatt 2 we have an expression for the partial sums of the series we are trying

to compute, namely
1 — gntt

Zm 1-z

Note carefully that up to now only the condition = # 1 was used. Now, since 0 < = < 1, we have that
lim;, 00 2"t = 0, and so

o0 n /I'L+1

no_ 1 E 1 1—=x - 1
" = lim z¥ = lim = .
— n—)ook . n—soco 1 —2x 1—=x

Let N € N be as promised by the hypothesis of the problem. We claim that ay ., < y*ay for every k € N.
This can be verified by induction, the base case k = 0 amounting to the identity ay = an. Assuming the
statement has been proved for k, compute:

ANt (e+1) = AN+R)+1 S Yank < y(yFan) =y ay,
as desired. Here we used the assumption of the problem and the induction hypothesis, respectively.
It follows that:

00 N-1 00 N-1 0o
Doan =D ant Y} =) ant) aner
n=0 n=0 n=N n=0 k=0
N-1 oo N-1 a
ko N
<Y mtan 3 = Y g
n=0 k=0 n=0
Here, we just changed indices n = N + k, applied the claim, and appealed to part (a) (which is legitimate

since 0 < y < 1). The right-hand side of is clearly a finite number, and the proof is complete.

By the elementary inequality proved in Problem 3(d) from Ubungsblatt 1 we have that, for each n € N,
1 1
b < —a? + =b2.
a < 2an + 5n
It follows that

Zanbngizai_FiZbEU (8)
n=0 n=0 n=0
and so the series on the left-hand side of this inequality is finite provided both of the series on the

right-hand side are finite, as desired.

For the second part, let us appeal to a common “normalization” trick. If neither of the sequences a,b is
made up of all zeros (in which case the inequality we are after holds trivially), then we can introduce the
modified sequences

ap, = an/(iai)l/2 and b, = bn/<ibi>l/2.

k=0 k=0

These are “normalized” in the sense that

-3 (a5 a) - Fed o

and similarly



which can be rewritten in terms of the original sequences a and b as

> fonf(et) Yol (S0) Y <5 152

1.

Clearing denominators, we find our old friend Cauchy-Schwarz, this time covering the case of possibly

infinite sequences:
i b < ( i ai) 1/2 ( i bi) 1/2‘
n=0 n=0 n=0
Using the Cauchy-Schwarz inequality proved in part (c), we have that
s an i 1/2 1\1/2
> e () ()"

Since the series Y -
check that > °7

nOn

1 < o0. For that purpose, let us follows the hint. Start by noting that, if n > 2,

n=1n

1 1

On the other hand, for the same range of n,

1 1

1
nn—1) n—-1 n

It follows that the series with general term (n(n — 1))~! telescopes, i.e. its partial sums obey

< 0o by hypothesis, we have that Zn : a? < oo, and so will be done once we

+
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It follows that

and so
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Problem 3 (a—test)

(a) Let n be a natural number greater than or equal to 1. By definition of maximum, we have that L(n) €
{k € N: 2% <n}, and so
2L < .

On the other hand,
n < 2kM+1

for if 2000+ < n then L(n) + 1 would be an element of the set {k € N : 2¥ < n} which is strictly larger
than L(n), thereby contradicting the assumption that L(n) is the maximum of that set. Therefore we

have that
as desired.
(b) The crucial combinatorial observation is that, for j € {0,1,...,k — 1}, there are 2/ numbers for which

L(n) = j. In fact, these are the elements of the set {27,27 +1,27 +2,...,27 4+ (27 —1)}. Additionally note
that
1- 2k
Z 2 = =2k _1,

and so the original sum can be decomposed as

2k 1 k—1

> () =2 (X Gaw)):

n=1 i=0 " nen\{0}:

In the right-hand side of this last identity, for each j € {0,1,...,k — 1}, the inner summation runs over
all natural numbers n > 1 such that L(n) = j. It follows that

2k_1 k—1 k—1 k—1 k—1

1 @ 1 o 1 . . :
_ - — = 9j — j(l—a) _ 1—ayj
> (zw) =2 X () ) =Xae? =Xzt =2ey
n=1 j=0 neN\{0}: 7=0 7=0 7=0
L(n)=j

If o # 1, then 21~ # 1, and appealing again to the formula for the sum of the first k terms of a geometric
series one gets that

2k 1 k—1

Z(an) =2, :#:;)k'

n=1 i=0

AN

If0<a<l1,then 2\ > 1,

lim (2'72)% = 0
k—oo

and
2k _1

o0
1\ 1 \@ 1 — (21— )k
; (2L(n>) = Jim, ; (2L<n>> = o =

If, on the other hand, 1 < o < oo, then 217® < 1 and

lim (2'7*)* = 0.

k—o0

It follows that

.
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Finally, if @ = 1, then



n=1 7=0 7=0
and so the series
00 1 2k 1
> gy = Am Y iy = Jim k= oo
n=1 n=1

again diverges.

(¢) This time we start with the case « = 1. It follows from part (a) that

Gl I 1 1<n 1
2> 2 g = 3 2 5

From the last paragraph of part (b) we know that this last series diverges, and so the harmonic series
diverges as well:

oo

Zl—1+1+1+1+ =0
no 203 4 T
If 0 < a < 1, then parts (a) and (b) imply that
N I\ 1/ 1 e
Z:ln7"‘> 1(2L<n>+1) :zazl(Qun)) =%

and so the series with general term n~% (0 < a < 1) diverges as well.

Finally, if 1 < o < 00, then appealing again to parts (a) and (b), one has that

=1 =/ 1 e 1
ZESZ(QL(M) :1_21—a<oo'
n=1 n=1

All in all, we conclude that the series

=1
2w

converges if and only if 1 < a < oo.

Problem 4 (Quasi Stirling formula)

(a) Let us start by proving that the sequence {cv,} is monotonically increasing. In light of Theorem 2.29, it
will be enough to show that «,, < ;41 for every n > 1, i.e.

1\ 1 n+1
(1+3) <(+57)
n n+1
This follows from an elementary application of the AM-GM inequality (Problem 4, Ubungsblatt 4) to the
n + 1 positive real numbers

1
z1=1 andzs=23=...=xp41 =1+ —,
n

for then

1\n n+1 14+n(l+4 L)\n+1 1 \ntl
(1+f)  1TaTs . Tme1 < (m1+x2+x3+ +xn+1> :< ( n)) :(1 ) ’
n

n+1 n+1 n+1
as desired.

Let us now focus on the sequence {3, }, for which we want to show

1 n+1 1 n+2
() =+ 5)
n n+1




for every n > 1. We shall use Bernoulli’s inequality which was already discussed in Présenziibung 5. A
variant thereof (whose easy proof runs by induction on m and will therefore be omitted) states that if
m € N and x € X

1+2)™>14ma.

Using this with x = and m = n + 1, one gets that

_1
n2+4+2n

<1 n 1>n+1
n 1 n+1 n+1 1
44444mj:( + 3 ) >14+—=—2>1+
1 n? 4+ 2n
(1+ )

n2+2n — n+1

1 n+1 1 1 n+1 1 n+2

(45) =+ )0+ ) =)
n n+1 n+1 n—+1

Start by noting that the sequence « converges since it is monotonically increasing. This is the partial
content of Theorem 3.5. It is also a bounded sequence since, for every natural number n > 2

1 1 1
(1+—)(177):1f—231,
n n n

It follows that

as desired.

and so such numbers satisfy

() () e () 0

n

It follows that lim,—,~ v, is a (finite) nonnegative real number, which we will denote by e.
Now we relate the sequences o and (3. Note that, for n > 2, the previous estimate @D implies
1\n 1
Bo—an=(1+-) (A+)-1) <.
n n n
Since 1+ 1/n > 1, we further have that 3, > «a,, and so

4 4
an_fgﬁngan_kf
n n

for n > 2. It follows that

liminf o, < liminf 8, < limsup 8, < limsup a,,.
n—00 n—00 n—o00 n—o00

Since we already know that liminf,_,. o, = limsup,,_,. o, = e, it follows that

liminf 8,, = limsup 5,,
n—00 n—o00

and that the value of this common limit equals e.
Remark. Tt can be shown that e = > °° % o~ 2.7182818284590452354...

n=0

Let us start by proving that, for every natural number n > 2,

(1) (1) (rg) o (i) =5
1 2 3/ n—1 Conl’
We use induction on n, the base case n = 2 being trivial:

1\ 22
1 f) —9=2Z
(*1 5]

Assuming the result holds for n, let us verify it for n + 1:

(1) (1) () o (v ) T () = S () =

(n+1)" (m+1)"n+1  (n+1)"*!
n! nl n+1  (n+1)!




This proves the first identity.

The second one states that, for every natural number n > 2,

(1+3) (+3) (g) - (4 759) = 5

and we follow a similar route. The base case n = 2 amounts to checking that

1\2 22
1 7) —g=Z
(*1 1

Assuming that the statement has been verified for n, let us check it for n + 1:

(”%)2(”%)3(”94“' (Hﬁ)n(l*%)m = (nn—nm (”%)M = (nri)! <n;:n1+):+l
2 (n+ 1) B (n+1)n+t
(n—1)! n-»7 n! )

This proves the second identity.
The first identity proved in part (c) translates into

nn

H? (10)

10903 ...0p_1 —
whereas the second one translates into

n’ﬂ

(n—1)1"

Since the sequence « is monotonically increasing, we have that

P1Paps ... 1 =

an < lim a, =e, forevery n € N\ {0}.

n— 00

Similarly, since the sequence (8 is monotonically decreasing, we have that

lim 8, =e<B,, foreveryneN\{0}.
n—oo

It follows that

Qranag ... a1 <e" < B1BaBs . B,

and so and imply that

These inequalities can be rewritten as

and we are done.



