Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Diogo Oliveira e Silva Wintersemester 2014/15

Abgabe in der Vorlesung am 06.11.2014.

Pro Aufgabe sind 10 Punkte erreichbar.

Aufgabe 1 (Mächtigkeit). Zeigen Sie:

- (a) Die Menge aller Funktionen $f: I_2 \to \mathbb{N}$ ist abzählbar.
- (b) Die Menge Q der rationalen Zahlen ist abzählbar.
- (c) Es gibt keine ordnungserhaltende Bijektion von $\mathbb N$ nach $\mathbb Q$, d.h. keine Bijektion $\varphi:\mathbb N\to\mathbb Q$ mit der Eigenschaft

$$\forall n, m \in \mathbb{N} : n < m \Rightarrow \varphi(n) < \varphi(m).$$

Aufgabe 2 (Rekursion/Iteration). Seien n, m, k natürliche Zahlen, und seien g eine Funktion mit $\operatorname{Ran}(g) \subset \operatorname{Dom}(g)$ und $g \in \operatorname{Dom}(g)$.

Wie in der Vorlesung definieren wir $g^k(p)$ durch Rekursion mithilfe von dem Satz 1.22: Diesen Satz können wir insbesondere auf die Funktion g mit einem Startwert p anwenden. Für die erhaltene Funktion h verwenden wir die übliche Notation $g^k(p) := h(k)$.

Beweisen Sie mit den Methoden des Skriptes bis Vorlesung 5:

- (a) $g^{n+m}(p) = g^n(g^m(p));$
- (b) (n+m) + k = n + (m+k).

Aufgabe 3 (Surjektivität und Injektivität). Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

- (a) Falls f surjektiv ist, so existiert eine injektive Function $g: Y \to X$, so dass f(g(y)) = y für alle $y \in Y$.
- (b) Falls f injektiv ist, so existiert eine surjektive Function $g: Y \to X$, so dass g(f(x)) = x für alle $x \in X$.

Aufgabe 4 (GM-AM Ungleichung). Für $n \in \mathbb{N}$, $n \geq 1$, seien $x_1, x_2, \dots, x_n \in \mathbb{R}$ mit $x_1, x_2, \dots, x_n \geq 0$. Beweisen Sie die folgende Ungleichung zwischen dem geometrischen und dem arithmetischen Mittel:

$$x_1 \cdot x_2 \cdots x_n \le \left(\frac{x_1 + x_2 + \ldots + x_n}{n}\right)^n$$
.

Unter welchen Bedingungen gilt Gleichheit? Beweisen Sie Ihre Behauptung!