
Analysis 1, Solutions to problem set 4

Problem 1 (Cardinality)

(a) Let us use the letter F to denote the set of all functions f : {0, 1} → N.

An element f ∈ F is completely determined by the values it takes at 0 and at 1, i.e. by looking at
the natural number f(0) and then at the natural number f(1). This information can be encoded in the
“ordered pair” (f(0), f(1)).

The following picture illustrates a map, denoted Φ, from the set natural numbers N onto the set F :
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which should be interpreted as follows:

0
Φ7→ (f0 : {0, 1} → N, f0(0) = 0, f0(1) = 0)

1
Φ7→ (f1 : {0, 1} → N, f1(0) = 0, f1(1) = 1)

2
Φ7→ (f2 : {0, 1} → N, f2(0) = 1, f2(1) = 0)

3
Φ7→ (f3 : {0, 1} → N, f3(0) = 2, f3(1) = 0)

4
Φ7→ (f4 : {0, 1} → N, f4(0) = 1, f4(1) = 1)

...

By construction, it is clear that the map Φ : N→ F just described is well-defined and bijective. Theorem
1.33 implies in particular that there exists an injective map Ψ : F → N. It follows that the set F is
countable, as desired.

Remark. The set F is usually denoted in the literature by “N×N” to emphasize the fact that it consists
of “ordered pairs” of natural numbers. We will obey this tradition in the problems below.

(b) Let Q+ denote the set of positive rationals, i.e.

Q+ := {q ∈ Q : q > 0}.

For every q ∈ Q+, there exists at least one pair (n,m) ∈ N × N such that q = m
n . Therefore we can find

an injection ι : Q+ → N×N, q 7→ (n,m). In part (a) we proved that the set N×N is countable, i.e. there
exists an injection φ : N×N→ N. Since the composition of injective functions is injective, it follows that
the function φ ◦ ι provides an injection from Q+ to N. It follows that Q+ is countable.

In a similar way, the set Q− of negative rationals is countable. It follows from Problem 0 of this week’s
Präsenzblatt that the set

Q = Q− ∪ {0} ∪Q+

is countable, as desired.

(c) Aiming at a contradiction, let ϕ : N→ Q be an order-preserving bijection from the set of natural numbers
to the set of rationals. Consider the rational numbers ϕ(0) and ϕ(1). Since ϕ is in particular an injection,



it follows that ϕ(0) 6= ϕ(1). Since 0 < 1, we actually have that ϕ(0) < ϕ(1) since ϕ is order-preserving by
assumption. Consider the midpoint q of the rational numbers ϕ(0) and ϕ(1),

q :=
ϕ(0) + ϕ(1)

2
.

This is still a rational number, which satisfies ϕ(0) < q < ϕ(1). We claim that ϕ(n) 6= q for every n ∈ N.
We already know that ϕ(0) 6= q and that ϕ(1) 6= q. Any other natural number n ∈ N \ {0, 1} satisfies
1 < n, and so ϕ(1) < ϕ(n) by the order-preserving property of ϕ. It follows that

q < ϕ(1) < ϕ(n),

and so ϕ(n) 6= q, as claimed. Thus ϕ does not surject onto Q, and as such it cannot be a bijection. The
contradiction resulted from assuming the existence of an order-preserving bijection from the set of natural
numbers to the set of rationals. Thus no such order-preserving bijection exists, as we wanted to prove.

Problem 2 (Recursion)

(a) Let us start by using induction on m to prove that, for every m ∈ N,

∀n ∈ N : ν(n) +m = ν(n+m), (1)

which, using the definition of addition +, can be stated in the following equivalent form:

∀n ∈ N : νm(ν(n)) = ν(νm(n)).

The base case m = 0 follows immediately from the first property of addition established in Theorem 1.24.
Indeed, for any n ∈ N,

ν0(ν(n)) = ν(n) + 0 = ν(n) = ν(n+ 0) = ν(ν0(n)).

Assuming the induction hypothesis

∀n ∈ N : νm(ν(n)) = ν(νm(n)), (2)

let us prove that
∀n ∈ N : νν(m)(ν(n)) = ν(νν(m)(n)).

With this purpose in mind, let n ∈ N be arbitrary. Then:

νν(m)(ν(n))
(i)
= ν(νm(ν(n)))

(ii)
= ν(ν(νm(n)))

(iii)
= ν(νν(m)(n)),

as desired. Here, (i) and (iii) are a consequence of property 2 of Theorem 1.22, whereas (ii) amounts to
the induction hypothesis (2). Thus (1) is established for every m ∈ N.

Let us now use induction on n to show that, for every n ∈ N and every p ∈ Dom(g),

∀m ∈ N : gn+m(p) = gn(gm(p)).

The base case n = 0 is again a consequence of the fact that 0 is the neutral element for addition. In fact,
for any m ∈ N,

g0+m(p) = gm(p) = g0(gm(p)).

Assuming the induction hypothesis

∀m ∈ N : gn+m(p) = gn(gm(p)), (3)

let us prove that
∀m ∈ N : gν(n)+m(p) = gν(n)(gm(p)).

With that purpose in mind, let m ∈ N be arbitrary. Then

gν(n)+m(p)
(i)
= gν(n+m)(p)

(ii)
= g(gn+m(p))

(iii)
= g(gn(gm(p)))

(iv)
= gν(n)(gm(p)),

as desired. Here, (i) is a consequence of property (1) proved above and (iii) follows from the induction
hypothesis (3). On the other hand, steps (ii) and (iv) are a consequence of property 2 of Theorem 1.22.



More precisely: since g satisfies the hypothesis of Theorem 1.22 and p ∈ Dom(g), there exists a sequence
h : N→ Dom(g) such that h(0) = p and

∀x ∈ N : h(ν(x)) = g(h(x)). (∗)

In particular, since (by definition) h(k) = gk(p) for every k ∈ N,

gν(n+m)(p) = h(ν(n+m))
(∗)
= g(h(n+m)) = g(gn+m(p)).

This establishes (ii), and a similar argument establishes (iv). This concludes the proof.

(b) Part (a) with g = ν and p = k ∈ N = Dom(ν) tells us that, for every natural numbers n,m,

νn+m(k) = νn(νm(k)). (4)

Then

k + (n+m) = νn+m(k) (by definition of +)

= νn(νm(k)) (by (4))

= νn(k +m) (by definition of +)

= (k +m) + n. (by definition of +) (5)

The result follows from this and the commutativity property (C) of addition which was already proved in
class. Indeed,

(n+m) + k
(C)
= k + (n+m)

(5)
= (k +m) + n

(C)
= n+ (k +m)

(C)
= n+ (m+ k).

Problem 3 (Surjectivity and injectivity)

(a) From the definition of surjectivity, the hypothesis implies that

∀y ∈ Y ∃x ∈ X : f(x) = y.

Applying the axiom of choice (Rule 34) to this statement and the identity function on Y , denoted IY , we
conclude the existence of a function g for which

∀y : (f(g(y)) = y ∧ g(y) 6= g ∧ IY (y) 6= IY ) ∨ (g(y) = g ∧ IY (y) = IY ). (6)

If y ∈ Y , then IY (y) 6= IY , and so g(y) 6= g (and f(g(y)) = y). Conversely, if g(y) 6= g, then IY (y) 6= IY
and so y ∈ Y . This shows that Dom(g) = Y . Also, if x ∈ Ran(g), then

∃y : g(y) = x ∧ x 6= g.

In particular, f(x) = f(g(y)) = y because g(y) 6= g. Since y 6= f (because y ∈ Dom(g) = Y = Ran(f)), it
follows that x ∈ Dom(f) = X. This shows that Ran(g) ⊂ X.

Hence we will be done once we show that g is injective, i.e.,

∀y1 ∈ Y ∀y2 ∈ Y : g(y1) 6= g(y2) ∨ y1 = y2.

Let y1, y2 ∈ Y be such that g(y1) = g(y2). We want to show that y1 = y2. Since IY (y1) 6= IY and
IY (y2) 6= IY , it follows from (6) that f(g(y1)) = y1 and that f(g(y2)) = y2. But then

y1 = f(g(y1)) = f(g(y2)) = y2,

as desired.



(b) By definition of injectivity,

∀x1 ∈ X∀x2 ∈ X : f(x1) 6= f(x2) ∨ x1 = x2.

In particular, given y ∈ Ran(f) ⊂ Y , there exists exactly one x ∈ X such that f(x) = y. Define g on such
y to be equal to that specific x, i.e. g(y) = x. On the other hand, if y ∈ Y \ Ran(f), pick a fixed x0 ∈ X
and define g(y) = x0 (this can be done because without loss of generality X 6= ∅). The function g thus
defined: for y ∈ Y ,

g(y) =

{
x if y ∈ Ran(f) and f(x) = y
x0 if y ∈ Y \ Ran(f),

and g(y) = g otherwise, satisfies:

(i) Dom(g) = Y ,

(ii) Ran(g) ⊂ X,

(iii) g is surjective.

Parts (i) and (ii) follow directly from the way the function g was constructed. To check (iii), we additionally
have to verify that X ⊂ Ran(g). But this is immediate since g(f(x)) = x for every x ∈ X.

Problem 4 (Arithmetic Mean-Geometric Mean inequality)

Proof 1. This proof uses only elementary arithmetic rules and mathematical induction.
The base case n = 1 is trivial to verify since x1 = (x1/1)1. Let us assume that the statement has been verified
for all choices of n nonnegative real numbers. Consider n + 1 nonnegative real numbers x1, x2, . . . , xn, xn+1

with arithmetic mean A defined via

(n+ 1)A := x1 + x2 + . . .+ xn + xn+1. (7)

If all the numbers xi equal A, we are done. Otherwise we can find one number which is strictly larger than A
and one number which is strictly smaller than A, say xn > A and xn+1 < A. In particular, the real numbers
xn −A and A− xn+1 are (strictly) positive, and so

(xn −A)(A− xn+1) > 0. (8)

Let us now consider the n numbers x1, x2, . . . , xn−1, x, where x := xn +xn+1−A. Note that x is a positive real
number. Indeed, since xn+1 ≥ 0,

x = xn + xn+1 −A ≥ xn −A > 0.

The crucial observation is that A is still the arithmetic mean of the n numbers x1, x2, . . . , xn−1, x. Indeed, from
(7) it follows at once that

nA = x1 + x2 + . . .+ xn−1 + xn + xn+1 −A︸ ︷︷ ︸
=x

.

Using the induction hypothesis, we thus conclude that An ≥ x1x2 · · ·xn−1x, and so

An+1 = An ·A ≥ (x1x2 · · ·xn−1x)A. (9)

Now,

xA− xnxn+1 = (xn + xn+1 −A)A− xnxn+1 (by definition of x)

= (xn −A)(A− xn+1) (expand brackets)

> 0, (by (8))

and so
xA > xnxn+1 ≥ 0, (10)



and thus A > 0. Thus, if at least one of the numbers x1, x2, . . . , xn−1 is zero, then we already have strict
inequality in (9). Otherwise the right-hand side of (9) is positive and strict inequality can be derived from (9)
and (10):

An+1 ≥ (x1x2 · · ·xn−1x)A

= x1x2 · · ·xn−1(xA)

> x1x2 · · ·xn−1(xnxn+1)

= x1x2 · · ·xn+1.

In particular, the inequality is an equality if and only if all the xi are the same.

Proof 2. (Sketch) An alternative elegant proof due to Cauchy is available and involves a non-standard kind of
induction which sometimes goes by the name of “forward-backward induction”. To briefly describe it, let P (n)
denote the statement of the inequality we want to prove,

x1 · x2 · · ·xn ≤
(x1 + x2 + . . .+ xn

n

)n
.

For n = 2, we have that

x1 · x2 ≤
(x1 + x2

2

)2

if and only if (x1 − x2)2 ≥ 0,

which is true. Then we proceed in the following two steps, which will clearly imply the full result:

(i) P (n)⇒ P (n− 1);

(ii) P (n) and P (2)⇒ P (n− 1).

For part (i), let A := 1
n−1

∑n−1
k=1 xk, and observe that P (n) implies

(x1 · x2 · · ·xn−1)A ≤
(∑n−1

k=1 xk +A

n

)n
=
( (n− 1)A+A

n

)n
= An,

and hence

x1 · x2 · · ·xn−1 ≤ An−1 =
(x1 + x2 + . . .+ xn−1

n− 1

)n−1

,

which is P (n− 1).
Part (ii) is left to the reader.


