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CHAPTER 1

Introduction

Harmonic analysis is concerned with describing, decomposing and ana-
lyzing functions and operators with some ’structure’ coming from the struc-
ture of the Euclidean space. Its relevance comes from the insight that the
same structures are relevant in different areas of mathematics like partial
differential equations, signal processing, Fourier analysis and mathemati-
cal physics. Key notions are Fourier transform, maximal functions, square
function, BMO and Hardy spaces, Calderén-Zygmund operators and their
relation to partial differential equations.

1. An example

The series

(1.1) > 1o
n=1

converges absolute for |z| < 1, and uniformly on every ball of radius < 1
since

3

’Z‘m—&—l 1

) Zi‘z‘n<2’ ’n_ ’Z’ <1—‘Z|'

I claim that, given € > 0, it converges uniformly in

{z:]z] <1,]z — 1] > €}.

This is proven by an argument going back to Abel and mimics an integration
by parts:

J=n Jj=n j=n \k=n
1 +mzl P S N |
_ = P -
m — 1-=2 J Jg+1
j=n j=n

To verify the formula, compare the coefficients of 27, n < j < m — 1:
1 =1
“m 2_: 1ol+1

Then

Ny 4
DS < —



6 1. INTRODUCTION

and the partial sums are a Cauchy sequence. The limit is continuous, as a
uniform limit of continuous functions. It is not hard to identify it:

fia) = —

1—=x

which is the derivative of —In(1 — z) and a check at # = 0 shows that
f(z) = —In(1 — x). Hence

f(z) =—=Inc(l — 2z) = —In|l — 2| — i arctan (EIQIS_Z))

In|1 | + i arct Im 2
= —1n — Z tarctan | —m———
1—Rez

for |z] <1, z # 1.

Define
0 iz\n X inz ;
S
= g (e E ¢ :—71n|2—2cosx]+zarctanﬂ
n 1 — cos(x)
n=1 n=1
since

|1 — €| = /(1 — cos(x))? + sin(z)2 = /2 — 2cos(z).

By elementary geometry of the inscribed angle or the addition theorem

sin(x) 2 sin(x/2) cos(x/2)
1—cos(xz) 1—cos?(x/2)+sin(x/2)
_cos(z/2)  sin("5F) T—T

= tan( )

sin(z/2) cos("5%) 2

and we obtain for the imaginary part

(1.2) ho(z) = Z singlm:) T ; r

n=1

for 0 < x < 2m. Define the absolute convergent series

ha () = Z cos(;w).

n

and for 0 < x < 27

/ho dt—hm/ Zsm

—  fim ZCOS n - cos(

n—o0 ]

j=1 j=1
=—hi(z) + hi(m)

and —hq is a primitive of hg. Thus there exists a € R such that

$2 T™r

h]_(ﬂf)zz—?“r‘a
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and we want to determine a. Since fo% cos(nt)dt = L (sin(2mn) +sin(0)) = 0
we get,

2w 9 3
0:/ hl(t)dt:l—TrS—}—Zaﬂ'
0

3
and a = %2. The evaluation at ¢t = 0 gives the value of the Riemann (
function at the value 2.
LEMMA 1.1.

=1 w2
1.3 2) = — =
(13) @=3 =%

n=1
Similarly

oo 4

1 ™

1.4 4) = Ealp——

We have seen different notions of convergence.

(1) Point-wise convergence
(2) Uniform convergence
(3) Absolute convergence
(4) Convergence in L?

in connection with Fourier series. The notions are important since we
want to differentiate resp. integrate term by term.






CHAPTER 2

Fourier series

1. Definitions

We denote the one dimensional torus by T = R\Z. Functions on the
torus are identified with periodic functions on R with period 1. We denote
the space of Radon measures ( complex Borel measures which are finite on
compact sets) on a metric space X by M - these are objects which can be
written as

P p— A —
with non negative Radon measures py, p—, g+ and ;.

DEFINITION 2.1. Let pu € T. We define the Fourier coefficients

1
== [y
0

and we write formally

00
[~ Z ﬂ(n)e%nﬂ’z

n=—0oo

for the relation between the series and the measure p. If f is an integrable
function we write

1
¢ _ An: —2inmTx d
foy = /0 e~ HTE () do
and

fN Z f-(n)eﬂnﬂ'z.

n=—oo

The functions (™), are orthonormal in the sense that

- o 1 ifn=m
2imn 2inTT 2imnx _
e (m)/e e d:c{o L m

The convergence questions of the Fourier series are interesting, impor-
tant, and a prototype for similar question in all areas of analysis.

9



10 2. FOURIER SERIES

We define the Dirichlet kernel through

SNf Z f 2inﬂ'x

Z / —2inmx’ f d(L‘/ 2inmwT
— / Z €2in7r(a:—x’)f(x/)dml
T

/DN:U—x F(2')da'

=Dy * f(x)
where
N .
: sin[(2N + 1)7x]
D — mx — .
~(z) n—Z:N € sin Tx

We may formulate the convergence question as: When and in which sense
does Dy * f(x) converge to f(x)?

2. The convolution and Young’s inequality

Motivated by the occurrence of the convolution we take a closer look
at its properties. For X = T, R or R"™ we define the convolution of two
continuous functions with compact support by

frg@) = [ e =gty

We will need the convolution in much more general context. For that we
consider

Ifgh = /Rann f(x)g(x —y)h(y)drdy

LEMMA 2.2. Suppose that 1 < p,q,r < oo and
1 1 1
—+ -+ -=2.
p q T
Then the integral defining I is integrable for all f € LP, g € LY and h € L"
and

Ls.gnl < I fllzeliglizallpllzr

PROOF. The case when one of the exponents is co and the others are 1
is simple. Hence we may assume that 1 < p,q,r < co. Let

Fi(z,y) =|f(@)["" |g(x — y)|*",
Fy(a,y) =[g(a —y)|7 |n(y)["'¥,

Fy(x,y) =[f(@)["7 |h(y)"7
where ’ denotes the Holder dual exponent
1 1 1 1 1 1
_|_

= — _ = = —:17

p Y q ¢ r 7
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with the obvious interpretation of the exponent co. Then, applying Holder’s
inequality twice, since z% + % + % =1

Ifgh §/F1F2F3d$dy

1/q
< ( / <F1F2>qudy) 1Bl
<IE N Bl o 1B o

b r
7 7

o4 4L
=AU gl Zall gl Za PN L AN E NP1 e
=[Ilflzellgllzall 2]l -

The lemma is the 'dual’ statement to Young’s inequality.

PROPOSITION 2.3 (Young’s inequality). Suppose that 1 < p,q,r < 00
and

If f € LP and g € LY then for almost all x the integrand of

JECETO
is integrable and it defines a function in L"(R™). Moreover

1f * gllLr@ny < [l fllzellglla-

If r = oo then the integrand is integrable for all x and f % g is a bounded
continuous function.

PROOF. Let h € L"'. By Lemma 2.2

/ W) f(z — y)g(y)dady| < ||l llgll eIl -

It is an exercise to work out the details, including the last statement. O

The convolution has nice algebraic properties.

(1) f*g(x)=gx* f(z)

(2) (f *g)*h(x) = f*(gxh)(x)

(3) fx(g+h)(@) = F g(x) + f * h(a)

(4) f * g, = fngn for integrable functions on the torus.
The Dirichlet kernel satisfies

. 1 1
|Dn(x)| < emin{|N|, max{;, E}}

for0<z<1. If ﬁ <lz| < % this follows from
1

D S
D ()] < | sin 7|

and for |z| < 55w it follows from the Taylor expansion of sin N7z.
We claim that there exists a constant ¢ > 0 so that

In(1+ N)/e <||Dn|pr <cln(l+ N).
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The upper estimate follows by integrating the upper bound. For the lower
bound we restrict the integration to

1 1
1] :d(Nx — = < —1L

For those values =
|Dy(z)| > emin{N, (sin7z) '}
and integration gives the lower bound.

DEFINITION 2.4. Let0 < s < 1, X a metric space. We say that : X — C
is Holder continuous with exponent s if

[f(z) = f(y)| < cd(,y)”.

The best constant is the Holder semi-norm.
LEmMA 2.5. If f: T — C is Hélder continuous with exponent s then
Dyx*f—f
uniformly as N — oo.

PROOF. A term-wise integration shows that [; Dy (z)dz = 1. Thus

[ Dy f(x) = f(2)] =

/ol(f (r—y) - f<x>>DN<y>dy‘

)
< / Dy W)|[(f( — ) — f()|dy
-5

1-6
+

Dn(y)(fla —y) - f<x>>dy1

)
J 1
<2 / 1oyl dy] £

/1‘5 flz—y) - flz)
)

* sin(7y)

sin((2N + 1)7Ty)dy‘

4c 1-6 ]
SEEW e+ ][ hali) (N + Dy

It remains to estimate the second term on the right hand side. We denote
it by B and use that sin((2N + 1)my) = —sin((2N + 1)7(y 4 5557))- Thus

1-46
< () — haly — in((2N + 1)my)d
B=| [ (halw) = holy = gy sin(N + D)y
1=0+ 5577
S )+ [ ha()dy
6—5nTT 1-6

SE@N+ 1750 flles + 2N +1)716=2|| f || sup-
The estimate holds for all §. We choose § = N3 and obtain

2s

[Dnf(z) = f(a)] < ¢ (N_SS2 +N~ % _|_N—1+235> _
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We can improve the convergence by using Cesdaro means resp. the Fejér
kernel.

where

i 1 /sinNmz)?
Kv= 0o = ¢ ()

Ky(n) = <1 - |”N|)+

which is seen by checking the Fourier transform

It satisfies

(2.1) 0< Ky(z) < %min{]\ﬂ, | sin(7z)| 72}

by definition (left hand side) and as for Dy (right hand side),

[ Katwr = [ imv) =1

which we can read off the Fourier coefficients and
(2.2) |K\ ()] < Cmin{N?, |sin(rz)|~2}.

and which

which is a straight forward calculation for ﬁ <zr<l1l-— ﬁ,

follows from Taylor expansion in the remaining interval.
We call a function approzimate identity.

DEFINITION 2.6. The family ®, of functions on T, R or R" is called
approzimate identity if

(1) [ ®n(z)de =1
1
(2) supy fo @ (x)|dz < 00
(3) For all 6 > 0 one has f61_5 | D, (x)|dz — 0 as n — 0o

PROPOSITION 2.7. Let ®,, be an approzimate identity. If f € C(T) then
S, xf— f
uniformly as n — oco. If f € LP(T), 1 < p < oo, then
@ * f— fllLeer) — O
as n— oo. If p € M(T) then
D,k pu—p

in the sense of measures.
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PROOF. The proof uses some constructions which we will need often.
Let f: T — R be continuous, and ®,, and approximate identity. Then

1
f(2) — fxDo(e) = /0 (F(x) — F(z — 4))@u(y)dy
)

_ / (f(x) — flz — ) Puly)dy

-5
1-6
+ / (F(z) — f(x — 1) ®n(y)dy
)

We define the modulus of continuity

wi(t) = sup |f(z) = f(y))-

|le—y|<t

Then lim;_,ow¢(t) = 0 since f is uniformly continuous. Then

1-6
[f (@) = f* @u(2)] < 20(0) 1 Pnl1 + 201 fllsup /_6 [P (y)ldy

and
lim sup sup | £(z) — £  ®u(2)| < 20(8) sup [l

n—oo T

This holds for all §, hence the lim sup is zero.
Assume now that f € LP for some 1 < p < co. Continuous functions are
dense in LP(T). Given ¢ there exists a continuous function f. such that

1f = fellze(r) < e
Then

I'= Hf_f*q)nHLP < Hfs_fz-:*(I)nHLP+||f_fs||LP(T)+H(f_f€)*q)n||LP(']1‘)-
By Young’s inequality with p =7 and ¢ =1

[(f = fe) * @ullLoery < 1 ®nllllf = fellzw
Then
In <|[fe = fo * Pnllsup + (1 + [|Pn] 1)
and
limsup I, <limsup || f — fo * ®pllsup + (1 + [|®n]1)

n—o0 n—oo

<e(l+ [|®nllL2)

This holds for all € and hence the limsup is 0.

The convolution of a measure with an L' function is a integrable func-
tion. The extension of the dual Young’s inequality is easy.

Let 1 be a measure and h a continuous function. If (®,,) is an approxi-
mate identity then the same is true for ®,(t) = ®,(—t) and

/M*(I)nh(x)dx = /i)n*h(x),u — /hu

This is the definition of the convergence of measures. O
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COROLLARY 2.8. The trigonometric polynomials are dense in LP for
1 <p< oo and in C(T). For f € L? the identity of Plancherel

o0

(2.3) 17 = > 1ful?

n=—oo

holds. The complex exponentials (e*™"*),, are an orthonormal basis of L*(T)
and for f,g € L? one has Parsevals identity

[ tode =" b
The inner product of L?(T) is given by the formula in the corollary. The

space is a Hilbert space ie. | f|[3. = (f,f) is a norm, and the space if
complete with this norm.

Proor. (K,) is an approximate identity. By Proposition 2.7 we have
f* K, — fin L? for any f € LP if p < co. Now K, is a trigonometric
polynomial, and hence fxK,, is a trigonometric polynomial. This implies the
density. The identity of Plancherel is trivial for trigonometric polynomials:
When we expand them and integrate all nondiagonal terms will give 0. Now

n . x
2 1 2 1 Fi201  JN2 2
117 = Jim (7 # Kallf = lim 37 |FPA =2 = 37 1
J=—n J=—0C

by monotone convergence. Let f,g € L?(T). Then, using Plancherels for-
mula

e o 1 5 i
5 | foafa=y 1+ gP =17 - gz
0 0

1 & s
=7 2 Mt anl = 1fa = g0l

j=—00
1 & — -

:i Z fngn+gnfn
j=—o00

which is Parsevals identity for the real part for the formula. We replace f
by if to obtain imaginary part of the formula. The complex exponentials
e2™n are clearly orthonormal. if Ik fe*™dy = n for all n then f = 0 by
Plancherels identity. U

3. LP convergence of partial sums

PROPOSITION 2.9. Let 1 < p < oo. Then the following is equivalent:

(1) For all f € LP we have ||Dyx * f — f|lzr — 0
IDn*fllLp

(2) sup, o < 0
PROOF. (1) = (2) is a consequence of the uniform boundedness prin-
ciple. The reverse implication follows from the density of trigonometric
polynomials and Young’s inequality. O

COROLLARY 2.10. There exists f € L' so that Dy * f does not converge
to f in L'. There exists f € C(T) so that Dx*f does not converge uniformly

to f.
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Proor. We have seen that
IDn| 1 = cln(1 + N).

Let f5(x) = (26) 'Xjaj<s- Then [|fllzr = 1 and, if 6 < gy, |[Dn * fllp2 >
cln(1 + N). This contradicts (2) and hence there exists f € L' so that

Dy * f does not converge to f in L'. If f(y) = @x&:%' if Dy (y) # 0 and

0 otherwise then
|Dn * f(0)] > cIn(1+ N).

By dominated convergence

. N

lim D _— D

S Dy * oy 7 P+ 10)
and hence

sup sup | DN * f|lsup = 00.

N>1 feC(T),|fI<1

Arguing as in the proposition with the uniform boundedness principle this
implies that there is f € C(T) such that Dy * f does not converge uniformly
to f. O

The variant of the argument gives a stronger statement: There exist
f € L' (resp. f € C(T) so that limsupy_, [|[Dn * fllz1 — oo (resp.
limsupy_,o || DN * fllsup = 00). Exercise: Find such functions.

4. Regularity and Fourier series

PROPOSITION 2.11 (Bernstein’s inequality). Let f be a trigonometric
polynomial with f(k) =0 for |k| > n. Then

1 llze < Cnllf]Lr

ProoOF. We define the de la Vallée Poussin kernel
B S
" N k=N+1j=1—k
:2K2N(.73) — KN(.T)
1 (sin2 2N7zx — sin? N?Tl‘)

N sin? x

Then, by Young’s inequality (and a tedious bound of the L' norm)

1 Lo =1V * £) || e
=V * fllLe
<IV& Il fllee
<CON|/flz»-

We define Sobolev spaces on the torus.
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DEFINITION 2.12. Let s € R. We define the Hilbert space H*(T) as the
completion of the trigonometric polynomials in the norm

1/2
[o.¢]

e | Do (02l (n)?

Jj=—00
If s > 0 then H*(T) ¢ HY(T) = L*(T). If f € H! then f' € L? and
1F 1z + 1172 = £ 11

This holds for trigonometric polynomials, and we use it to define the deriv-
ative of functions in H'.

THEOREM 2.13. Let 0 < s < 1. Then C®* C H? for all o < s.

Proor. We claim that

(2.4) Yo P <27 f 1z -

27 <|n|<2i+1

Then

ST m)P <2 2% Y [fm)P <D 250 f]|es
§=0

n=-—00 21 <|n|<29+1 7=0

To prove the claim (2.4) we observe that it follows from
[ K f— fllLe <sup|Kp * f(z) — f(z)]
x

1/2
< [ Kl e
<en”?|| flles
(see (2.1)) with n = 277! since

Yo P < Kyisx f = fllge.

23 <|n|<2F1

5. Complex Interpolation
Holomorphic functions satisfy a maximum principle.

LEMMA 2.14. Let U C C be open, f : U — C holomorphic. If zg € U
and

|/ (20)| = max{|f(z)| : z € U}

then f is constant.

PROOF. 1) There is nothing to show if f(z9) = 0. Otherwise we divide
by f(z0) and may assume that f(z9) = 1 The Taylor series

fz)=1+ Zaj(z — z)’
j=1
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converges in a neighborhood of zg. There is a first non-vanishing coefficient
am with m > 1. There exists b with 0™ = a,,. We consider g(z) = f(z/b).
It has the form

oo
g(z)=14+2"+ Z anz"
n=m+1
Then
d
Slg+nl| _=m

and we obtain a contradiction.
2) By the Cauchy integral formula, resp. the mean value property of
harmonic functions, for » > 0 and small

1 2w

f(z0) = Gy ; f(z0 + 'reit)dt

This implies that the maximum is assumed at the boundary. If it is assumed
in an interior point then |f(z)| is constant and the holomorphic function
z — Inc f(z) has constant real part. The Cauchy-Riemann equations imply
now that f is constant. O

LEMMA 2.15 (Three lines theorem). Let f: {z€ C:0<Rez<1} - C
be bounded, continuous and holomorphic in the interior. Then

xT

F o+ i) < (sgplf(yﬂ)lw (sup 1+ i)

PROOF. Let

() = € 1(2) (s \f(iy)|>“ (sup 0+ i)

—z

Then
| fel < ce*(=v*) 5 0 asy — 0.
Thus there exists z = x + 4y with 0 < « < 1 where |f;| is maximal. Then

either f. is constant and hence identically 0, or the maximum is assumed at
the boundary. But then

sup | fe(2)| < max{sgp Ifa(iy)\,sgp |f-(1 +1y)[}

and hence

x

sl (sup \f(y)\)” (sup 0+ i)
O

THEOREM 2.16 (Riesz-Thorin interpolation theorem). Let p and v be
measures on X resp. Y, T, maps characteristic functions of measurable sets
of bounded p measure to functions which are integrable over sets of finite
measure, for 0 < Rez < 1 such that for all measurable sets A C X and
B CY of finite measure the map

N / (Toxa(®)x5(y)dy
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is bounded and continuous and holomorphic in the interior of the strip. Sup-

pose that

1 < po,p1,qo, 1 < o0
and,

1 Rez 1—Rez

J— +

Pz 4! Po

1 Rez 1—Rez

R + .

q q1 qo0
Suppose that

@] < ol ol

< Cullfllzellgll o -

/(Tl—l-iy’f)gV
Then Ty has a unique extension to a continuous linear operator

Ty : LP*(u) — L% (v)

with norm C§~ReCRez,

PROOF. By duality and density it suffices to prove
[ @-pygv| < YR gl

for 0 < t < 1, for finite sums of characteristic functions of sets of finite
measure. We fix 20, p = D2y, ¢ = ¢z, f and g a finite sum of characteristic

functions of sets of finite measure on X resp Y,

t—2 P—PQ

f(@)=1f@)] T 7 fl@), o) =lg(@)]
filz) = f(x) (
| fig (@)[P° = | £(2) P, giyy ()]% = ()|

(Rezp — 1) (;; —1> — Rez (;71 —1>

| friy (@) [P0 = [F(@)P, [9143y ()| = lg()|* -
We taking the difference quotients and using dominated convergence

= [ @8 wewry) =[G + @5 fer)
+ [@r) 5 0vw)

and hence f T, f.g.v is holomorphic in z. Boundedness and continuity are

immediate.
By Holder’s inequality and the construction

/ (T For )i (9)

S”Tiy’fiy/Hqu Hgiy’”ng

<coll fiy | oo llgi Il .0

/ !
<ol FIE g 1%,
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and

/(Tl-l—zy’fl—Hy )91+zy'dy‘ < Clllfl!p/plllgllqml~

By the three lines theorem

1—Re zp Re 2o
|/%m (ColF Iz gl ) (Cull I Il )

/[ (1—Rezg) | Rezg
‘ (7 a

lll,

<1 Re z Rezo>
Cl RezOCReZOHfHLp PO

1-R. R
=Co 0 fllze gl Lo

The lemma of Schur is a consequence.

LEMMA 2.17 (Schur). Let K : X xY — C be p x v measurable and
suppose that

S?ﬂMMW@SQ S?ﬁMWW@S%

Let 1 < p < oo The linear map defined on characteristic functions by

=/wamm
A

has a unique extension to a continuous linear map T : LP(X, u) — LP(Y,v)

which satisfies
1

1 41
1T fllzev) < CFCoo "I fllze(x p)-
PrOOF. If f € L*®(X, ) then |Tf(y)| < Cool|fllL. If f € L' then

/\/Tf(y)IV(y) S/!K(%y)llf(w)\M(ﬂf)V(y)

SW/WWMMMWMM)
<Gyl fllp

This holds first for simple functions. There is a unique extension to T :
LY (X, u) — L' (Y, v) bounded by C and a unique extension to L (X, i) —
L*>(Y,v) bounded by C. The Riesz-Thorin theorem implies the full state-
ment. U

Alternatively we may estimate as in Young’s inequality:

\ [ 1@ K @ gt)dnte)ivy

ngwa%wwwmwme@—ywmwwmmww
gmmwwmwgmmmmwmmgﬂmmmwwmw

This second proof gives a stronger statement: Existence of the defining
integral for almost all y.
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We could derive the bound in Young’s inequality via the Theorem of
Riesz-Thorin from the extremal cases p =1, ¢ =00 and p =1, ¢ = 1. With
this type of argument we would however loose the existence of the integral
for almost all y. Up to that Young’s inequality with p = 1 is a special case
of Schur’s lemma.

LeEMMA 2.18 (The Hausdorff-Young inequality). Let f € LP(T,C), 1 <
p < 2. Then
[l < (1 fllzr

PROOF. The case p = 2 is the Plancherel identity. The case p = 1 is
trivial. If

1 1-A
— =\ + —
P 2
then
1 1-X
P 2
The assertion follows from Theorem 2.16 with x4 the Lebesgue measure and
v the counting measure. O

6. The Hardy-Littlewood maximal function and real
interpolation

DEFINITION 2.19. Let f € Li _(R™). We define the (uncentered) Hardy-

loc
Littlewood maximal function as

Mi@) = sw [Ba) [ If)ds
xaBR(y) BR(?J)
THEOREM 2.20 (Hardy-Littlewood maximal function). Let 1 < p < oo
and f € LP(R™). The Hardy-Littlewood mazximal function M f is measurable
and finite almost everywhere. It satisfies

1M F pogny < e(n)—L

p—1

Il Lo (-

and
(e Mf() > AP < T IM S

DEFINITION 2.21. Let f € L} . We call x € R™ Lebesgue point if

loc*

lim sup
B=0 Bp(21)NBr(z2)3z,r<R

Brle)™ [ 1)y~ Butea) ™ [ f(y)dy‘ 0

We may (and usually do ) assume that at a Lebesgue point f is equal
to the limit of the averages as R — 0.

THEOREM 2.22. Let f € L} Then there is a set A of measure 0 so

loc®

that all point in R™\ A are Lebesgue points.

PROOF. We may assume that f is compactly supported and integrable.
Given € > 0 there exists a continuous compactly supported function g with
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lf —gllz1 < e. Since for continuous functions all points are Lebesgue points
it remains to consider h = f — g. Then
Ay ={z: limls%up |/ Brz1) = [Br(ao)| > 1}
T,

C{x: lim;up |hBR(e1) = BB (22)| >t}

)

C {x: Mh(x) >t/2}
and its measure is bounded by <. We let ¢ — 0 to see that
m"(A;) = 0.
Denote the set of Lebesgue points by L. Then

R™\L = UA1 /j
J

is a countable union of sets of measure 0, hence its union has measure 0. [

PrROOF OF THEOREM 2.20. The proof consists of two steps, the first
being the proof of the weak type inequality for p = 1, and the second being
an interpolation argument.

LEMMA 2.23 (Covering argument of Vitali). Let (X, d) be a metric space
and (B;)1<i<n = (Br,(zi))1<i<n by a finite set of balls. Then there exists a

pairwise disjoint subset (B;;)1<j<m so that

N M
U Bi C U Bgmj (l‘Z])
i=1 j=1

PRrROOF. We choose the balls recursively. Suppose we have chosen dis-
joint balls B;; for j < m. Let B;, be the ball of the largest radius which
is disjoint to the previous ones. If there is no such ball we are done. This
process ends at some point. We have to verify the covering statement.
Let By, (z;) be one of the balls. If it has been chosen it is certainly con-
tained in the union to the right. If not there is a largest index m so that
i, > ri. Since we did not choose By, (x;) in this step it has a nonempty
intersection with one of the balls an with 7 < m. But then r; < Ti; and

Bri (ZL‘l) C Bgnj (:L',LJ) O

Let f € LY(R") and t > 0. The set U = {z : M f > t} is open. For each
point z € U there is a ball B,(y) 3 = with

/ F@)ldy > Mm"(B, (4)).
By (y)

Let K C U be a compact set. Since K is compact, and covered by these
balls there exists a finite number of such balls (B,,(x;))1<i<y which cover
K. By Lemma 2.23 there is a subset of disjoint balls (B, (z;;))

J

N M
K c | Bri(xi) € | B, (i)
i=1 Jj=1
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Thus
M
m"(K) <m™K) [ |J By, (i)
j=1
M
§3nmn U an ($1J)
j=1
<3n¢! / ¥
Mf>t
3T'L
<=l
and

(s Mf(x) > 1)) = supm™(K) < Ol
K

Clearly M f(t) < |[[fllre. Let 1 < p < oco. There is the bath tube
representation

(2.5) /mm:mHWwﬁwmt<wwm:Amwwm>ﬂw

and

n 1 -1 _n
(2.6) /vmmzé m(ﬂﬂ>s”9%=pA -l (1] > ).
Given t > 0 we define
foafff[ <t
ft_{t“{ if [f] >t
and
f=f-

The maximal function is sublinear, i.e.
M f(x) < M fo(x) + M f'(x).
Thus

Mﬁﬂwﬂ%émﬁ*wﬂMf>%Dﬁ
<9Pp /OO 1 (m"({Mft >t +m({Mft > t}))dt
0

<2Pp /oo P imm({Mft > t})dt

0
<2p3" / P2 / | f|dxdt
0 |f]>t

| f(z)]
s [ s [T ot
Rn 0

2P3n
=571,




24 2. FOURIER SERIES

and

23n 1/p
M1 < (Z25) 7 1l

By Tschebychevs inequality

p({1f1> A < AP
We define the weak norm by

(2.7) 112z, ) = sup A{If > AP

This is an abuse of notation, since the 'norm’ does in general not satisfy the
triangle inequality but only

(2.8) 1f +gllee, < C(IFllzs, + llgllzs,) -

If p=o00 we set Ly, = L.

THEOREM 2.24 (Marcinkiewicz). Let 1 < pyg < p1 < o0, 1 < qo # q1 <
oo. Suppose that T is a sublinear operator mapping the span of characteristic
function of u measurable sets of finite to functions which are v integrable
over v measurable sets of finite v measure, such that,

(1) For all finite collections of measurable sets A; C X and B CY of
finite measure the map

RY > (a) —>/ T E ajX A,V
B
18 continuous.

(2) T@f)(y) =tT(f)(y) fort >0 and |T(f+g)(z)| < |Tf(z)|+|Tg(z)|
almost everywhere.
(3) | T(xa)xpdy| < min{cou(A)/Poul/9(B), c1pu(A) /P /4 (B)}
Ifo<Aa<1
1 1-=Xx X1 1=Xx A
+—, - = +

P p  pi'4d G @
then T defines a unique continuous sublinear operator from L%, to Li,.

ITflLg, < e(pa, VIS e,

and
‘ /Y T(txa)g(y)dv
Ifp<qthenT:L?!— L? and
1T fllLe < e(p, g, Il zo-

We apply the Marcinkiewicz interpolation theorem to an important ver-
sion of Young’s inequality before we prove it.

< e g, N)[tlu(4) P llgll o

LEMMA 2.25 (Weak Young’s inequality). Let

1 1 1
1<p,q,7“<00, 7+7:1+7
p q r
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and f € LP and g € L%,. Then the integral

fr9(e) = [ @ = yatu)ay
exists for almost all x and
1 gllr < cllfllzellgll s,

PROOF. Truncating g = g; + ¢g' as above it is not hard to see that the
integral exists for almost all x. By Young’s inequality

1f =gl < [IfllzellgllLa
for all such triple. We fix p and f € LP and define
Tg=f=x*g, T:19—L"
for all admissible triple. Thus, by duality,

/ Tghdx

and we can apply the interpolation theorem of Markinciewicz for all admis-
sible exponent beside ¢ =1 or r = oo:

< llgllzallAll -

If = gller, <cllfllzellgllLs,-
Now we fix g € L, and define
Tf=fxgT:1LY — L.

‘/ TfXAdac
B

1Tl < el fllzellglizg,
for triples which we obtain by interpolation, which are those of the lemma.
O

This implies
£l e | A7 | BT,

and, since p < r,

The assumption of the theorem implies for all simple functions

/B T fxagv| < ellFllzoe (o llgl o oyl A) /P (B) Vb

with a similar estimate for the index 1. Allowing for a factor 4 in the
constant it suffices to verify this for nonnegative functions f and g. We can

then write
F=YFixan9=">_gixs,
J

with 0 < fj,95, 22 fi = lfllze=, 2295 = l9llz~, Aj C Aj, and B; C Bj; for
all j. We expand the sum and use the sublinearity to arrive at (2.9).

(2.9)

LEMMA 2.26. If 1 < p < oo and f € L%, the inequalities

1 1/p
o< (525) 1ol

hold. As a consequence there exists an equivalent norm so that L%, is a
Banach space.

1 1
§HfHLfU < sup p(A)"MP
n(A)>0
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PRrROOF. Set A = {|f(z)| > t}. Then
PHIfE@I > 01 < [ rldn <ot [T a1 > shds
<t Uflly [ s s
<1l
Thus, for f >0
111, <supe 71> 0 sup(u() 7 [ g

_ D £/ _ /
<P supu(A) [ fa

A
15 sup ) [ g

which yields the left inequality in the lemma after dividing by || f Hi;l . The
inequality on the right hand side follows from the second inequality above.
The quantity in the middle satisfies the triangle inequality. Completeness is
easy. O

PROOF OF THEOREM 2.24. Let f be a simple function with || f|[» = 1.
We claim that

(2.10) TNy, < ellfllzs,

This follows from

' / fode\ < el|fllpr(B)

| Tiv

=" fixa,

with fj(z) = f(z) if 27 < |f| < 271, We decompose f; into the positive
and negative part, and argue similar for both. Let f; > 0. We can write it
as

by Lemma 2.26

1
ITfllg, < csupw(B)
B

<N flls,-

fixa, = > _tixe
with ¢ > 0 and Cj; C C; C A; for all . Then

[ T

since Y t; < ||f|lL. We obtain the same estimate with the index 1.

< || fll oo p(Az)/P0 pu(BYY 0,
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Let ||f||,» =1 and s = v(B). Then

] [ st <y [ el

<32 min{u /P (A7) b (B), 17 (A% (B))
J
<c Z min{2/~9P/Po /% 9i=ip/pigl/a)

<c Z oi—ip/p1gl/ar Z 9J—ip/po g1/q4
j<J i>J

SC<2J(1—ﬁ)81/q’1 +2J(1—%)81/q{))
§2C’51/q/
if we choose J appropriately so that both summands have the same size:
Jp (1 ry 1 1
vt o) "
then (check if p = pg and p = p1 , plus linearity)

P Ing s 1
JA=p0t i

2

The same argument yields

[ Fag) < n( Pl =l

We read (2.10) and (2.11) as L™ resp L! estimates. We define the
Lorentz spaces rsp. norms

(2.11)

d
(212) 910 = [ (il @] > )"
Then
171z, = 17l < Il

tu({|f(x)] > t})'/? S/O gs" dsu({|f ()| > )P

<a [t > sy

and, if g1 < ¢o

AN Epar < NN Zoar (N1 Toe™ < 11 Toan

hence

(2.13) [ fllzear < £l e -

LEMMA 2.27. Let 1 < p < oo and 1 < g < co. Then the generalized
Holder inequality

(2.14) \ / fgu‘ < el fllzmllgll o
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holds and
(2.15) [ fllzra < ¢ sup /fgu-

lgll prgr <1

PROOF. To prove (2.14) for functions f and g we define monotonically
decreasing functions f*, g* : (0,00) — [0, 00) so that

{f* > st = u({lf] > s})
for all s > 0. With this notation the Hardy-Littlewood inequality holds:

(2.16) [ fon < /0 g @t

We have

J1is@ale= [ [ [ swezedsi
X JO 0

= / / / X{1f(@)|>s(x) >ty 5t
X JO 0

= [ [ utr@1 > s.gw) > tyasa
g/ooo /Oooml({f* > st n{lg" > t})dsdt

:/OOO/OOO/Oooxf*>s(u)xg*>t(u)dudtds
- " ()" (w)d

Inequality (2.14) follows by Holder’s inequality from this estimate:

/fgdu</ frg*du
: </0 " ”<f*<t)>qit> : </000 e (g*(t))“% "

and, with the Riemann Stieltjes integral (or less transparently, by substitu-
tion with s = f*(t))

LT and = [T
= /OO tq/pd(f*)q

0
o ds
o [ Gtz sy
0 s
This completes the proof of (2.14).
Let ¢ < oo and f € LP(u). Then, with g = |f]p/P i

1
/ fan=If1Ese gl = IFIESY.
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Let f € LP4. We write it as f = ) fjxa, as above. The first Ansatz is
. P _on f
g= (2]M A 1/p> 20/ Ly 1
> (Pnl4) X

J
Then
/ Fait ~ 111l oo

Recall that this sum is finite, Z;V:_ n- For k > 0 we set

, a=p o f
g~ = Z (23(1+pn)M(Aj)1/p) i (p/p )mXBj'
J
with B; C A; and pu(B;) = 27"U+N)y(A;). A tedious calculation shows
that ||g"||Lre(y) is bounded independent of the the exponents provided & is
sufficiently large.
The case g = oo follows from Lemma 2.26 and

1l zeaquy ~ NI fixa; e llia-

We read (2.11) as
ISl = ltv(y = 1T @)] > )Y s < elltn({z « (@) > )7 1

Now the real interpolation argument of for the maximal function with a
small modification in the definition of f; which yields

(2.17) 1T fllzar < 1 fl|zor-
for 1 <r < oo. If p< g weset r=p and conclude by
1T fllze < NTFllzar < el fllzo-

The transition from simple functions to general functions is an approxima-
tion argument. It suffices to prove norm continuity on simple functions. Let
p < qand f,g € LP(1). The argument is similar for L%,. Let h € LY. Tt
suffices to show

| [ = Topmv) < el = gl
Let
o) =1 [ T,
It satisfies for ¢ > 0
B(tF) = to(f),
0<o(f+9g) <o(f)+o(g)
and

o(f) < cllflleeo bl Lo )

The continuity follows from

160) — 69| < el a1 f — gllzne)-

Continuity on simple functions of

/ T fhdy
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follows from the continuity assumption of the theorem. We consider
o) = [ T+ tlg — ))ha

for 0 <t < 1. If n(t) = 0 for some ¢ then

[ ol +| [ Tfhu‘ < cllhll 1 = gllzs-

Otherwise it does not change sign, and the assertion follows again from the
continuity of ¢. O

+

7. Higher dimensions

The definition of the convolution and the Fourier transform carries over
to several different situations.

7.1. Fourier transform on T". We define the n dimensional torus by
R™\T". Again we identify functions on T" by 1 periodic functions on R™.
We define the Fourier coefficients for m € Z™ by

fm)= [ f@)e 2 mods,
’]TTL

Many but not all of the statements have analogues in this higher dimensional
setting. In particular the functions (e27¥"%),, are an orthonormal basis.

7.2. The case of a general lattice. Let v; € R", 1 <17 < n be a basis
in R™. Its linear combinations with integer coefficients define a lattice in
R™. We denote it by £. The dual lattice consists of all vectors in the dual
space (which we identify with R™) which map the elements of the lattice £
to Z. We denote it by £*. Again we identify functions on the torus R"/L
with £ periodic functions. The Fourier coefficients are defined for m € L*
by

f(m) = /R s

The functions |
| det(vl, ey 'Un)|71/2627r1mx

are an orthonormal basis.

7.3. The case of R"”. We will later look at the Fourier transform which
for integrable functions in R™ is defined by

f(6) = / T (1) .



CHAPTER 3

Harmonic functions and the Poisson kernel

1. Basic properties and the Poisson kernel

DEFINITION 3.1. Let U C R™ be open. A two times differentiable func-
tion u is called harmonic if

Ay = Z aiju =0
=0

(1) The real part of holomorphic functions is harmonic.
(2) Harmonic function satisfy the mean value property. A function u
is harmonic if and only if

u(x :# u(x +r n—1
(@) n|B1(0)] Jap, (o) (4 ry)dH™ ()

whenever B,.(z) C U. This follows by computing

d n— n—
d/ u(z + ry)dH" " (y) :/ y-Vy(z+ry)dH L(y)
r 0B1(0) 9B1(0)
— / Ay(x + ry)dm™(y)
B1(0)
=0

and a slightly refined argument gives the converse.

(3) They satisfy a maximum principle: If the maximum is assumed in
the interior then a harmonic function is constant on the connected
part of its domain of definition.

(4) There is the fundamental solution

() { —stInfz| ifn=2
g\r) = 1 —n :
aeomy " ifn =3

and
—Agxf=f

whenever f € C*(R"™) with compact support: First Ag(z) = 0 if
x # 0, and then, formally

9jg* f=—
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and

T — Y n(xj —y;)(x —y) — Sz — y|?
B (e B
R™\ By (2) |z — yl R\ By (2) |z -yl

1—n y]yl
—r == f(z — y)do.
/6&(0) ly|? ( )

The first term vanishes for the Laplacian A (if we sum over j = [.
The second converges to —n|B1(0)|f(x) as r — 0. See (Evans,
PDE) for details. The Holder regularity is needed to show existence
of second derivatives.

1.1. The Greens function in the half space and the Poisson
kernel. We denote z’ for the first n — 1 components of x € R™ and by e,
the nth vector for the standard basis.

We define the Greens function in the half space by

gu(z,y) = g(x,y) — g(z, (', —yn) = gu(y, x).

In physical terms ¢ is the potential of an electric field with the charge in y,
with a conducting boundary at z,, = 0, normalized so that g vanishes in this
hyperplane. This effect is obtained by putting a particle with the opposite
charge at the reflected point.

If f is Holder continuous then

satisfies the inhomogeneous Dirichlet problem
—Au=f u(z) =0

Let u be a bounded continuous function on x,, > 0, harmonic in z, > 0,
satisfying

u(z)| < clz| 7!, [ Du(z)] < clz|7%
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Then, for € > 0 and x,, > ¢, since the second part of the Poisson kernel
is harmonic in H, by several applications of the divergence theorem,

(3.1)
V= /yn>0 |lx—y|>e U(y)Ang(.% y)dy
/ N 1
—— /]Rn1 u(y )8yngH(ZL‘, y')m 1(3/ ) — n]Bl( )‘ it u(x + ey)do(y)

— gl / u(x +ey)y - Vg(x +ey — z)do(y)
ly|=1

- / VyuVygm(x,y)dy
yn>0,|lz—y|>e
1
=— w(y") 0y, gr (z,y)m" 1 (y') — u(z + ey)do
/nl v n[B1(0)] Jiyj=1
— et / u(z +ey)y - Vg(x + ey — T)do
ly|=1
€

T =2l B0)] Sy

+ et /| L g(x+ey— )y Vu(x + ey)do
y

y - Vu(z + ey)do

+ / Augy (z,y)dy
yn>0,|lz—y|>e

— — u(aj) -+ /Rn_l u(y’)P@:,y/)dmnfl(y/)

where we define the Poisson kernel by
1 2z
Px’/::—a x’/:77n.

There is a small modification by an additional logarithmic term if n = 2.
We claim that

1 2z,
3.2 —_
(58:2) AlB1] Jgrs @2+ 2 — 1)

To see this we apply the identity above to
ug(x) = t" 10y, g(x + tey).

Then u(x) converges to a nonzero constant as ¢ — oo and we obtain (3.2).
Moreover

7z m"(y) = 1.

|a§é’P($’y,)| < caZnlT — y/|_n_|a‘-
Thus t — W is an approximate identity (with the continuous pa-
rameter ¢ instead of n, where ¢ — 0 corresponds to n — 00, it satisfies
(1) sup, [ |P(z' + tey,0)|dz’ < 0o
2) [ P(2' + tep,0)da’ =1
(3) forall 6 >0

/ |P(z' + tep, 0)|dz’ — 0 ast—0
R™=1\B;(0)
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and u; * f — f almost everywhere where u;(z') = P(2' + te,,0) and
ugx f = /P(a:' +ten, v f(y))dy

if f € LP(R™1).
LEMMA 3.2. Suppose that g € C(R"™!) has compact support. Let

u(r) = P(x,y) f(y")dy'.
Rnfl

Then u is bounded and harmonic on x, > 0 and continuous up to x, = 0.
Moreover u(x',0) = g(x').

1.2. Green’s function and Poisson kernel on the unit ball. We
define the reflection at the unit sphere by
T

and we define
98(z,y) = gy —x) — g(lyl(z — 7))
If |z =1and y # 0

2 o 2,2 2y-x 1
" |z — gl” =[y|" (|| M |y|2)
=P +2y-z+1=|z—yP
and thus
gB(r,y) =0
if |z| = 1. Also

9B(z,y) = 9By, T).
This has the same interpretation as for the half space. In particular, if
f e C(B1(0)) and

u(z) = /B 9y

then u it two times continuous differentiable in B1(0), —Au = f and u(z) =
0if |z| = 1.
We define the Poisson kernel for |z] < 1 and |y| =1 by

P(.’E,y) - - ZyiaigB(J"?y)

11—z
n|Bil |z -yl

Let g € C(0B) and

uw = [ Pleg)w)daty
9B1(0)
is harmonic and continuous up to the boundary. Moreover

u(z) = g(x)
if |x| = 1. The first statement is obvious. The second statement follows as
for the half space, with modifications for the approximate identity on the
sphere, which we do not discuss here.
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LEMMA 3.3. Suppose that f € C(0B1(0)) and

u(x) = /6 o PV Wi

then u is continuous on the closure, twice continuously differentiable and it
satisfies

Au=0
and uw = f on 0B1(0).

1.2.1. The Poisson integral in the two dimensional case. We define the
Poisson integral in polar coordinates for 0 < r < 1

oo
PT($> _ Z T,|n\62ﬂ'inx
n=—00
(3.3) I ks
1 — 2rcos2nx + r2

14+ 7.627”‘:1:
1 — ermz
where the second identity is an evaluation of the two geometric series, and

the third is an algebraic manipulation. Comparison with the kernel above
shows that

P(re27ri:v’€27riy) — Pr(x _ y)

There is an alternative derivation in this case. Let f € C*(T). We
expand it into a Fourier series

f(l’) _ Z /8—27rinyf(y)dy 627rinac

n=—oo

If f is real then

[ sy = [ e pay

and
u(reiny = 3yl / 2T £ () dy
n=—00 T
= [ Pty
Let
1 + re2miz 2r sin(27x)
3.4 r =1 ] - '
(3.4) @r(x) m (1 — r€27rw> 1 — 2rcos(2nx) + 12
Then

P (z) +iQ,(x)

is a holomorphic function if z = re?™®. We denote the unit disc by D.
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2. Boundary behaviour of harmonic functions

Given a real measure p € M(T) we define the harmonic function

27rz$ /P r—y )

1 +T€2m’x

We recall that

satisfies

()0§ (x) for 0 <r <1
fPT x—1f0r0<7“<1

f 5 “p x)dr — 0 asr — oo
and hence it is an approxnnate identity.

THEOREM 3.4. The function u satisfies

1 1
sup / [u(re?*)|dz = lim / u(re®™®)|dz = [l .
0

0<r<1J0
Any such function determines a measure uniquely.

(1) p is absolutely continuous with respect to the Lebesgue measure if
and only if u(re®™) converges in L' to the density with respect to
the Lebesgue measure.

(2) Let 1 <p < oo and pu= fm'. The following assertions are equiva-
lent:

o fe LP(T).
® supg,<q [lu(re®” )||Lp < o0
o u(re?™) converges in Lp resp. weak * in L°°.

(3) f is continuous if and only if u defines a continuous function on

B1(0).

Before we turn to the proof we formulate a useful result.

LEMMA 3.5. (1) Suppose that F € C(D) is harmonic in the open
disc. Then F, = P, x Fy for 0 <r < 1.
(2) If F is harmonic in the interior then Fs, = P, x Fg for 0 <r,s,< 1.
(3) If F is harmonic in the interior and 1 < p < oo thenr — ||Fy||po(T)
18 non-decreasing.

PROOF. Let F' be as in (1). Then P, * F; defines a continuous har-
monic function (since P, is an approximate identity as r — 1). Thus
v = F(re?™®) — P. % F(x) is harmonic and zero at the boundary. By
the maximum principle v = 0. Point (2) follows by rescaling. By (2) and
Young’s inequality ||Fys| 2oty < |7 Lo (r)- O

PrROOF OF THEOREM 3.4. Let F' be harmonic in D with
(3.5) sup || By || imy = € < 0.
T
The F, defines a uniformly bounded family of real measures on T. The space

of measures M is dual to the separable space C(T) of continuous functions.
By the theorem of Banach Alaoglou the closed unit ball in M(T) is weak*
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compact, and there exists a weakly converging subsequence F,, — u as
rj — 1. Then, for 0 <7 <1
Prxp=lim P.x F,., = ‘lim Frr=F

]*)OO

and, for f € C(T

/dex_/fP *,uda:_/P *f,u—>/fu

as r — 1. Thus F, — p weak® in M(T) and any harmonic function which
satisfies (3.5) determines a measure on T. Moreover

1l pmery < lim inf 1 E Nl L emy

We have seen that Young’s inequality implies the converse statement and
hence we have equality. If f € L!(T) then Proposition 2.7 implies conver-
gence in L*(T). Conversely, if T, — f in L' then u = fdu.

The similar statements of the next point follow by the same type of

argument.
Finally, if f is continuous then F,. = P, * f defines by Proposition 2.7 a
continuous function. The converse statement is obvious. O

3. Almost everywhere convergence

DEFINITION 3.6. Let (®,,) by an approximate identity. We say it is
radially bounded if there exists functions W, so that |®,| < ¥,,, ¥,, is radial
and radially nonincreasing ( Pn(z) > Pn(y) if 0 < |2| < |y| < 3) and
sup,, ||Vl < oo.

LEMMA 3.7. Let (®,,) and V,, be as in the definition. Then for f € L*(T)
sup |+ £(2)| < sup 4] 135, M S (0).
PROOF. Let K be even and radially nonincreasing. We claim that
(K f ()] < [ K[ g2 M f ().
Assume that this is true. Then the statement follows from

@y f ()] < O x| fI(2) < bl 2 M f ().
The claim holds for even characteristic functions, and for radially nonin-
creasing simple functions, and by a further approximation it holds in the
generality of the lemma. O

THEOREM 3.8. Let (®,,) be a radially bounded approximate identity. Let
f € LYT). Then ®, * f — f almost everywhere as n — .

Proor. Pick ¢ >0 and g € C(T) with || f — g[|p1(1) < &/2. Then
{z €T :limsup |®, * f(zx) — f(x)] > '/?}|
n—o0
<H{z €T :limsup[®, « (f —g)(x) — (f = g)()] > el2}
<Bsup |[vnl| e f = gl

<3sup [[¢y]| 1"/
n
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As a consequence

{z € T : limsup |®, * f(z) — f(x)] > 0} = 0.

4. Subharmonic functions

DEFINITION 3.9. Let U C R™ be open. A function f : U — [—00, 00
is called subharmonic if it is continuous (with the obvious meaning for the
value —o0) and if for all x € U there exists r > 0 so that

f@) € o= [z + sy)do(y).
n|B1(0)] Jag, (o)
forall0 < s <.
LEMMA 3.10. (1) If f and f are subharmonic then max{f,g} is
subharmonic.

(2) A function f € C?(U) is subharmonic if and only if Af > 0.

(3) If F is holomorphic then In|F| and |F|* for e > 0 are subharmonic.

(4) If f is subharmonic and ¢ is increasing and convex then ¢ o f is
subharmonic.

PRrROOF. The first claim follows immediately from the definition. Subhar-
monicity follows from A f > 0 by the argument for the mean value property:

d 1
p— U p— A .
dr n|B1(0)] asl(o)ﬂx sy)do(y) /Bl(o) fle+y)dy

It also implies the converse implication. Let = be a point where A f(x) < 0.
Then for small radii the mean value inequality is violated. We turn to the
fourth point. By monotonicity and the mean value inequality resp. definition
and Jensen’s inequality

1
o(f(x)) <¢ <n|Bl(0)] 051(0) flz+ ry)da(y))

1

_ o do
Sn\Bl(O)| 831(0)¢ [z +ry)do(y)

If F' is holomorphic then In|F| is continuous, with values in [—o00,00). If
F(zp) # 0 then Reln F(z) = In|F(z)| is harmonic in a neighborhood and it

satisfies the mean value identity near zy. If F(z9) = —oo there is nothing
to prove. Since |F|* = exp(aln|F|) the last statement follows from the
previous points. U

LEMMA 3.11. Let Q C R™ be a bounded domain, u,v : Q — R continuous
and subharmonic resp harmonic. If u < v on 9Q then u < v in €.

PRrROOF. The function v — v is subharmonic, < 0 at 992. The definition
of subharmonic function implies the maximum principle, and the maximum
is assumed at the boundary. O
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LEMMA 3.12. Let Q C R™ be open, f : Q — [—00,00) be subharmonic,
B,(x) C R™. Then

1
f(z) < m 05, (0) f(z+ry)do(y)

PRrROOF. Let
fn(m) = max{f(:v), _n}'
It is subharmonic and it suffices to verify the assertion for f,, or, by an
abuse of notation, we assume that f is bounded. Let u be the harmonic

function on B, (x) which coincides with f at the boundary. By the previous
lemma f < wu on B,(z), and hence

1 1
HT = =SB0 Jowo) " ABO Jopgo) T

as claimed. O
The prove implies also

COROLLARY 3.13. Suppose that f is subharmonic on the open set U C
R™ and B,(x¢) C U. Then, if © € B,(xq)

f(a) < / P ) f(ao + ry)do(y).

PropoSITION 3.14. Suppose that g is a nonnegative subharmonic func-
tion on B1(0) C R? which satisfies

Tr — X

r

gl == sup [lg(re®™)[|p2 < oo
0<r<1
Let
(3.6) g*(z) = sup |g(re*™™)|.
0<r<1
Then

(1) [{z:g7(x) >t} < Zlllgllh
(2) If 1 <p< o0 and

lglllp = sup [|g(re*™)|| Loer) < 00
T
then
g™ Ile < clllglllp

PROOF. Suppose that g,, — p as j — oo with r; — 1. Existence of such
a sequence and g follows from the weak™ compactness argument. Then, as
in the proof of Theorem 3.4 combined with Lemma 3.13

g(re*™®) < Py x p(x)

and
lim [|g; ([0 = [[ullm = [llgll]1-
r—1
But now ‘
0 < g(re®™™) < P, x p(x) < Mu(x)
and hence

g*(x) < Mpu(x)
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This implies the weak inequality. The estimate in L? follows in the same
fashion. 0

5. The theorems of Riesz

DEFINITION 3.15 (complex Hardy space). Let 1 < p < co. We denote

the unit disc by D. The space HP(D) is the space of holomorphic functions
F on D such that

I Fll gy = sup ||Frl|e(r) < 00.
0<r<1

THEOREM 3.16. If F € HY(D) then F* € L'(T).

PrROOF. The function ]F|% is subharmonic and |FT]% is bounded in
L*(T), uniformly in . By Proposition 3.14 (|[F|'/?)* € L?. This implies
the statement of the theorem. O

By Theorem 3.4 F,. = P, xp for a complex measure p on T. By Theorem
3.16 there is the integrable majorant |F'|* for the functions F,.. The func-
tions F,. converge to the measure p in the sense of measures. Because of the
integrable majorant u is absolutely continuous with respect the Lebesgue-
measure and can be written as u = fm! with f € L'. Moreover F,, = P, x f.
But then, due to the pointwise convergence of Theorem 3.8 F,, — fasr — 1
almost everywhere. We obtain the second version of the Riesz theorem.

THEOREM 3.17. If F € HY(D) and f = lim,_,1 F,(z) almost everywhere
then f € LY(T) and
F.(x) = Py * f(z).
THEOREM 3.18. Suppose that p € M(T) satisfies i(n) = 0 for n < 0.
Then b is absolutely continuous with respect to the Lebesgue measure.

PrROOF. Let F be defined by P, * . Then the real and imaginary part
of F' are harmonic. Harmonic functions are smooth and even analytic (this
can be seen from the representation by the Poisson formula) and near z = 0
we can expand F' in a Taylor expansion (by expanding the Poisson kernel)
which converges in D

We apply the Laplace operator A = 49,0z with 9, = %(89C — i0y) and
0; = %((")x +140y). Then

0=AF = ) amn0:.0:(z"2")

n,m>0

with 0,05(2"2™) = nmz""12™~1. Thus we can write
[e.e]
F(z) = Z anz" + bpz".
n=0

Now we apply the assumption: For k <0

/e—Zm'ka:M(x) -0
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and hence
/6—2m'kmpr % de _ /PT€—27rikmu _ /Tk6—27rik:p'u -0

since 2% is holomorphic and hence real and imaginary part are harmonic.
Thus F € H'(D) and the assertion follows from Theorem 3.17. O

THEOREM 3.19. Let F € HY(D). Suppose that F is non identically 0
and let f be as in Theorem 3.17. Then In|f| € L'. In particular is does not
vanish on a set of positive measure.

PROOF. We first assume that F'(0) # 0. Since In |F'| is subharmonic
In|F(0)| S/ln\Fr\dx.
T

We want to take the limit as » — 1. We know that F,, — f almost every-
where and

In|F| < |F|*
is an integrable majorant for the positive part. Let g, = |F|* — In|F,| > 0.
It converges almost everywhere to g3 = |F|* — In|f| and by the Lemma of

fatou

/gldrglimi{lf/gl §/|F\*—ln]F(0)].
r—

We have to remove the assumption that F'(0) # 0. There exists a point
20 € By/2(0) with F(29) # 0. We apply a Mobius transform to transport 2o
to 0. The Mobius transform maps circles to circles with possibly different
radii and centers. For large circle the L' norm is bounded by |F|* before
the transform.

O

This is considerable sharpening of a statement from complex analysis.

6. Conjugate functions

DEFINITION 3.20. Let u be harmonic and real valued on D. We define
the conjugate function u to be the unique harmonic function with u(0) = 0
such that u + i1t is holomorphic.

LEMMA 3.21. If u is constant then @ = 0. If f = u+ iv is holomorphic
and v(0) = 0 then @ =v. If u is harmonic on D then

f(n) = —isign(n)(n)
where
-1 ifn<0
sign(n) = 0 ifn=0
1 4fn>0

PROOF. The function
u+ i — (u+ i)
is purely imaginary and holomorphic, hence constant. We expand

up(x) = Z ak(r)ezmm

kEZ
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where
ap = /u(re%rz:v)e—%rzkmdx
and aj = a_g, since u is real valued. Then

r2Au = Z(rza'k/( ) + raj, — k2ay(r))e*™
keZ

and hence ay(r) = a,r!*l and

.73) — § :akr\k\e%mkm

keZ
with ar = a_;. Then
o
u ~+ 1w = u(0) —i-QZakzk
k=1

is holomorphic with real part u. Checking the Fourier coefficients gives the

claimed relation of the Fourier coefficients.
O

We begin with an important weak-L' bound due to Besicovitch and
Kolmogorov.

THEOREM 3.22. Let u be harmonic in D and satisfy
ullls = sup fur|lp1ery < oo
0<r<1

Then
. c
[z a"(2) > t}] < Slljulll -

PRrOOF. By Theorem 3.4 u; = P;*pu for a measure . It suffices to verify
the assertion for nonnegative measures p. Let

Es ={z:ud"(x) > s}.
We define the holomorphic function F' = —u + tu. Let

=1 v
wS(:r, y) T /(oo,s)u(s,oo) (‘T - t)2 + y2 at

which is harmonic for y > 0 and nonnegative. Moreover

o wy(z,y) > l if |z| > s,

® wi(0,y) < ﬂz

/OO / dx
0 a:2+y a:/y +1y
/ 1+z2

= arctan(oo) — arctan(0)

since

T
2
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and

[o.¢]
ws(073/)_1/ ZdetSQ/ dt2§2£~
T J(—c0,—5)U(s,00) £+ Y T Jspy L +15 7 s

The composition w o F' is harmonic and, if € E; then w(F(z)) > 1 for
some 0 < r < 1. By Proposition 3.14
L1
|Esl < Hy+ (ws 0 F)" 2 SH < 6l [lws 1.
Since wg o F' > 0 the mean value property implies
. 2 u(0 2 |||uw
lkowo Flli = wu(F(0)) = wy(iu(0)) < 242 = 2l
which gives
12 |||ull |1
5, < 21l
T s
U

LEMMA 3.23. Let u be harmonic on D. Then
i ]|7> + w(0)* = |lur72

Proor. This is seen by Plancherel and the relation of the Fourier coef-
ficients. O

COROLLARY 3.24. If f € L*(T) and u, = P, x f then the limit g(x) =
lim, 1 @, (z) exists almost everywhere and in L2,

PROOF. By the previous lemma |||@|/|2 < |||@]||2. By Theorem 3.4 u, and
@, converge in L? to some functions f and f in L?. Since |u,(z)| < M f(z)
and |, (x)| < M f(z) we obtain pointwise convergence. O

7. The Hilbert transform

We formally introduce the Hilbert transform H of a measure p € M(T)
as

It is not clear whether and in which sense the limit exists. It does for
= fm! for a square integrable f.

COROLLARY 3.25. If u is harmonic and |||ul||1 < oo then
g = lim u,
r—1
exists almost everywhere. It satisfies the weak bound
c
{2 lg(@)] >t} < Sl flle

PROOF. By Theorem 3.4 u, = P, * p. If p = fm! with f € L? then
the almost everywhere convergence follows from Corollary 3.24. Next we
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consider u = fm! with f € L(T). Given ¢ > 0 there exists g € L? with
|f —gllr2 <e. Let v, = P, x g. Then, by Theorem 3.22,
|E:| =|{| limsup |(u + iﬂ)(r@zmz) — (u+ iﬁ)(se%iw)] > 51/2}]
s,r—1
=|{|limsup |(u — v + (@ — D)) (re*™™)

s,r—1

— (u—v+i(i—0))(se>™)| > £/}

<pll =gl
§c€1/2.
Thus
{| lim sup | (u + iv) (re*™®) — (u + iv)(se*™)| > 0}| = lim |E.| = 0.
s,r—1 =0
Let i be a general measure on T. We decompose into the absolutely

continuous part and a singular part: There exists f € L!(T) and a set B of
measure 0 so that

MA%iAﬂM+“MﬂB»

The first part we have dealt with above, and we consider a Borel measure p
such that there exists B of measure 0 so that pu(A) = u(A N B). Since
u(B)=  sup  p(K)
K CB,compact
for every p measurable set, given £ > 0 there exists K so that u(A) <
w(K) + . We define
K
W (4) = (AN K).

If I is an open interval disjoint from K and if u; = P, * u and w = u + i@
then u has a continous extension to the image of I on the arc of the unit
circle defined by I and the real part vanishes. By the Schwarz reflection
principle w has a holomorphic extension across this arc, and hence all limits
exist in the complement of the compact set K of measure 0.

As in the first step we derive the existence of the limit almost everywhere.

The bound is a consequence of Theorem 3.22.
O

THEOREM 3.26. If 1 < p < oo then
tan(o=) ifl<p<2
< 2p -
Il < { (D) pss Wl
ProoF. We have seen that

IH Sz < 112

By the interpolation theorem of Markinciewicz this implies together with
the weak estimate that
IH fllr < cpll fllLr

/Hmmz—/ﬁmm

for 1 < p < 2. Since
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the estimate (up to the sharp constant) for p > 2 follows by duality.
We provide a second proof following Grafakos’ variant of Pichorides’
proof, which yields a sharp constant.

LEMMA 3.27. For a,b real and 1 < p < 2
b|P < tan(2p)\a|p By Re[(|a] + ib)P)

with

op—1
sin” ™ (g7)

sin({5 D7)

We set a = f(z) and b = H f(z) and integrate. Then

/|Hf \pd:v<tanp /|f |pd;17—B/Re (|f(z)| +iH f(x))P])dx

and the theorem follows once we show that
[ Rell£@)]+ it 5@)Plds = 0

Let u + iv be the harmonic (holomorphic) extensions of f + iH f.

By =

LEMMA 3.28. The function g(z,y) = Re((|z| + iy))P) is subharmonic
and g(u,v) is also subharmonic.

Then

1
0 < g(u(0), v(0)) < /0 Re[(|f(2)] + iH f(2))"]dz

which concludes the proof up to a duality argument.

Sharpness follows by taking

1 S
f—Re ( + z>
1—=z2
for suitable s.

The Hilbert transform is not bounded in L*: The real part of i Inc(1 —
e’™) is w(x — 3) for 0 < x < 27 and the imaginary part is In |1 — e?™®|,
which is not bounded.

We recall that

1 + e27mix COS TTX
Im [ oorie g = cot(mx).
—e sinmx

PROPOSITION 3.29. If f € CY(T) then

f(z) = lim cot(m(x —y)) f(y)dy

PrROOF. By symmetry
[ ot -niwidy =5 [ cotlny)(fe—y) - fo+u)dy
|lx—y|>e |lz—y|>e

and the second integrand is bounded. O
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PROPOSITION 3.30. Suppose that || f||re < 1. Then

1 2
/ MH @) g0 <« 2
0

T cosw
s
for0<a< 3.

PROOF. Let f be as in the proposition. Let u be the harmonic extension
of f and F = 4 —iu. Then by the maximum principle |u| < 1 and cos(au) >
cos . Hence

Re e = Ree®e™ % = cos(au)e®® > cos ae™®
and with the mean value property

/Re @) dy = Re e 0) = cos qu(0) < 1
T

and therefore

/eam(m)dx< L
T T ocos«

The estimate follows now by the Lemma of Fatou, and the same argument
for —f. O

THEOREM 3.31. Let Sy be the partial sum of Fourier series and 1 <
p < oo. Then

sup sup [|Sn fllLr(T) < o0
N | fllee(r)

and for all f € LP(T)
Snf—f in LP as N — co.

PROOF. We write (which we check by checking the effect on the Fourier
coefficients)

Ngl —tH ; 1+iH ,
Snf :6—27erx 2Z 627rz(2N)w +QZ (6—2mef)

i %(aNe%riNx + a_ye2milNe)
and obtain by the boundedness of the Hilbert transform
sup 1SN fllze(ry < epll fllzecr)-
This implies the assertion by Proposition 2.9. U

Pointwise convergence is true but it is considerably harder, and much
more recent.

B8



CHAPTER 4
The Fourier transform on R"

1. Definition and first properties

DEFINITION 4.1. The Fourier transform of a complex valued function
f e LY(R") is

f(f) = /e%ig'zf(x)d:c

Properties:

(1) f is a bounded continuous function which converges to 0 as |¢| —
0o. Moreover

FO1 < 152y
(2) If fe Ll(Rn)’ h,n € R" and fh( ) _ f($ B h) then

fu(€) = e f(€)

and - X
TS = (€ +n)
(3) If f,g € L*(R™) then f « g = f(£)9(¢) and by Fubini

[ o= [ fwi

(4) If A:R™ — R" is an invertible linear map then

FoA(€) = |det A7 f(AT%).
LEMMA 4.2. -
exp(—|z[2)(§) = exp(—m|¢[?)

Proor. We calulate more than we need.

1 . 1/2
In:/eﬂlxl2dmn:/ y{x:yxg( ln(t)> Vdt
0 s
1
B0 [ (o) 2
0

=|B1(0)|7 "/ / s2e*ds
0

n—|—2)
5 )

=[B1(0)|x~"/?I'(

In particular

Alternatively, by Fubini
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and hence
I,=1
AS a consequence
(41) " (Bu(0)) = o
r(=2)
" P(3) = 21(3/2) = 71/2
2 2

Let n =1, f(x) = e~™71* and
/e_mcz_zm-gzdx _ e_7r|§|2 /B_W(x_i£)2d$.

We denote
J(t) = / e @i gy
Then
d )
40 = / e~ =0 (971) (2 — it)da
d 4
=— i/dxe”(x”)zda:
=0
This implies the formula in the one dimensional case. The higher dimen-
sional case follows by Fubini. O
An example:
2mixé 1 — —2m[¢]
(4.2) e ———dz = Te
R 1+

by the residue theorem since

11 1 1
224+1 2i\z+i xz—1i)

2. The Fourier transform of Schwartz functions

DEFINITION 4.3. The space of Schwartz functions S(R™) on R™ is the
space of all smooth functions for which the seminorms

sup [2°0” f ()]
are bounded for all multiindices.

Properties :

(1) If f € S and g € C* with derivatives bounded by polynomials
then fg € S.

(2) If f € Sand h,n € R™ then f,(z) = f(x—h) € S and > f c S,

(3) S ¢ L'(R") and the Fourier transform is defined for functions in
S

o — ~

() (~2miye;f =0, f
(5) 0, f = 2mic, ]
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(6) It follows that, if f € S,
ol f = (2m)B1=lal(_j)lal+1815a B 1

is a bounded continuous function since it is the Fourier transform
of a Schwartz function.

The inversion theorem is a consequence:

THEOREM 4.4. If f,g € S(R™) then

(1.3 f@) = [ g

(4.4) fgde = | fodt.
Rn Rn

In particular the Fourier transform defines a unitary map on L*(R).
We denote the inverse transform by f.
PRrROOF. The family of functions
o = te el

is an approximate identity as ¢ — oco. Its Fourier transform is

le|2

pr=e T2

Thus, by the dominated convergence theorem and Fubini
e , le]? o
[t = jim [ e feag
: 2mi(x—y)€ —Wﬁ
= lim e Yse " dEf(y)dy

t—o00
= lim [ t"e ™l £(y)dy
=f(z).
Now, since fff] = ffg and § =7,

We obtain

PROPOSITION 4.5. The Fourier transform maps S(R™) to itself. It is
invertible and it satisfies

(4.5) Frg=1Ffq

(4.6) fa=F*g
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PROOF. Only the last statement has to be shown. We apply the in-
verse Fourier transform to the right hand side of the second equality. The
statement then follows from the first equality. O

2.1. The Fourier transform of complex Gaussians. Let A = A, +
1A; be a symmetric invertible complex matrix with A, positive definite. The
function

f(z) = exp(—ma' Az)
is a Schwartz function. We want to compute its Fourier transform. We
write A, = BB and y = Bx. Then, with g(y) = exp(—7|y|?> —imy'Cy) with
C = B7'A;B we have

£(¢) = | det B|"'g(B¢).
If A; = 0 we know the Fourier transform of g and obtain
(4.7) exp(—mztA,x) = (det A,) V2 exp(—met A7L¢).
LEMMA 4.6. The Fourier transform of
exp(—mx'Ax)
is, by an abuse of notation
(4.8) (det A) ™12 exp(—met ALE).

where (det A)_1/2 denotes the product of the square roots of the eigenvalues

of A.

The eigenvalues have positive real part, and the square root is uniquely
defined. This is not necessarely true for the determinant. It is both remark-
able and important that both f and the formula of its Fourier transform are
well defined for invertible complex matrices with nonnegative real part.

PRrROOF. By the considerations above it suffices to prove the statement
for A =1+ iC. By the Schur decomposition we can also diagonalise A and
it suffices to verify the formula in one dimension. Let

h(r,€) = (1 + i) /2em(IHim) e / e~ 2mir—m(1+ir)a? g
We differentiate with respect to &:
% :(1+i7_)1/267r(1+z’7-)—152 /[_ 27TZ'§ —27TZ:U] —2mix—m(1+iT)x? dx
T

d§ 1+74
g _’_ZvT)1/267r(1+i7)_1£2/dd627ri£x7r(1+i7)12dx

T

=0
hence h(7,€&) = h(7,0) and
dh(t,0) 1 1 9 _ )2
) —i(1 - w(1+iT)x
I =i( +ZT)2/[ S0+ ir) Txle dx

CAJ

1+1i7) Q/d:UQ m(14im)a? .

This completes the proof since h(0,0) = 1. O
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3. The Fourier transform on tempered distributions

The space of tempered distributions S’(R™) is the topological dual of S,
or, in different words, the set of all continuous linear maps from S to C.

DEFINITION 4.7. T : § — C is a tempered distribution if
(1) T is linear
(2) T is continuous, i.e. there exist N and C so that

T(Hl<C  sup |27
al <N JBI<N.

Let u be a measure. It defines a distribution by

7.() = [ o

Let 1 <p<oo. Then g € LP defines a tempered distribution by
7,(5) = [ foda

We often identity f and 7. It is important that the formulas do not
lead to ambiguities when several interpretations are possible.
Let ¢ € C* with (polynomially) bounded derivatives. We define

(@T)(f) =T(of)
and
(¢ T)(f) =T(¢*f)
where ¢(z) = ¢(—z). Then ¢ * T is the smooth (C°°) function
¢xT(x) =T(p(x—.))

since this expression is continuously differentiable, and

¢amﬁ=T@*ﬁ=4(/wx—wﬂwmo=/Tw@—»vuwm

The last inequality would be obvious for sums, and it is verified by writing
the integral as a limit of sums.

Every Schwartz function defines a tempered distribution. Test functions
are dense in the space of tempered distribution in the sense that, given a
tempered distribution 7" there exists a sequence of functions ¢; € Cg° such
that

[ éstiz =1
for all ¢ € S: Let n € C§° have integral 1. Then

T(E"p(t.) x o(x/t)f) = /T(t"qﬁ(t(w — )))o(x/t) f(x)de — T(f).

DEFINITION 4.8 (Support of a distribution). The support of the distri-
bution T is defined as complement of the union of all open sets U with the
property that T'(¢) = 0 if ¢ is supported in U.

LEMMA 4.9. Let T be a distribution with compact support. The convo-
lution with T defines a continuous linear map on S.
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We will not go much into the notion of continuity here. One way of
formulating it: For all N > 0 there exists M and C' such that

sup  [299PT x| <C sup |z%9%¢|.
lal+|B1<N |al+|Bl<M

PrROOF. We assume that the support of T is contained in the ball of
radius R. Then there exists N so that

T(¢)|<Cn  sup  |0%9|

lo|<N,|z|<R
and
T ¢(x) =T(d(x —.))
satisfies
T+¢(x)] <COn  sup  [0%(y)| < C(L+ (|2 = R)+) M
lo| <N, |z—y[<R
for all M. Moreover Oy, (T * ¢) =T * (0z,9). O

Let T be a tempered distribution and S a compactly supported distri-
bution. We define S(¢) = S(¢) and

S*T(§) = T+ 5(9) = T(S  6) = T(S(6(.—))-

DEFINITION 4.10. The Fourier transform of the tempered distribution T
1s defined by

T(¢) = T()
Properties:

e Since we identify functions with tempered distributions it is impor-
tant that this does not introduce ambiguities:

(4.9) @w=w@=/ﬁw=/mm

o ST = ST whenever both sides satisfy the conditions for convo-
lutions resp. products.
e Similarly ST =S *T.
DEFINITION 4.11. A distribution is called homogeneous of degree m € C
if
T(¢) = N""T($(\x))
for X > 0.

An homogeneous distribution is tempered (exercise)

LEMMA 4.12. The Fourier transform of a homogeneous distribution of
degree —m is a homogeneous distribution of degree —m — n.

PROOF.

T(¢) = T(¢) = TN "¢(./A) = T(A""(A(x)).



3. THE FOURIER TRANSFORM ON TEMPERED DISTRIBUTIONS 53

Examples:

(4.10) i(¢) = / H(E)dE = B(0) = 60(9)

(@1 e = duld) = 6(0) = [ oda = [ au(e )0 e)de
The same proof as for Fourier series shows

THEOREM 4.13 (Hausdorff-Young inequality). Let 1 < p <2 and 1/p+
1/p' =1. Then

£l e < N fllze
and

LEMMA 4.14 (Riemann-Lebesgue). Let f € L' . Then f and f are
continuous and

Jim (&) =0

PRrOOF. Let f; € Cg°(R™) with ||f — fj]lzr < 1/j.Then

|’f_ fj”sup < 1/]

and f; — f uniformly. The assertion holds for f; since f; € S, and hence
for f by uniform convergence. O

3.1. The Fourier transform of 1/x. Let f(x) = 1if z > 0 and 0

otherwise. Then formally
/OO e 2 gy = 1

How do we define the right hand side? There are at least four possibilities

(112) @) =5 [ 5o (0) — o(-a))do

4.1 S — -
(4.13) 2mix + 10 t—>6r,?>0 2mix +t

1 . 1

4.14 = lm
(4.14) ImiE — 0 t—0it<0 2mif — 1

and as principle value

(415) e =l [ 5o (6© —o(-e)de

It is an exercise to compare the different definitions and to choose the
correct one.
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3.2. Gaussians, heat and Schrodinger equation. We consider the
heat equation

u — Au =0
We make the Ansatz that u and u; are tempered distributions in x uniformly
in time. A Fourier transform in = leads to

ay + (2m)? €2 =0
and
a(t, &) = e a(0,¢)

for t+ > 0. The inverse Fourier transform of e~4mtl* is

1 _l=?
90 = Gamyr® "
and
u(t,x) = g¢ xu(0,.)(x)
for t > 0.
Similarly we deal with the Schrodinger equation

10+ Au =10

and obtain with

formally
u(t) = g * uo.
We denote the map ug — u(t) by S(¢)ug. It is a unitary group:
(1) S(t+s) =S(t)S(s) for s,t € R, S(0) = 1.
(2) For all ug € L? the map t — S(t)ug € L? is continuous.

LEMMA 4.15. Let 1 < p < 2. Then

N

_n(l
(4.16) 1Sl < (Arft) ™% 2 |lug] Lo

for all ug € LP. Suppose that ug € L* and u(t,z) = S(t)up(x). Then the
support of the space time Fourier transform of u is the ’characteristic set’

[(r,€) i 7 = —2rle2}
and
() = [ d(-2nleP e
The estimate follows as for Hausdorff Young. The remaining part is an

exercise.

LEMMA 4.16 (Strichartz estimates for the Schrodinger equation). Let
p = w If f € LP(R x R™) and ug € L? then the solution to

i0u+ Au = f, u(0,z) = up(x)
given by Duhamel’s formula satisfies

sup [[u(®)l 22y + 1l Lo oy < € (lwollzz + 1/ 1l o @y ) -
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Proor. Formally

t
] SE—=s)f(s)ds| p@ny < (47T)”/2/ [t = s[ "2 (1 f(8)l| e (mn)

s<t
and by the weak Young inequality

15t = 8)f ()l Lo (mxny < el fllLr@xmr)-
Let T* be the map from LP((—o0,0) x R™) to L?(R™) which maps

0
f— / S(—=s)f(s)ds.
On the Fourier side we see that
0
TT*f(t) = z/ S(t— 8)f(—s)ds

and

HTH%?—)LPI((O,OO)XRH) :HT*H%p((OvOO)XR")—>L2

:HTT*HP((O,O@)XR")%LZDI((O,OO)XR")
which is bounded by the first step. O
Remark: Restriction theorem.

3.3. The Poisson summation formula. We denote the Dirac mea-
sure at the point x by .. Let
T="> 6

kezZm
resp

T(f) = fk).

kezZm

THEOREM 4.17. The Fourier transform of T is T.

This statement is by the definition of the Fourier transform of distribu-
tions equivalent to the Poisson summation formula

S fk) = fk)

kezn kezn
for all f € S(R™).

Proor. If f € S then
Fx)= > flz—k)

kezm
is a smooth periodic function, hence, if m € Z"™,

F(m) = Z /[01)” fx — k)e?™mzqy

keZn

= / f(z)e 2mme g
=f(m)
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and
F)= 3 fome
mezr
which is the Poisson summation formula. O

3.4. Homogeneous distributions and the Laplace operator. We
call T radial if for every f € § and any orthogonal matrix O the identity
T(f) = T(f o O) holds. The Fourier transform of a radial distribution is
radial.

LEMMA 4.18. let 0 < Rem < n. Then the Fourier transform of

7.[.m/Q

I'(m/2)

Y ' r(n—m)/2 .
|z[™ s w7l

I((n—m)/2)

Proor. We evaluate using polar coordinates and that the n — 1 dimen-

sional Hausdorff measure of the unit sphere is n|B;| = IEZT://;) for m > —n

n_q

z|me e gy = Ul

Jlere i g
_; Sm;”—le—s s
~ m/20(n)2) /0 d

L'((n+m)/2)

7m/20 (n/2)

o0 2
/ PN =20 =T o dr
0

Let T be homogeneous radial distribution of homogeneity m € C. We
claim that there exists a radial function ¢ of homogeneity m so that

T(¢) = / toda

whenever ¢ € C§°(R\{0}). An incorrect proof is given by choosen a smooth
cutoff function n supported in the interval By /5(0) with integral 1 and cal-
culate for the n-th unit vector

t(en) =T'(be,)

=/ e — g™ ()T (S0 —y)dy
B /2(0)

:T(/ len — y’m+”¢(y)6en_ydy)
B1/2(0)
=T(¢(en + )]-I™").

To do it correctly one has to apply this argument to an approximate identity.
It is clear that ¢ is radial and of homogeneity m.

If Rem > —n then this function is locally integrable and the identity
holds for all functions in S, which is seen by a smooth truncation argument
and rescaling.

Now |z|~™ for m < n defines a homogeneous radial distribution of degree
—m. Its Fourier transform is a radial distribution of degree m — n. By the
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considerations above it is given by a radial function of degree m — n, hence
cm|z|™ ™. To determine the constant we use the first step:

T((n — m)/2)x™2 =T(n/2) / 2| el g

—I'(n/2) / e Te e
:cml“(m/Q)7r(”_m)/2

O

We apply these considerations to the Laplace operator for n > 3. Then,
if w and f are tempered distributions

—Au=f
implies
Am*|e[a = f
and formally
i = (ar)1 L
SRANTE
The function
1
€12

is locally integrable and defines a homogeneous distribution of degree —2.
Its inverse Fourier transform is

7r2—n/2

I'((n —2)/2)
and hence
u=gx*f
with
olo) = 1t
Moreover the inverse Fourier transform of
&
Am?[¢[?
is
_ /21 xj
2nl'((n+2)/2) |z|®

which remains true for n = 2.
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4. Oscillatory integrals and stationary phase

We begin with a study of complex Gaussian integrals. The first lemma
contains the algebraic part.

PROPOSITION 4.19. Let p(x) be a polynomial in R™. and let A = A, +
iA; be symmetric with A invertible and inverse (a;;) and A, positive semi
definite. Then

k
(4.17) /p(ac)e” A2y = (det A) %Z kk“ Z Clz’jazzj p(z)
k:O 4j=1

=0
If A, is not positive definite we understand both sides as the limit as
e — 0 for A+el.

PRrOOF. It suffices to consider A, positive definite since both sides are
continuous in A as long as A is invertible. By a change of coordinates
we reduce the assertion to diagonal matrices A. It suffices to prove it for
monomials, since polynomials are sums of monomials. An application of the
theorem of Fubini reduces it to the one dimensional case. (Check carefully.
There are binomial coefficients on the right hand side). So we want to

evaluate for Repy > 0
o0
/ gzl gy
—00

Both sides vanish if m is odd, and it remains to prove

> 2k —mplx|? — ,,—1/2—k 1 2!
/_Oox e dx = p (QW)kk!( k)!

which in turn follows by induction on &

OO 2(k+1) —mplz|? 1 < oo 4 ||
T e M dy = — —— T —e TR dy
oo 2mp dx

_ Qk + ]. /Oo x2k€77"#‘x|2
2 J)

_ vk 2RHL ok o
=H gy

1y 1 2(k+1) . 2(k+1
B (47r)k+1(k+1)|6x(+) .

We consider integrals of the type

I(1) = /n e™@ g (z)du

where a is smooth and compactly supported, ¢ is smooth with nonnegative
real part and 7 is supposed to be large. This integral is clearly bounded and
we are interested in the behavior for large 7.

PROPOSITION 4.20. Suppose that there exists k > 0 so that
|Dp| —Rep > k>0



4. OSCILLATORY INTEGRALS AND STATIONARY PHASE 59

in the support of ¢ and that Re¢p < 0. Then, if N > 0 there exists cy so
that

(4.18) 1I(7)] < ent™V
PROOF. There exists a smooth function 7 so that
IV®| > k/3
if x € suppn Nsuppa and
Re® < —k/3

for € supp (1 — n) Nsupp a. We split the two cases by writing

a=an+a(l—n).
For the second term we get pointwise bounds of the integrand by e~ 7%/3,
which gives the estimate for this term. So we may assume that

|D¢| > K

in the support of a. We calculate

/ e (z)a(x)dr =171 |avv¢q’52 Ve dx

- - adj¢
- /d)zawisr?

where we used the divergence theorem to integrate by parts. We obtain the
claim by induction. O

The next situation with a fairly complete understanding is the one di-
mensional situation.

LEMMA 4.21 (Van der Corput). We consider

d .
I:/ M) (z)dx

for real functions h under the assumption that a is compactly supported and
that for one j > 1

n) >k >0.

If 7 = 1 we assume in addition that h' is monotone. Then
_1 -
11| < 75 (la' | + 237 |allsup)
if a is compactly supported.

PrROOF. We begin with the case j = 1 and proceed by induction.

d
/ M@ g () da :i/eiham(a/h’)dx

:i/eihaz/h’dx—i—i/eiha@x(l/h’)d:r
+ie™Da(d) /1 (d) —ie"Va(c) /1 (c)
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for the first term we obtain the estimate with L' and by monotony the
second term is bounded by

d .
/ ¢hady (1/1)dz| <||allsup

d
/ 0,(1/1)dx
=|lallsup| P’ (c) ™" = h'(d)7"]

<lallsupri ™

We assume that we have proven the estimate for j —1 > 1 and we want
to prove it for j. So hU) > k and RU~Y has at most one zero, which we
assume to be 0. Let us assume that it is 0. We choose § > 0. If |x| > § then
|hU=Y(x)| > k6. We apply the previous argument on both sides and obtain
11 <26 sup +6" VU VUTD) (a1 + 4377 lasup)
|[z|<6]a(x)]
We choose § = k19, This requires ¢ < —& and d > ¢, the modifications for
the other cases are trivial. O

In higher dimensions the only large contributions can come from sta-
tionary points, i.e. points z in the support of a where Re¢(z) = 0 and
Vo(z) = 0. We always assume that these points are nondegenerate in the
sense that the Hesse matrix D?¢ is invertible. We assume that Re ¢ > 0.

THEOREM 4.22. Under the assumptions above we assume that 0 is the
only stationary point of ¢ in the support of a where Re ¢p(0) = 0, and that
it 1s nondegenerate. Let

I(7) :/ e T adx

We write
¢ =¢(0)+ T Az + (x).
Given N there exists M and C so that

(4.19)

M n k

o)~ 5k -1 1 52 )
I—e T8 K (det A)72 ) =T Z ai;0% | (a(z)e )
k=0 3,j=1
=0
<cr N,
There is a suggestive notation for the estimate:
1

I — e 0 r/2 det(A) 12 exp (47”_ Z aij@?j) (a(z)e” V@) .

= 0(r™™)

PRrROOF. Again it suffices to consider A, positive definite. Let n €
Cg°(B1(0)), identically 1 on Bj/. We may assume that a is supported
in a small ball around « = 0 and that

9°9(0) = 0
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for || < 3. We claim that for § < s < %

Ii(r) = /(1 — n(a:Ts))e_Twada:
and N € N there exists Cy such that
[L(7)| < ent™™

We observe that
D|D¢(z)| ™" < cfa| >

near x = 0 in the support of a and each integration by parts brings a gain
of 771. After many integrations by parts we end up with

CTk/ ]w\*%daﬁ < O Fkr2ks,
2|x|>T—s

Since s < % this implies the assertion. Let pas be the Taylor expansion of
ae” ™™ at 0 of order M. Then
M1

lpar — ae” ™| < Oyl TS
[I2(7)| = ‘/U($T1/4)€_WTITAx<pM — ae" ™™ dz| < erMHD(G=9)

We obtain the statement by chosen M large. Finally we consider - under
the assuming that Re A is positive definite -

Is(1) = /(1 - n(:UTS))e_T”TAxpMd:L‘

in the same fashion as the first term, using also the Gaussian decay, which,
however, does not enter in quantitative fashion since the integration by parts
leads to factors ||V, which ensures integrability at co. This shows that

I(t) — /(1 - 77(1:78))6_”"75(0)e_TmTArpMda: <ceyr N

if M is sufficiently large. The second term has been evaluated in Proposition
4.19.
O

4.1. Example 1: Korteweg-de Vries equation and the Airy
function. The Korteweg-de Vries

Ut + Upzr + Ouuy =0

is among the most fascinating partial differential equation. It describes one
dimensional water waves, for which it describes a second order approxima-
tion: To first order there is a linear transport resp. wave equation, but
waves are in general slower than the wave speed of the wave equation.

It it strongly related to Schrédinger operators

Y = Yz + urh.

There is a complicated but amazingly explicite way of getting formulas for
solutions via the so called inverse scattering theory.
Here we will look at the linear part

Up + Ugze = 0
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By a Fourier transform
() = "B g €)
and with
g(x) = /67/[(27r)3§3+271'$f}d£

u(t) = t7B3g(t73) x4
The Airy function is defined by

Ai(z) = (2m) 7! / /(€ /3+ix8) ge

which, as usual, is an abuse of notation and has to be as limit of the integral
with the additional factor e=¢¢" or as inverse Fourier transform. Then

g(z) = 3Y3(2m) 2 Ai(z(3t)"/3).

By the Lemma of van der Corput Ai(x) is uniformly bounded, and since
we can differentiate under the integral and apply Proposition 4.20 it is a
smooth function (the noncompact interval does not change this fact, but
one has to pay attention to what happens at infinity). The phase function
is ¢(&) = £3/3 + x¢ with derivative €2 + .

We consider first the case when x is negative and there are two sta-
tionary points £ = 4+v/—z. Let x < —10 and choose a cutoff function
n € C3°((—2,2)), identically 1 in (—1,1) and write

i) =20 [ (e - v=a) [ €

a7t [ule+vea) [t
+(2m)! / [ =n(e+v=2) = (& = V=2)] / (€58 g

The last term decays faster than any negative power of |z| by Proposition
4.20. The second is the complex conjugate of the first one. We apply
Theorem 4.22 to the first term and obtain the first part of

LEMMA 4.23 (Asymptotics of Airy function).

Aiw) = 72 (—a)F sin(C ()2 +

-

4)+O( T2

if x <0 and

N
Ai(z) — (2m) 1z T exp(— 2 232 Z 9 T (3k + ;)/(Qk)!xff
k=0

<cn exp(_§x3/2)x,%7%.

It remains to prove the asymptotics for = > 0. We first verify for x > 1

Ai(z) = (2m)"! / i E i) +in(ein) ge
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for 0 < n < ¢, by differentiating with respect to 1, and checking continuity
at n = 0. Then

Ai(z) :(27T)_1/ei(§+iﬁ)3/3+ix(§+iﬁ)d£
:(27-(-)—16—%;33/2 /6_\/552+Z€3/3d£

The proof of Proposition 4.22 consists of taking a Taylor expansion. Here
we take a Taylor expansion of expi¢3/3 and evaluate the integrals.

Mutliplication by |£|* on the Fourier side roughly corresponds to taking
s derivatives. Looking at the expansion of the Airy function suggests that
about half a derivative of the Airy function is bounded. A precise version
of that is the contents of the next lemma.

PROPOSITION 4.24. There exists C' so that
W/m%%“wﬂmﬂscu+M>

for s € R.

PRrROOF. We decompose the integral into an integral over (—2,2) which
is always bounded, and integrals over (—oo, —1) and (1, c0) using 7 as above.
Then estimate follows if we prove the estimate

/ (1- n(é))!é\5“56"(53/3”%5‘ < O(1+s)).
0
If > —1/2 we define t = £3/3 + ¢ and get
/ (1= n())[g|2Himel€/3 40 g
0
N /00(1 - n(&(t)))lﬁ(t)l%”S;iei@g/“x@
0 (§(t)* + ) dE
we integrate once by parts to obtain the desired estimate for z > —1/2.
If x < 0 we decompose into [+v/—z — 2, £1/x + 2] and the complement.

On the complement we argue as for x > —1/2. In these intervals we apply
the Lemma of von der Corput with j = 2. The second derivative is bounded

from below by (—x)'/2 and
d < 1 E 1.,
751/2+zs: = 4is)>|¢ 5+is
e (5 i) gl
which gives the estimate. O

LEMMA 4.25. Let S(t) be the unitary group defined by the Airy equation.
Then

1_1 _(1_1
I1DI ™2 S )uoll o gy < eltl™% 2 Juoll oy

Here |D|*u = F~1(|¢]*@). The analogue of the Strichartz estimate is an
immediate consequence.

PrROOF. Let for 0 < Rez < %

Toug = eZZ.F_l(eiEB/Bao)
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If z = is then by Plancherel
[ Tisuol|zoe < [luol| 2
and if z = % +is T% 4is 18 the convolution by a bounded function according
to the previous Proposition by
cei*SQ(l + |s])

which is uniformly bounded, hence the operator is bounded from L' to L°.
By the Theorem of Riesz-Thorin on complex interpolation

| Tyuoll 1o < clluol| e

=1, & =t. This implies the assertion for

: 1 1
1f1§p§270§t§§75+ e

t = 1. For general t

1
v

and
1
11Dz gel| oo < cft| /2.

The same argument yields the claimed estimate. O

4.2. Example 2: The half wave equation.

5. Quantization

Quantization means a map from functions on R xR"” to operators on R"™.
We choose a so called semiclassical calculus with a semi classical parameter
h > 0, basically Planck’s constant in physics.

We begin with several preliminary observations. Denote (z,y) € R™ X
R™. If u € S(R™) and v € S(R™) then (z,y) — u(z)v(y) € S(R*™). If
T € §'(R™) and v € S(R"™™) then z — T(u(x,.)) € S(R") and for the
partial Fourier transform we have

(Fyu)(@,n) € S(R™™).

5.1. Semiclassical Fourier transform. We define

Fud(€) = / e H @O g(2)dz = J(¢/(2mh))

n

with inverse

1 i
Fl _ — (@8 de.
Our Fourier transform is the one with h = -~ and we could restrict to this

2w
h in the sequel.

We denote point in R™ x R™ by (z,£) and we call x position and ¢
momentum.
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5.2. Definition of quantization.

DEFINITION 4.26. Let a € S(R" xR"™). We define the Weyl quantization
to be the operator

l

(4.20) (a®(z, hD)u)(x iev0a(TIY eyu(y)dyd,

n n

the standard quantization

@21) (D)) = o //E (2 ©)u(y)dyd,

and, for 0 <t <1, thet quantzzatwn
(1:2) Opy)(e) =5 [ [ e alta + (1~ 0y, uty)dyd.

We denote by

o1
Dj - ff)xj

i
and D® for multiindices o with the obvious meaning.

(1) Op:(§*) = (hD)u
(2) I a(z,§) = > jaj<n Ga(z)€” then

a(z,hD)u = Z aq(x)(hD)%u
lo|<N
(3) (2, hD)"u = (D, zu) + 4(z, Du)

LEMMA 4.27. Let a € S(R® x R") and 0 <t < 1. Then Op:(a) defines
a continuous linear operator from S’ to S. The formal adjoint is Opy(a)* =

Op1_t (a) .

ProOOF. We have
Op,(a)u(x) = A Ki(x,y)u(y)dz
with

(27r1h) / en @Yotz + (1 — t)y, £)de

= [fh_ (a(tx + (1 —t)y, )] (x —y)

The partial Fourier transform g(z,w) = (F'a(z,.))(w) is a Schwartz func-
tion by the considerations above. The equations

Ki(z,y) =

tr+(1—-ty=z,x—y=w
define linear maps, and hence K; is a Schwartz function. Let T' € S'(R™).
Then
x — T(K(z,.)) € S(R")
which proves the first assertion.
The statement about the formal adjoint follows from the definition. [
In particular, if a is real then a"(x, hD) is formally self adjoint.

LEMMA 4.28. Let a € S'(R™ x R™) and 0 <t < 1. Then Opi(a) defines
a continuous linear operator from S(R™) to S'(R™).
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Proor. By the same argument as above the partial inverse Fourier
transform defines a distribution, and the contructions above of the kernel
defines a tempered distribution 7" on R™ x R™. If u,v € S(R™) then

u(z)o(y) € S(R™).

and, given v € S(R™) the map u — T'(u(x)v(y)) defines a unique tempered
distribution which coincides with the quantization whenever the previous
definition applies. O

5.3. Simple examples.
LEMMA 4.29. If a(x,&) = b(x) then
Opi(a)u = b(x)u

PRrOOF. The claim follows from Fourier inversion if ¢ = 0. It suffices to
proof it for a € S(R™). Let u € S and compute

0; Op, u

R o (z=v:€) Y Ytz + (1 —t)y)(zj — yj)uly)dyd
(2rh)" / / . ; S

1 " .
- W‘/n;a@ ‘ (/}Rneh( £(0;b) (t + (1 —t)y)U(y)dy> d¢

=0

by the divergence theorem (applied on balls with radii tending to infinity,
and using the decay of the Schwartz functions), and since the inner integral
defines a Schwartz function. (]

LEMMA 4.30. Let l(x,&) = (z*,x) + (£, &) be a linear function (z*,&* €
R™). Then
Op:(Du = (z*,z)u + (£*, hDu).

If c(z,&) = > _, ¢j(x)&; then

h n
c’(z,hD)u =

5 z:(DJ (cju) + ¢j D)
=1
Proor. The first statement is a consequence of the previous considera-
tions. For the second we use the deﬁnition

c’(z, hDu—2 ny Z/ /
Wlh Z// ”y Dy, et 0 (y)dedy
- vt ety dedy
1 x +
+(27rh)”z/n ncj(

h
= Z(f)ijj)u +h Z ¢j()Dy;u

This implies the second statement. O

@y (y)dedy

yerle=vOnD, uly)dédy
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LEMMA 4.31. The following identities hold:
(ija)w = [ij,aw]

and
Y]

h(Dg ) = ~[aj.a
There is symplectic quadratic form

(4.23) o(zyw)=§-y—x-n, z=(x,8,w=(y,n)

on R?". We can write it via the Euclidean inner product
o(z,w) = (Jz,w) J= <_01 (1)> .

LEMMA 4.32.
(%’) w = eRl@D)y i ok @ @) y (4 %),

If I,m € R® then
%l(x,hD)e%m(ac,hD)u _ th o(l,m) %(l—&—m)(m hD)

Consider the PDE
ih0sv + l(z, hD)v =
Its solution is - independent of ¢
v(l,z) = eh @Ry (4 4 g,

which is the meaning of the not rigorously defined second equality.

PRrOOF.
jilyw (@=9.8) o3 ((6%€)+ (", 252))
(eHyu = %h INK u(y)dyde
Flz—y+£7.6) (x*,y)
o [ et e Dty
/ [ e s ey 4 ) ayag
27rh n Jrn
—€h< < 76) (x_|_§ )

This implies the first assertion. The second assertion follows from an
application of the first formula: Let [ = (z*,£*) and m = (y*;n%). Then

(ex)) (e )Pu(z) =(er!)® [e2r W€ en W)y (L 4+ 1%)

—eﬁ((m 75 >+<y > >)€H<y :5 > %(1’ +y x) (.’E+77 —i—é_ )
—e2m (7€) =) (o (Fm) Yy, ()

O

If symbols only depend on £ and not on x then all quantization yield the

same result.
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5.4. Composition of semiclassical pseudodifferential operators.

THEOREM 4.33. Let Q be a nonsingular selfadjoint n x n matrixz. Then

e%@D’D)u(x) = meq’ sign Q /n e—ﬁ@’ly,y)u(x +y)dy

etho(Dz,Dw),, (z,w) 27rh s /2 /2 e —Lo(z1,w1) u(z + 21, w + w1 )dz dw;
R27 JR27

Here sign @) is the signature, the number of positive eigenvalues minus
the number of negative eigenvalues.

PrROOF. The second statement is a special case of the first one with the
quadratic form given by the matrix

0 —J
J 0 /)
We compute

e%(QD,D)u() Lh(QhDhD> (z)

Lix—y,) L(Qﬁ@
%h / ) / ek Uz 8y dyd

_’detoig I gign Q —L‘<Q*1(x—y),az—y>
_W64 e 2h u(y)dy

1
_|detC?’_5 I gign Q — Q7 (W) w)
ot [y

where we exchanged the order of integration (first multiplying by e~¢ €1* and
then we passed to the limit as ¢ — 0. The £ integration yields the inverse
Fourier transform of the complex Gaussian. The last integral follows by the
translation invariance of the integration. O

With Proposition 4.22 we get an asymptotic series for this integral in
powers of h.

THEOREM 4.34.
Fla®(z,hD)F = a*(hD, —z)

PROOF. We prove the claim for a € S(R™ x R™). The integral kernel
Kp(z,y) of F; '™ Fy is

1 i 'z ' —' ot
W/ / / ety O W o ((2' + /) /2, ) dy/da’d

/ / / en2 (e )az, ) da' dzd

T R»

where we used in the last step that

Fir () = 2760 (¢ +

r+y

).
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Interpretation: The map (z,§) = J(z,§) is a symplectic map. The
semiclassical Fourier transform quantizes the symplectic map J.
We define

A(D) = o((Dz;, De); (Dy, Dy))

THEOREM 4.35 (Composition for Weyl quantization). With

a#tb(w,€) i= ") (afa, )b(y, )

y=z,§=n
we have
(a#b)“u = a”b"u
and with
o(x,€) = eh7MDeDeDuDI (g5 €)b(y, )
z=y,£=n
a(x,hD)b(x,hD)u = ¢(x, hD)u.
PROOF. Let

&(l):/ e @) g (5, €)dade
R2n
By the inversion formula

1 i
@ h)”/ aert-tD
T R2n

We apply this formula for a and b to get
1 A i i
a"(z, hD)b" (x,hD) =———~ 1 / / a(l)b(m)enl@hD)eim@hD) gy qp
(27l'h)4n R2n JR2n

1 i
T R2n

where, by Lemma 4.32

a®(x,hD) =

~ io(l,r=1)

C —; a r—Il)e 2rn
) = /R a(b(r 1) dl

1 1 Ll4+m—rz Zo(l,m) A\
N (%rh)?/R /R ((27rh)2” /Rzne’l<+ >d2> e2r7 M a(1)b(m)dldm

Hence, since

ez a(th,th)e%((l,z)—l—(m,w)) _ eﬁa(l,m)ei‘(a,z)Hm,w))

1 i i .
_ o(hDz,hDy) ,+ ({l,2)+(m,w)) ~
c(2) 77(2 DG /zn /Rzn e2h en - a(l)b(m)dldm

The statement follows now by Theorem 4.33.

The functions are called symbols. The proposition allows to compute the
symbol of the composition from the symbols of the operators. The method
of stationary phase allows to obtain an expansion in terms of powers of h.
This expansion is given by formally expanding the exponential, and then
applying the operators to the functions.
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Since there is exactly one stationary point we can apply this expansion
even if we have unbounded symbols. The first term is always the product.
The second term is

n
A(D)a(x,£)b(y,n)|z=y,c=n = h Z 0z;a0¢;b — O¢ a0y, b.
j=1

This is the first term in the expansion of the operator. The expression on
the RHS is h times the Poisson bracket of the symbols a and b, h{a, b}.

Here we already see an important property of the semiclassical limit
h — 0: The composition becomes closer and closer to a multiplication.

This suggest that as first approximation to composition of operators we
may consider the multiplication. In particular we expect some approximate
inverse to be given by taking the inverse of the symbol. So if we consider
the elliptic equation with smooth coefficients

—aijaf-u =f

then the operator is given by the classical symbol a* (x)&&;. One can proof
that

DI(L+a¥ (@)6ig)) a3}, — 1
is bounded operator on LP.
To carry that program out we need

(1) Criteria for LP boundedness
(2) A calculus for pseudodifferential operators, i.e. the operators ob-
tained by quantizing symbols.

0

6. Cotlar’s Lemmma and the Theorem of Calderdon-Vaillancourt

In this section we will prove L? boundedness of semiclassical operators
under fairly weak assumptions on the symbol a. As a start we consider
Schwartz functions.

LEMMA 4.36. Let a € S(R™ x R™). Then

10Dy (@) fllp2mmy < c(n)  sup  sup 9S8 a(x, &)||f] 2
laf,|B|<n+1 x.£

It suffices to assume that the quantity on the right hand side is bounded.
PROOF. The partial Fourier transform a = ]-"}jlza(w, .)(2) is a Schwartz
function. It satisfies

2%a| = | FH((hD){a)| < c(n) s h N0 a(x, €)]

We obtain for the integral kernel
and

|Ki(z,y)] < c(n)h ™" (L+ |z —y|/h) ™™ sup sup|¢*0fal.
o], |B|<n+1 w,€
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Then
sup [ |iwp)ldy +sup [ |Kiloy)de < ea(n) swp suple0a
z Y ], Bl <n41 w,g
and the assertion follows from Schur’s lemma 2.17. (]
The product of two functions with disjoint support is zero. This fails
to be true for the composition of pseudodifferential operators, but it re-

mains approximately true. We focus on h = 1 in the sequel and recover the
assertion for 0 < h by a standard rescaling.

LEMMA 4.37. Let h > 0, @(z) = u(h'/?z) and ap(z,€) = a(h%x,héﬁ).
Then ) X
a”(h2z,hD)u(h2z) = af (z, D)a.
Proor.
a®(hM?z, hD)u(h'/?x)

1 1/2 i

T2 h)n/ / o T )k vy y)aya
71' n n
1 T+ £ ~

= e / / an(“5 7, O a(y)dyde

LEMMA 4.38. Let a,b € C®(R™ x R") with
d = d(supp a,suppb) > 0
and
090;al +1050/a| < B for z,6 € R, |al,|B| < 6n+ N +2
Then
la (z, DO (2, D) f 2 < e(n, N)d™ N B?|| f| 2.

PRrROOF. We recall that the symbol of the composition is

1 i
(=) = (2m)2n /Rzn /Rzn e 270 2) g (2 4w )b(z + wo)dwi duwy

The point 0 is the unique critical point, and the integrand vanishes for
|(w1,w2)| < d/v/2. The integrations by parts in the stationary phase argu-
ment lead to bound (since the same type of argument holds for derivatives)

|0%]| < enB?d™N.

This implies the statement of the Theorem of Calderén-Vaillancourt below.
At this point we prove the statement under the additional assumption that
b is supported in a unit ball Bj(x,&p) Then

02 e(2)] < ed™™ (1 + |2 — (w0, &0)|) M.
This implies that the symbol c¢ is a shifted Schwartz function. Since
[’ (z, D)u](x + o) = c“(x + zg, D)u(. + x¢)

and ' '
) (g, D)0 u(y)) (@) = e, D — o)
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and neither translation nor multiplication by the complex exponential changes
the L? the boundedness assertion follows from Lemma 4.36.

It remain to count the number of derivatives we need. For the application
of (4.36) we need n+1 derivatives and a decay of power n+1. Each derivative
in the argument above gives one inverse power of d resp. one inverse power
of |z — (z0,&)| or one of |w|~!. The integration is over a 4n dimensional
space and it uses up 4n inverse powers of w. Thus we need 4n+ (2n+2)+ N
derivatives for this argument. It is clearly not optimal.

This special case will suffice to proof the Theorem of Calderén Vail-
lancourt 4.40, which in turn implies the full statement of the proposition
here. O

LEMMA 4.39 (Cotlar’s lemma). Let H be a Hilbert space andTj : H — H
a family of operators, and v : Z — R™ such that
1T Tl oy < 206G — k) T T oy < 2205 — k)
for all j, k. Suppose that

o0

Z y() =t A< o0
l=—00
Then
N
| ZTjHL(H) <
j=1
for all N.

. N
ProoF. We have with T'= 3.7, T}
N
(T*T)n — Z T* Tkl o T;nTkn
J1seJnsktse o kn=1

Now
1T Tkl- T T, | < 175 || T, IIHIIT/ﬂ Gl

‘77/
We multiply and take square roots

T, Ty - T, T D < (N5 ) 2 TN T 02 TN T2
and thus with B = sup ||Tj||
N
I(TT)"|| < > B[ [~Gi = ki)y(ki = jis1) < NBA*!

J1yednskt e kn=1
Since T*T is selfadjoint

* * 1 n n —_ =
1713 iy = IT* Ty = I(TT) |15y < (NB)Y/™ A%

We let n tend to infinity to obtain the assertion. O
Let a € C8"t4(R™ x R™) satisfy

(4.24) sup |20%(x, €)| < B
.8 lal+[B]|<c(n)
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LEMMA 4.40 (Calder6n-Vaillancourt). , The operators
T =a"(z,D)
satisfies
ITfl|z2 < c(n)BI|fl| L2

PROOF. We choose a function n supported in [—1,1]" so that
Z n(x —k) =1.
kezZm
(Choose 7] € C§°((—1,1)?") nonnegative and identially 1 on [~1/2,1/2]?".
Then set i(2)
n(z
mz) = —=——= 3
S NTERRY
Given k € Z*" we define ay(z) = a(z)n(z + k)
Tif = ai f
We claim that
(4.25) ITe Tl oiz2y + 1T Till o2y < O+ [k = 1))~
Since the square roots of the bounds on the RHS are summable this implies
1Y Taflle < CllfllLe
[k|<N

It is not difficult to let IV tend to infinity.
Both terms on the left hand side have the same structure and it suffices
to deal with one of them. Now

TYT, = a5 (x, D)al (z, D)
We apply Proposition 4.36 twice to see that
1T Tyl 12y < CB?
and, if |k — [| > 2n, by Proposition 4.38
T Till L2y < eB? [k — 172






CHAPTER 5

Singular integrals of Calderon-Zygmund type

1. The setting

The basic setting of this chaper are spaces of homogeneous type (X, d, 1)
where (X, d) is a complete metric space and p is a Borel measure, finite on
bounded sets, which satisfies a doubling condition: There exists b so that

u(Bsr()) < bu(By ()
LEMMA 5.1. Let A be a closed bounded set. Then A is compact.

PRrROOF. We prove that A is totally bounded. Closed totally bounded
sets in a complete metric space are compact.

Since A is bounded there exists a ball A C Bg(zo).

Let R > r > 0. There is at most a finite number of disjoint balls with
centers in A with radii = r/3 by the doubling condition: there exists k so
that

R < 3k=3p,
Let B,/3(z;) a ball which intersects A. Then
ACBRrC ng—l(r/3)(l’j)
and by the doubling condition
p(A) < p(Br) <V u(B,s(z)).

Let B; be N such disjoint balls. The measure of there union is at least
Nb"Fu(B) < w(| By) < bu(B)

and hence there are at most b* such balls. Take a maximal such sequence
B, /3(x;). Then as for the Lemma of Vitali the union of B,.(z;) covers A. [

THEOREM 5.2. The measure p is o finite and regular, i.e.
5.1 A) = K) = inf (U
(5.1) 1(A) ;gu( )= inf u(U)
for every Borel set.

ProoOF. Let x, € X. We define the Borel measure

1r(A) = p(Br(zo) N A).

It is finite and pu = lim, o f4n, and hence it is o finite. Let A be the set
of Borel set for (5.1) holds. We will show that A contains all compact sets,
with A it contains its complement, and it closed under countable unions. So
it is a o algebra containing all open sets. The Borel o algebra is the smallest
such o algebra, and hence A consists of all Borel sets.

75
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For compact sets K inner regularity (approximation by compacts) is
trivial. Since K = NU; with U;(d(z, K) < 1/j) is countable intersection
p(K) = lim; p1(U;) and outer regularity follows.

A is an inner regular Borel set if and only if X\A is outer regular -
this obvious for compact metric spaces, and requires use of ¢ finiteness in
general.

Let A =|JA; be a countable union of inner regular sets, and let € > 0.
Then there exists compact sets K; and open sets U; with

Kj C Aj C Uj
and
u(U;) < u(K;j) +271 e

Then U;\le K is compact and

C =

00
p(lJ Kj) = n(lJ K5)-
j=1 J=1
Moreover
wA) < p(JKj) +e
and inner regularity follows. Outer regularity is similar but simpler. (]

The most important such space is the Euclidean space with the Lebesgue
measure.

DEFINITION 5.3. We call a linear operator T" Calderon-Zygmund opera-
tor if

(1) There ezists 1 < pg < oo such that T : LPO(u) — LP°(u)and

1T fllzeo (uy < All fll oo (-

(2) There exists a continuous kernel function K : X x X\{(z,z) : x €
X} which satisfies

zwwz/meﬂwm

whenever f is compactly supported and x is not contained in the
support of f. Moreover

/’ K(2,y) — K(z,2)|du(z) < A
d(z,y)>2d(y,z)

forally,z € X.

The Hilbert transform on R or T is the most important example. It
is bounded by the constant 1 as linear operator on L?, and has the kernel
c(x —y)~! for R.
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2. The Calderén-Zygmund theorem
We denote the doubling constant by b in this section.

THEOREM 5.4. Let T be a Calderon-Zygmund operator. Then the weak
type estimate holds for all f € LPo N LY.

e s 174> 1) < @0+ 9% [ |7ida

Let 1 < p < po. Then T defines a unique bounded operator from LP(u) to
LP () which satisfies

IT7lles < e(po)Ab' £

The second statement follows from the weak type inequality by the in-
terpolation theorem of Marcinkiewicz 2.24 or even from the simpler version
in the proof of the bounds for the maximal function Theorem 2.20. The
uniform constant as p — pg involves a second application of complex inter-
polation Theorem 2.16.

We begin the proof by the Whitney covering lemma, first in R"™.

A dyadic cube is a cube of the form

Qs,k’ = 2j([07 1)n + k)

with j € Z and k € Z™. A dyadic cube has 2" children and 1 parent. Given
s the cubes cover R"”.

If U € R™ is open, and not equal to R™ we can cover it by dyadic disjoint
cubes of size 2° between the distance of the cube to the boundary, and 2"
times the distance to the boundary. This is called a Whitney covering.

We formalize this for spaces of homogeneous type.

LEMMA 5.5 (Whitney). Let U be open, U # X. Then there exists a
countable sequence of balls B; so that
(1) The balls £ B; are disjoint.
(2) The balls B; cover U
(3) The balls 2B; are contained in U.
(4) The balls 3B; are not contained in U.

PROOF. Given x € U we define r(z) = d(z, X\U)/3.

The balls B, (;)/3(7) cover U. Let K C U be compact. There is a finite
number of the balls covering K. By the lemma of Vitali there is a disjoint
subset Bj = B,(;,)/3(x;) so that the balls B, (z;) this cover K. Fix
ro € X and let

K ={zeU:d(z,z) <l,d(x,X\U) <1/l}
Then K; is compact, monoton (K; C K1) and U = |JK;. We proceed
recursively, and always keep the balls we have already chosen. O
In the sequel we denote the doubling constant by b.

LEMMA 5.6 (Calderén-Zygmund decomposition). Let f € L'(u) and
t> ﬁ J|fldp . Then there exists a decomposition

f=g9+b
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and
b= b
k
so that

(1) lg(@)| < b, [|gldu < [ |fldp.
(2) by is supported in balls By. They satisfy

/|bk’d/i < 2tbu(Bx), /bde =0

2
(3) Sen(By) < % [ Fd
PRrROOF. Let
U={z:Mf(x)>t}
and let B; be the balls of the Whitney decomposition. By Theorem 2.20
b
p(0) < 21l

We define recursively
j—1
Qi =B;n{x\{Ja}
=1
Then
1
(5.2) zBj CQ; C B,

3
the ); are disjoint, and their union is U. We define

1
b =xe, (f @) /Q ! d”“")

() { flz) ifxgU

x) = .

g g o, [ ifreq;

We verify the properties. It is immediate that [|g|du < inf|f|du.By con-
struction

and

f=g+bwithb=> b
Since

/ Ifldué/ | fldp < tbu(B)
B; ;

3B;
and 1(Q;) > b~1u(B;) we have

in U. Outside U

almost everywhere.
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[ = |
B; Q;

J
< / \Fld
3B

J

<2btu(B;)

Similarly

f—u(Qj)_l/_fdu dp

J

since 3B; N X\U # {}, using the definition of the maximal function.
Now, by the weak type estimate of the maximal function

> u(B;) <b Y u(@y)

We turn to the proof of weak type estimate of Theorem 5.4.

ProOF. We may choose A by multiplying T" by a constant. There is
nothing to show if ¢ < p(X) ™ [ou |fldp. If t < p(X)~! [ |f|dp then

H(x) < / Fldp/t

and the weak type estimate is trivial. Hence we assume ¢t > u(X)™t [| f|dp.
We decompose f = g+ b as in the Calderén-Zygmund decomposition. Then

lgller < 1l

by the Calderén-Zygmund decomposition. Thus
(T (g) ()| > t/2) <(2/t) 7| Tgll7w,

Po
< <2;4> /!9!p°du

(5.3) 2 A)Po
<2 =2y,
2A)Po _
<B pom2y g
Since

t>  u(3B;) < b7[|fll
it suffices to bound (together with Tschebycheff’s inequality)

Thldu < / Tb;|dp.
[, 2 a7

We observe that for x € X\2B; and z; the center

Thy(x) = / K (2, y)bjd = / (K () — K (2, %7))by () dpa(y)

J
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since the [b; = 0. Thus
[oomvlan@r < [ [ K - Kz ldu)ld)
X\2B; d(z,z;)>2r;

EA/ |bj|dp

<2Atb*u(Q;)-
and hence
2 ) 4Ab*
u({Tb > /21 0 (X\U)} < S0l 1y < 44D% D u(Bj) < ——|flls
and hence
A
HUTS > 1)) < (204772007 4 47162 4+ 4b* ) 2| 1

We choose A = b~2. O

REMARK 5.7. (1) There are obvious vector valued versions. We

consider weakly continuous functions, i.e. f : U — E is weakly
measurable if for every element of the dual space ex e* o f is mea-
surable. Definition and estimate for the maximal function work
without change for weakly measuable functions which assume val-
ues in Banach spaces.

The interpolation theorems of Marcinkiewicz and Riesz-Thorin
hold for operators from LP(u; E) to LY(v, F') for real resp. complex
Banach spaces E and F'. In that case the kernel function has values
in the Banach space of continuous linear operators from E to F.
Such a map to linear operators is measuable if for all e € E and
f* € F* the map x — f*(K(x,y)e is measurable. The integral
for weakly continuous integrable functions with values in Banach
spaces is defined through the application of a linear form.

(2) If T : LPo(p) — LPo(y) then the adjoint maps LPo to LPo. If K (x,1)
is the kernel function of T then K(y,x) is the kernel function of
T*. Thus, if

/ K (2, y) — K(2,y)ldp(z) < A
d(y,x)>2d(y,z)

then T* is a bounded operator on LP(u) for 1 < p < p;. So under
this condition

2
p
ITfllze < (b, po) [ fll»-

LEMMA 5.8. Suppose that there exists € > 0 such that

d(x, ) + d(y, ﬂ))e
d(z,y) +d(z,9)
for all x,y,y,y then the kernel condition is satisfied for T and T*. In par-

ticular, if T : LP° — LP° has an integral kernel which satisfies the condition
above then it defines a unique bounded operator from LP to LP.

min{u(Ba(a,y) (7)), #(Bagz,g) (2) HE (2, y) - K (2, 9)| < ¢ <
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In particular this holds for the Euclidean space with the Lebesgue mea-
sure if
(5.4) DK (2,y)] + |DyK (2,y)| < clz —y["

where one of the conditions suffices for either p > py or p < pg.
It is not hard to see that if T is a Calderén-Zygmund operator with
integral kernal k then

(5.5) H(Ba(ay) ()| K (2, y)| < ¢(b)A

3. Examples
3.1. Fourier multipliers.

LEMMA 5.9 (Mihlin-Hérmander). Let a € C™"(R™\{0}) and assume that

sup [[{]*D%a(§)] < A
|a|<n+2

The operator
T:L?> f— Flaf € L?
has a convolution kernel K(x,y) = k(x — y) with
sup |2["[k(2)| + [2[" " [Dk(2)] < ¢(n)A

It is a Calderon-Zgymund operator.

PROOF. Let ¢ € Cg°({z : 3 < |z| < 4}). We claim that k(z) = ¢(2)T
is a differentiable function which satisfies
(5.6) k(x)| + [DE(z)| < c
Since the integral kernel of the Fourier multiplier a(A(x)) is A™"k(z/n) and
since the conditions are invariant under rescaling this implies the full desired

estimate. The Fourier multiplier of the convolution by ¢ is the convolution
of the Fourier transform of k with a. Then k € § and

/ kevde =0
Thus, with p,4+1 the Taylor polynomial of degree n + 1 at &
6xa(6) = [ Gm(a(€ ~n) = paln))dn
and by the Taylor formula

[(a(§ =) = prsa ()] < c(n) ] 2[n["
for |n| < [¢]/2 and hence

6+ a(€)] < / S (@€ — 1) — psa ())dn
In|<|¢l/2

e / B Inln+2de
[n|>¢1/2

<c(n)(1+ €77

This implies the assertion. U
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The Riesz transforms defined by a Fourier multiplier are important ex-
amples:
a(€) = &l¢l™
with a convolution kernel (for n > 2)
2l (n+1)/2 =z
)

"7*1 |J;’n+1
since r
—-1)/2
Flat = L D2
™ 2

Then r

2 1)/2 S — Y

K(z,y)=1i ((n:l )/2_; = by il

o |z =yt

It satisfies the conditions on the derivatives above. For n = 1 we obtain
again the Hilbert transform. We denote the Riesz transforms by R;.
Similarly, if n > 2, the second order Riesz transforms defined by the
Fourier multiplier
&i&j

€17

then the kernel function is
zitj — 30ij

P

Again this follows for n > 3 from taking derivatives of the inverse Fourier
transform of |¢|~2, and we obtain a formula for the constant c.

The case n = 1 is trivial - the second order Riesz transform is the
identity.
For n = 2 we may take a detour via the Cauchy kernel and calculate
1
Fl—
&1 + i

and then take the real part.
We denote the second order Riesz transforms R;;. If

Au=f

for u € S then

and we obtain from the Calderén Zygmund estimate

p2
107 ullLr < C(n)p — Il

3.2. The heat equation. The heat equation leads to a Calderén-
Zygmund operator on a space of homogeneous type. Consider

ur — Au = f
If w € S then .
" 1T f
P+ €
and hence

Jurl[ 2 < (| 2
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and similarly
ID2ull 2 < ellfl
The convolution kernel is of T : f — uy is
1 | || 1 o2
Op———e 3t =t"1(2n —)————e it
' @nm 4 ) G2

for t > 0 and 0 otherwise.
We define the metric

d((x,1), (y, 5)) = max{le —y|, |t — s/},

It is easy to verify the triangle inequality. Let p be the Lebesgue measure.
The doubling condition with b = 3"*2 is immediate. Then

lg(z,8)] < c(ja| + /]t]) 2
and
Vagl < (|| +/Jt) 3
0rg] < e(|a| + /e

This implies the kernel conditions of Lemma 5.8. The L? boundedness
follows from the Fourier transform.

3.3. Weyl quantization of symbols in 5’%0.

DEFINITION 5.10. Let m € R, p > 6 € [0,1]. We say that a € S)'5(R")
if a € C®°(R™ x R™) and if for all N € N there exists ¢ such that

10507 a(w, €)] < clajia(1+ [¢))mPIEFokL,
Let k(w, z) = ff_la(w, z). The kernel of the standard quatization is
K($7y) = k<$7$ - y)
and the kernel of Op,(a) is
K(z,y) = k(tz + (1 = t)y,z —y)
Let
g(’UJ,Z) = k(ﬂl‘ - (1 - t)Z7 Z)

and let b be the Fourier transform of g with respect to z. Then b(z, D) =
Op; a. Equivalently

b(x,&) = (2%)_2"/ei<’7_5’z>a(x — (1 —1t)z,n)dndz

LEMMA 5.11. Suppose that 0 <t <1 and p > 6 >0 and a € 5. Then
be 5. Similarly, if b€ ST then a € S,

We only prove one direction. The reverse direction is similar.

PROOF. Let p € C*°(By(0)), identically 1 on B;(0). Then, for all «, 3
and N

a;“c‘)f(%)‘zn/ei<”_’5’z>/)(77)a($ — (1= t)z,n)dndz| < c(1+|¢)~N
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by stationary phase. Now let R > 1 and pr(n) = p(n/(2R)) — p(n/R). Then
0207 (2) 2" [ €59 priaale — (1 1)z, n)dnds

< enapRMHO=ABI(L 4 e) /R + R/ €))7V

To see this we apply the derivatives - the x derivatives fall directly on a, the
¢ derivatives after an integration by parts. This yields the factor R™+0*=+8,
Now we change coordinates to & = Rz and fN = R%¢. In the new variables
we use stationary phase. The only stationary point in the phase function is
(£,0), and with each integration by parts we gain a power of the distance to
the support.

U
THEOREM 5.12. The kernel K (x,y) of Opia(x, D) with a € S?,o satisfies
|K(2,9)] <Cle—y|™,  [VeyK(z,y)| <clo -y

In particular Op,a for a € 5?70 defines a Calderén-Zygmund operator
with pg = 2. The boundedness on L? is a consequence of the Theorem of
Calderén-Vaillancourt, and the kernel estimates (which have to be verified)
imply that the assumption on the kernel of Theorem 5.4 is satisfied. It
suffices to prove the bound for K VK for t = 1 by the previous lemma.

PROOF. Let ¢ € C*°(R"™) be nonnegative, radial, supported in B3(0),
indentically 1 on B;(0). Let
m(z) = ¢
and

nj(x) = (27 w) — ¢(2'2)

> mi(x) =1
J

fpr j > 1. Then

for x # 0. We define
aj(z,§) = n;(§)alz,§)
and

kj(z,z) = (fglaj) (z,2)
Then (this follows by several integrations by parts)

(5.7) 0202k, (z, 2)] < o(M, @, $)21AI(1 4 27|z~
if j > 1 and, since ag is a Schwartz function with respect to &
(5.8) 1070 ko (@, 2)| < e(M, o, B)(1 + =)~

The case |z| > 2772 is the first inequality is see by scaling § = 20E, 1 =
277%. The case |z| < 27772 follows by integration.
Finally

k(x,z) = Z kj(x, 2)

satisfies
0207k (2, 2)| < cfz] 1
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We claim that
K($7y) - k<$7$ - y)
satisfies the Calderén Zygmund condition, as well as K (y,z). Then

VyK (2,y)| < Cla =y
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CHAPTER 6

Hardy and BMO

This section follows to a large extend the work of Fefferman and Stein
[6] and Stein [13].

1. More general maximal functions and the Hardy space H?

We fix a measurable function ¢ for which there is a radial and radially
decreasing majorant ¢*, |¢p| < ¢*. Then we have seen that

¢ f(x)] < M f(z).
We define ¢r(z) = t7"¢(x/t).
For N € N we define the norm
Ifllv = sup sup|z*0°f|
la[+|BISN @

and the set of functions
Fx={o: |9]x < 1},
DEFINITION 6.1. We define
(6.1) Mo f(xz) = sup |f = ¢u(2)],
the nontangential version

(6.2) Mg f(x) = sup sup |f * dt(z + y)|

t|yl<t

and the “grand’ mazimal function

(6.3) Mpyf(x)= sup sup|f*¢i(x)|.
Prllgln<1 ¢

It is important in the following theorem that we allow p < 1.

THEOREM 6.2. Let f be a tempered distribution and 0 < p < oo. Then
the following conditions are equivalent
(1) There exists ¢ € S(R™) with [ ¢ =1 so that Myf € LP.
(2) There exist seminorms N so that My¢ € LP
(3) M* ‘gf e LP.

e~z

We define the real Hardy space HP as the set of all functions for which
the equivalent conditions of the Theorem hold.

If p > 1 then any maximal function of f majorizes a multiple of f.
The second and the third are bounded by the standard Hardy-Littlewood
maximal function and hence HP = LP in that case.

For p = 1 the same argument shows that H' C L'. The spaces LP for
p < 1 are defined in the obvious fashion. They are not Banach spaces, and
they do not imbed into the space of distributions.

87
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There are typical elements of HP called atoms.

DEFINITION 6.3 (Atoms). Let 0 < p <1 A p atom is a bounded function
a for which there is a ball B = B,(x) so that

suppa C B
ja < B[~/

/xo‘adx =0

1
ol <n(==1)
p

for all multiindices o with

LEMMA 6.4. Let ¢ € S(R™) and let a be a atom with the ball B,(x).
Then there exist € and ¢ so that

Mga < C|B,(z0)|/7(1 + |”C—r$0|)—;—e<n,p>

In particular
/|M¢a]pd1: < c¢(n,p).
PROOF. Exercise O

We introduce a modified nontangential maximal function for a > 1

M f(z) = sup sup |f * ¢i(x —y)|
v yl<at

LEMMA 6.5.
IM®fllLr < ca™?|| f]| Lo
ProoF. The claim follows from
(6.4) Ho: MOf > A} < ca|{z: Mgf > A}

by integration.
Let O = {x : Mjf > A}. Suppose that M?f(z) > A. Then there exist

(2,t) with f*¢;(2) > X and |z — Z| < at. Then B;(Z) C O and hence
00 Bu@) _ .

| Bat(2))|
Let A =R"\O and
. 0N By(z)|  _
A*={zc A: ———~~— < a " for some r
{ B,(2)] J
Then
(6.5) IR™\A*| < (3a)"[R™\A|

implies (6.4).
To prove (6.5) we turn to an argument in measure theory. Suppose that
ACR"isaclosedset andlet 0 <y <1 (y=1—-a""). Let A* C A be the
set of all points x so that
|AN B
| B

<7
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for some ball B containing x. Then

R™MA" = {z: M(xgma) > 1 -7}

and by the estimate for the maximal function

[R™M\A™[ <

3" n
= R™\4
Y

O

For the proof of Theorem 6.2 we have to study the effect of changing the
function is the definition of the maximal function. This is the easier part of
the proof.

LEMMA 6.6. Let ¢,¢ € S with [ ¢ = 1. For all M > 0 There exists a
sequence n*) € S such that for all N

In®Ix < enp2™ M
and
b= YA 0,
ProOF. We fix p € C5°(B2(0)), identically 1 on B; and define

p(€) = p(277€) — p(217F¢)
for £k > 1 and pg = p. Then

b= pi.
k=0

Now 1 = [ ¢dz = $(0). Without loss of generality we assume |¢(¢)| > 3 for
|€| < 2. Then

e N ) §eevaa—tey — ) G(a-F
¥(&) 2 Ga-ke) (§)o(277) = "W (277E)

Now W is a Schwartz function which leads to the claimed decay. O

The proof gives actually a stronger statement: Given M there exists N
so that the claim holds for [|¢||x < 0.
We turn to the proof of the theorem.

PROOF. Let ® € S with f ® = 1. We claim that there is are constants
c and N so that

(6.6) [IMnNflloe < || Mg fllLe
and
(6.7) [Mg fllLe < cl|[Mo fl|Lr

These two estimates imply all assertions of the theorem.
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To proof the first inequality we choose ) € §S. The expansion gives

My f(x) =sup|f 6y (X)| <sup S [f % @y 1" (2)]
t >0 33

<swpt™ Y [ 175 @piilo = p)lIn P w/0)ldy
k
< sup 3 sup |+ Byl = I+ 350 [0+ SV 0lay
L )

with N > n/p and

o [ M oty < 2t

if (which is ensured by Lemma 6.6 )
In® |5 < 27V,
We claim that
vl

65)  lswpsupls @il )1+ L) N < M@)o
Yy
Then
supsup | f * $(x —y)(1 + |ty|)N < sup Z*jNM2jf(a;)
t oy §=0,1...

and the assertion follows Lemma 6.5.
This implies (6.6).

To complete the proof we will prove

(6.9) MG flle < cllfllze.
Let
Fy = {a: Myf(x) < AMJf(2)}.
Since

/ M fPda < A~ / My flPdz < AP / M fPda
R\ F R\ F
we obtain

| isras <2 [ pgg s

Rn F

provided we choose AP > 2¢P.
We claim that on F' and any ¢ > 0

(6.10) M f(x) < c[M| Mg f|*(x)]"/1.

This implies the desired estimate via,
[ arpas <o [ paspas < oo [aMa g tds < o [ Magpas
R” F

by the estimate for the Hardy-Littlewood maximal function. It remains to
prove (6.10). Let

fla,t) = f+@(x), [ (z) = Mgf(x)
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By definition, for any x there exists (y,t) with |x — y| < ¢ so that
[f(y, )] = [ ().

By the fundamental theorem of calculus
[f(@',t) = fy,t)| <t sup [Df(z,1)|

|z—y|<rt

for |2/ — y| < rt. However

0uif(2,1) = 11 * (2)(2)
hence

1f(@',t) = f(y, )] < ef My f(x) < erAMg f(x) = cArf*(x)
if x € F. We take r so small that cA\r < % to achieve

(6.11) F@ )] > 37 ()
for |2/ — y| < rt. Thus
1+r\" 44
s () Brpon@) /B() (e )ftdet
<cM (Mo f)7)(x).
The second inequality follows from
f(@,t)] < My(a")

and the first from the lower bound (6.11).
There is a last tricky part: We severely used that || M f(z)||» < co. To
deal with that we repeat the arguments with

tL

ME’fo = sup [*®(y)|———————F
o @)= e

instead of M*. If f is a tempered distribution we choose L large and € small
so that HMg’LfHLp < 00
Then we introduce the factor
th(e+2 %t +elz — y|)* 2k
( | y|)2k‘ | SCQkL(1+@)L(1+ \?J|)N
e+t +elx])L(2kt)~L(1  ZEHN L t

as suitable points. We complete the proof as above.

2. The atomic decomposition

The key part of the proof is a refined Calderén-Zygmund decomposition.

We recall that we can write any nonempty set U C R™, U # R"” as the
union of dyadic cubes

Qe =2'([0,1)" + k)

such that the length of the edge is at least the distance to the complement,
and at most n times the distance. We fix two numbers 1 < a < b < 1+1/(4n)
and denote Q = aQ, Q* = bQ where aQ resp bQ denotes the cube Q scaled
by a with center the center of the cube.
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PROPOSITION 6.7. Let f € Llloc with M__orpz2 f € L' and X > 0. Then
there is a decomposition

and a collection of dyadic cubes Qy so that
(1) [gl < e(n)A
(2) suppby C Q% and [ bpdx =0
(3) The Qg are disjoint and

U@k = {z: Myf> A}

Proor. We fix ¢ € C§°((0,1)™)*), identically one on [0, 1]". For k € Z"

and [ € Z we define
Gt = ¢(27'w — k)

which is supported in @, and identically 1 in Qi

Let O = {z : Mnf(x) > A}, let Qp, 1, be a Whitney decomposition
(with disjoint cubes, and edge lengths comparable to the distance to the
complement), and

0y Gyl
Zi Gl ls

a partition of unity. Then, if /; is the edge length,

|0%n;| < 27,

We define

id
bj=(f—cinj, ¢ = fjfcnéj -

Then, by the definition of @); there exist r and € R™\O such that
Qj C Br(wo)
and r < ¢(n)|Q;|*/™. But then

T — X

[In;( )In < e(n)

and
'/njfda: <c(n)r"My f(xo) < c(n)r"A.
Thus
lej] < e(n)A.
Now

gl < eMn f(z) < cA

for X ¢ O. Together this gives the bound on g. O

THEOREM 6.8. Suppose that 0 < p < 1 and f € HP. Then there exists
a sequence of p atoms a; and a summable sequence \; so that

f= A

Z ’/\j‘p < C(n7p)HMe*ﬂz|2fHZ£p~

and
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REMARK 6.9. Since

My >~ Nja[? < I[P Mgay]
j j

= Il Mpay P
J
any such sum is bounded in HP. The sum
>
Aj

converges in the space of tempered distributions.

PRrOOF. We only consider p = 1. We have seen that H! c L'. Let
f € H'. It is integrable. For each integer I We apply the Calderon—Zygmund
decomposition at level 2 and we write f = ¢' + ', b = Z

We claim that

g = f
in H! for I — oo, or, equvalently, ||b||z;2 — 0 as I — oo. This follows from

¥l ~ [ M, bido

S Z / Me_ﬂ"m‘Q b,idaj
J

< /U o (M)

MNf>2l

Since |g'| < 2! we have g — 0 as | — —oo in the sense of distributions.
Hence
f:ZgH-l_gl :Zbl_bl-‘rl
l l

in the sense of distributions. The difference ¢g/t! — ¢! is supported in

O' = {z: M,f > 2"}

and
ng—gl:bl—blHZZ(f—Cé-)Ué—Z(f l+1 l+1 ZAZ
j j
with
Al = (f =l =D (F =i mi b + ch mit
m
with

. = Al de
o fﬁ%ldaj ’
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since 775 is a partition of unity and hence

Z Cj’m =0.
J

l _

supp Aé- C Qi’*

Then

|A§| < 2
by construction. We set
! —1o—l1 )l |—1 4l
and
l VY

Then the ag- are atoms, and

SN = eSS 2Q) =X 2 Mus > 2) < ¢ [ My,
l

O

It is not hard to see that ! is a Banach space. We can use the atomic
decomposition to define a norm:

(6.12) || fllan = inf{z |Ak| : there exists atoms with f = Z Ak}

It is a consequence that the span of atoms is dense in H'.

COROLLARY 6.10. Let T be a Calderon-Zygmund operator. Then T
defines a unique continuous operator from the Hardy space H' to L'. If T is
a convolution operator satisfying the assumptions of the Mihlin-Hormander
theorem then T defines a unique continuous operator on H1'.

PRrROOF. We only prove the first part. The second part is an exercise.
Let a be an atom. We want to prove that

[Tall1 < c(n).

By translation invariance we may assume that the corresponding ball has
center 0, and be rescalling we may assume that the radius is 1. Then

ITallzw < cllalzs < c(n)

where pg is the exponent of the Calderén-Zygmund operator. We use this
bound on Bs(0). Outside we argue as for the proof of the boundedness of
Calderén-Zygmund operators.

Now let f € H'. By the atomic decomposition

f=Y Xa

Tf = Z )\jTaj

We define
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where the right hand side converges in L'. There is no other choice for the
definition, but wellposedness has to be proven. Suppose

F=Y Naj= ub;

with atoms (a;), (b;) and summable sequences \; and ;. We have to show
that for € > 0 there exists Ny so that for all ¢ > 0 and N > Ny

N N
(6.13) {a o | NTaj = pThi| > t}| <e/t.
j=1 j=1

Then
o] (o)
Z )\jT(L]’ = Z ,U,ijj
=1 i=1

follows. Inequality (6.13) follows from two properties:

(1) The weak type inequality for Calderén Zygmund operators
c
{z : [Tg()| >t} < < llg]l s

(2) The convergence of the partial sums in L.

By the convergence there exists for € > 0 and Ny so that

oo N oo N
1D Njajde = > Njagllr + 11> mibjde = bl < &
j=1 j=1 j=1 j=1
and then

N N
{x : |Z)\jTaj - Z,uijj| >t} < ce'/t.
j=1

J=1

3. Duality and BMO

DEFINITION 6.11. Let f € L} _(R™). The sharp mazimal function is
defined by

f(w) — 1B, ()] / f(2)dz

Br(y)

fia)= swp |B,(y)]™" /B . dw € [0, 0]
r\Y

By (y)>x

Properties

(1) (f +9)Hx) < fH(x) + gH(x)
(2) fH(x) < 2M f(w). Hence || f¥r < cnyl|fl|Le

DEFINITION 6.12. We define BMO as the space of all function for which
the (semi) norm

1 1Bat0 = 1l sup

is finite.

Certainly L> C BMO. Moreover In(|z|) € BMO.
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THEOREM 6.13. Let L : H' — R be a continous linear map. Then there
exists f € BMO such that for every atom

(6.14) L(a) = /afdx,

IflBro = 1Ll 342)-
Vice versa: let f € BMO. Then (6.14) defines a continuous linear func-
tional on H!.

Proor. We prove the second part first. If a is an atom with ball B then
/fad:v = /B(f — fB)adz < ||f = fBllrsoyllallze < fi(zo).
thus for f € L and g € H! or f € BMO and g € H}

/ fodz < |1flsaollallly

This implies the second statement.
Now let L be a linear function on H' of norm at most 1. let B be a ball.
Then

L*(B) > f = L(f — f5)
defines a linear functional on L? which is represented by a function g?
that

Lt = fo) = [ o"fs
and in particular | B g® = 0. We search for a function ¢ so that
9-98=4g"

for all balls B. Let B C B’ be two balls and gZ resp. ¢% the functions
constructed above. For f € L?(B) with [ fdx = 0 we have

/ngd:c—/ fg" dx

/ (9% — g fdz = 0.
B

Thus ¢® — g%’ is constant on B. We define
B1(0)

thus for such f

9=9

if |x| < 1. Choose

Br(0)

CR=Y9 -9

for z € B1(0) and define
g(x) = 9BR(0) (z) —cr

for || < R and R > 1. This gives a consistent choice, and by the consider-
ations of the first part ¢ € BMO. (]

The following theorem has been proven by different methods by John
and Nirenberg [8].
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THEOREM 6.14 (John-Nirenberg inequality). There exists 6 > 0 such
that for all balls B and all functions f € BMO

sH@-rp]
e Wsmo dx < c|B|
B

Proor. This is a consequence of the previous proof and the bound for
the maximal function. We assume that ||g|[ppo < 1. If p > 1 and g €
LY (B) with [5 g =0 then

-4 1

P 1
gl o = pIBI7 llgll 10

_p/

lglle < o2 1B]

Then
IBI7Hf = folls < allglimo
and by Tschebychev

feeB:1f— fol > M < Dy

If A > £ we choose p = \/(2c) and get

1\ —8A
e eB:If ol >Nl < (5) 1Bl <e Bl
The assertion follows by integration with respect to . U

THEOREM 6.15. Let 1 < pp < oo, T : LPO(R™) — LPO(R™) linear and
continuous with an integral kernel K (x,y) which satisfies

/ K(2,y) — K(#y)ldy < A
R™\ By _g(y)
Then

ITfllBrvo < cllfllree

PrROOF. We fix a ball B = B,(zg) and w = |B|. We decompose f =
J1+ f2 = XBo,(20) ] + XR\Ba, (20)f and use Jensen’s inequality to control the

first term.
wl/'Tfl—wl/Tfl < (wl/\Tflfp())pO

<Aw™ V70| f1| o
<[ fllze

Since for x,2Z € By

) =T =| [ (KG) K@) )y

< / K (2, y) — K@ y)ldyl| ]l
R™\ Bar(z0)

<Al fllzee.
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THEOREM 6.16. The inequality
/fgda: < c/fﬁMNgdx

holds whenever g € H' and f is bounded.

Proor. We apply the atomic decomposition, together with its proof.

We have
9= A

/ fgdz =" Aj, /@ 3 faldx
—Z[l(f—fB;)aid(L'
dx

Z !Ql\ Ql (@)

MNG>2Z

Sc/fﬁMngd$

Then

COROLLARY 6.17. Suppose that 1 < p < co. Then
1£lze < epll flze
PROOF. Suppose that f € LP N L*°. Then
[fllz» = sup /fgdar

lgll, pr <

sup /fgdm
QGH gl pr <1

<cy sup /fﬁMgdx
geHL gl <1

<cn  sup el Mgl
€M1 |lgll <1

<capll FHl -

4. Relation to harmonic functions

We consider harmonic functions u on the upper halfplane {z,+1 > 0} in
R+, We denote the coornate x,,1 = t.
If w is such a function we define

w*(x) = sup [u(z, 1)
t>0

with x € R™.
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THEOREM 6.18. The following is equivalent.

(1) u* e LP
(2) There exists f € HP so that
u(t,z) =P« f
where ;
Pt(ill') L A ———
(lef? + )"

1s the Poisson kernel.

PRrROOF. We restrict the proof to p > —2—. We observe that

T
1

=t "(x/t

(14 (]/8)?) 2 @/

Pt(.’B) = t_n

satisfies
’l,aaf¢| < Cap
and hence, with u(t,z) = P, = f
[w* e < e[| M, _zjap2 fllLr

A closer check shows that the condition p > nLH is not needed.

Now suppose that u* € LP. We claim that with f. = u(e, )
P x fe =ule +t,x)

Both functions are bounded and harmonic and they coincide on R™. By
Liouville’s theorem they are equal. Thus the family f. is uniformly bounded
in HP. Hence there is a sequence f., converging to some f in the sense of
distributions. But then

u(t,z) =P« f
and f € HP. O
PROPOSITION 6.19 (Analog of Cauchy-Riemann). Suppose that
F = (up,u1,...up)
are harmonic functions which satisfy the Cauchy-Riemann type equations
" 31&; Ou;  Ou;

0, " 0w 0xy

8tuf] +
Jj=1

Then
| sup |ug(z,t)|[[ 1 < esup [[F(.¢)[| 1.
t>0 t

PrROOF. The key fact is that

I
is subharmonic for ¢ > "T_l as in Chapter 3 for n = 2. The claim follows as
in Theorem 3.16 based on Proposition (3.14). O

THEOREM 6.20. Let f € L*. Then f € H' iff R;jf € L' for all Riesz
transforms.

REMARK 6.21. The Riesz transforms define a distribution, which we
assume to be in L.
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Proor. We define

where
ug(t,x) = f¢ = P,
uj(t,x) = f*xQ!
with j et
N el
Then v e ) ,
Orug + Z (‘3; =0, (;;Z = 8:1;;
Jg=1 "
and
[Fe(z, )] < [F2(., 0)] * ()
Since
Fe(z,0) = (f % ¢, R f * ¢2)
we get
[Felllpr < e
By Fatou

sup/ |F(x,t)|dz < ¢
t>0 JRrn

5. Div-curl type results
Here we follow Coifman, Lions, Meyer and Semmes [3, 4].

COROLLARY 6.22 (div-curl lemma 1). Let n > 2, % + % =1,1<pqg<
oo, f,g € LP(R™;R"™)
div f € LP, curlg € L1.
Then
(f.9) €

Proor. We fix ¢ € Cg°(R") supported in By(0), idntically 1 on By 5(0)
with [ ¢dz = 1. Then g = VG for some function g and

(f,9)(f,VG) =V - (Gf)

and
V(Gu(r) =17 / Gl
<TG L B IF | (B )
<Ml By 1 e (o)
§2H(M|g|f(x))1/F(M‘f|r’ (x))l/r/
hence

n i l/7 r’lT‘l
My (f.g)(x) < 2"M gl |1} ML F7 110 < cllgllee |l £l e



6. APPLICATION TO ELLIPTIC PDES 101

provided
_ , 1 1 1
I<r<pl<r<g¢g-+-5=1+—
roor n

COROLLARY 6.23. Let f and g as above, n =2 and
Au=(f,g).

Then u is continuous.

COROLLARY 6.24. Let u : R — R" satisfy ﬁjui € L"™. Then

det(Du) € H!
PROOF. We expand the determinant with respect to the first row. Then
det Du = (Vu, F)
where F' is given by subdeterminants. For smooth function
OF =0

(see Evans, Partial Differential Equations, Theorem 2 in Section 8.1) and

hence this is true for the functions at hand. The statement follows now from
the previous assertion. O

REMARK 6.25. If f € H' is nonnegative on B1(0) then

/ flIn fldx < ¢
B1/5(0)

Hence the determinant has some higher integrability if it is nonnegative.

Let (u,p) be a solution to the Navier-Stokes equations. Then

n

Ap=— Y (95u) (9’

ij=1

and Y. | G;u’ = 0. We fix 4. Then
curl Vu! = 0 and V- 0;u =0

and hence

Ap e H!
Then, if n = 2

[pllsup < CHVUH%?
6. Application to elliptic PDEs

Let U C R™ be open. We denote by H'(U) the set of all functions in
L?(U) with distributional derivatives in L?, with norm

lullFe = llullZ> + 1 Dull1Z-.

It is a closed subspace of the Hilbert space (L?)"*! and hence a Hilbert
space with inner product

(u,v) = /uv + Z Ojudjvdx

J
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We denote by H}(U) the closure of C§°(U). It encodes the boundary value
0. We assume n > 3 and we will rely on two properties for balls B = B,.(x),
the Sobolev inequality

(6.15) ||| 2n < cf||Dul|| 2By for u € Hy(By)

L7n-2(B) —

and the composition with Lipschitz functions g with ¢g(0) = 0,

(6.16) lg o ullzr < [lgllipschitlull -

Let (a”)1<; j<n be real functions in L>(U) such that there exists k > 0
with
> algig; > kgl
i)j
for almost every x and every § € R™.
Let f, F7 € L?(U). We call u a weak solution to

> 0= 0if' +g
i.j i

if this equation holds in the sense of distributions. In that case it holds
in (H3)* - i.e. we may test it with functions in H{ instead of C§°. If U
is bounded then the Lemma of Lax-Milgram and the Poincaré inequality
imply existence of a unique weak solution u € H}(U).

THEOREM 6.26. There exists C' such that the following is true. Let
u € HY(B1(0)) be a nonnegative weak solution to

n ..
Z &-a” 8ju =0
i,j=1
in a ball B. Then the Harnack inequality

sup u < C inlf u.
z€iB €5 B

holds.

This has been proven by different methods by De Giorgi [5] and Nash
[12, 11]. We follow the proof of Moser [9].

PrOOF. We begin with the preliminary L* estimate with a technique
known as Moser iteration.

LEMMA 6.27. There exists ¢ depending only on n, ||a¥||s/k such that
the following is true. Suppose that u is a solution on B1(0). Then

[ull oo (B, 50)) < ellullzzs,(0))

Proor. Given % <r<R<1let

1 if |z] <r
Rolel gy < || <R
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Then, neglecting that f(u) = |u|>®Du is not Lipschitz (this can be fixed
by truncating at height H, and letting H — oo,

0 —/ a® 9ud; (n?|u)*P~Vu)dx
B1(0)

S a0l )yl )
p B1(0)

Lom =) [ amstrlup wlul uds
D p
2 2p—1 / : )
— (= - a¥ 0;mo;n)|ulPdx
(p e ) [ (@” 9ind;n)|ul
2p—1
2p—1) [ ., B
_ 2= pe )/a”@v(ajn)|u|p Yudz

- [ a@m@mluPrs

and hence, with v = n|ulP~!u,

— (2

/ a¥ Oivovdx

2
(6.17) HUIILPQ% < vl <

T

2
=y e o)

k
ForkENwewritepk:<%> ,andforlgjgkwesetrjzl—%j.
Then

1
||UHL2pk(BTk) S (C(k — ]_)2) /pk HU|L2pk_1(BTk,1)

k
o (B=2)
SH(CJQ)( E )]Hu||L2(B1)-

j=1
Since
i ne2); ’ 1,
H(cjz)(T)] = exp (Z(lnc + 21111')(”)1)
j=1 i=1 n—2
is uniformly bounded we obtain the statement of the Lemma. U

Now let u be a positive solution. The we obtain (6.17) for p > 0 as long
as we avoid p = 1/2. In this case, if 1 > py > 0

(6.18) [ull oo (B, 4(0)) < cllullLro B, (0

and, with negative exponents (how we have to add € to get a Lipschitz
function)

(6.19) [ Loo By 40)) < €l | Loo (B, 12(0))-
Suppose we knew that there exists py so that

(6.20) ull oo (B, oy 1™ | oo (8,000 < C
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Then
sup u(x)dx §cl/ uP0 d) VP d:
B2

SCEBl/4
_1
§CQ(/ u Podx) ro
B2

<cz Inf wu(x
- 3I€Bl/4 ( )

which implies the claim by a covering argument.
We claim that v = n(Inu — Inupg) € BMO and

vl Bro < c(n)
Then, by the inequality of John-Nirenberg, Theorem 6.14,

/ VBl dy < ¢(n)
B

and hence,

/uédl‘/u—‘sdac:/ eé(v_vB)d:c/ e TvB) gy < ¢(n)?.
B B B

and this implies the previous statement.
We repeat the calculation above for p = 0, and 7 as above, but related
to a ball B,(zg) C B1(0),

0 —/ a 9yud; (fu™t)dx
B1(0)
:/ a" 9pu(0;7)uds — /aijﬁaiuc‘)juu%m
B1(0)
= / a" 9;(Inu)0;ijdx — /ﬁaijai(ln w)0j(Inu)dx
B1(0)

IV In(u)ll 7185 4000 < €
and hence, by Poincaré’s inequality

/ |In(u) — In(u)p, ,|dz < c.
B3y

We obtain for all balls contained in Bsy
IV Inull 25, (@) < er™?
hence (with Lemma 6.31 and more arguments, sorry, I'll complete that later)

[n(Inw — (Inu))||Brmo < ¢
O

THEOREM 6.28. p > n and q > n/2. Then there exists s > 0 so that the
following is true. Suppose that F* € LP(B), f € LY(B), u € H',

1-0 o Ty
P q

n
Z Biaijaju = (9ZFZ +g m B
1,j=1
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Then
u(z) — u n -2 -
sup UMD ot oy + B 5 P+ B o
z,y€ 5 Baty [z =l

PROOF. We prove this statement first for F' = g = 0 and B = B;(0).
Let

wp = sup u — inf wu.
B2—k Bgfkr

We claim that there exists v < 1 depending only on the quantities of the
Harnack inequality so that

(6.21) Wit1 < YWk-
Indeed, by the Harnack inequality applied to

vp =u— inf u,wp = sup u—u

By—k B,k
sup u < inf u+ C( inf w— inf w)
B, k-1 B,k By k1 By
and
inf u> supu—C( sup u— sup u)
By—k—1 B,k By—k—1 B,k
hence

(1 + C)wk+1 < (C — 1)wk,

which implies (6.21) with v = ngi < 1. Then, if 27% 1|z < 27F

[u(0) — u(@)| < wi < A*wo <A™ Juf 2,0,

and
—In|z —Invyln|z —lIn|y

Now we consider U = R".
THEOREM 6.29. Let n > 3 There is a Green’s function on R™ which
satisfies
|z — |
(lz =yl + & —yl)>Fs
PrOOF. Let F and f be supported in B1(0). By Lax Milgram (with

H the space of functions in Ln "2 with derivatives in L?, equipped with the
norm [ |Du|?dz) there is a unique solution u € H} w1th Du € L? and

lg(z,y)| < clz —y|* ™, g(z,y) — g(&,y)| <

2n
uw € L»—2 and

[ull | 20, + | Dull2 < C[”FHLZ(Bl(O)) + ”9”1;5%2(31(0))]

By the previous Hélder estimate, if |zg| = 3,
lelles e < eIl 2oy + ol 2 o]

We fix x and consider

L2 (B1(0)) 3 f — u®.
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By duality there exists a unique g*(y) with

sup [g°(W)| | 20, <C
x

I,
and
u(z) = /gx(y)f(y)dy-
Clearly
(0;a Qu,v) = (90" Ov, u)
Let T : f — u. Then
(Tf,h) =(f.Th)
This operator is self adjoint. Hence ¢*(y) = g¥(z) and, repeating the previ-

ous argument we obtain the assertion.

O

Now we complete the prove of Theorem 6.28 by using the kernel esti-
mates. Let ¢g”(y) be the Green’s function. We claim that

| : (9" () — g" W) f W)dy| < clz — Z°[| f 1| Lo @&y

By rescaling and translating we may assume that £ = 0 and |z| = 1. We
decompose f = f1 + fo with f1 = xp,(0)f- Then

/ () f(y)dy
B3(0)

< ||f||LP”90(-)HLp’(BQ(o))
and the same holds for z and

/ (9" () — 9" W) f(y)dy
B>(0)

< f2ellg® = 9”1 1ot @ 3o o)

Since p’ < -5 and by Theorem 6.29 g(z,.) € Ly

||90(-)||Lp/(32(0)) < ¢(n).

Similarly, again by Theorem 6.29

19° = 9"l g, (rm\ Ba0)) < ()

for
1 n—2 s

r n n’
This allows to bound the second term, provided we choose s in the theorem
smaller than for the estimate of the solution to the homogeneous problem.
We proceed similarly with the term VF, for which we need
0
Vg ||Lq’(32(o)) <c
and

IV(g° — gm)HLq’(Rn\BQ(O)) <c
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This follows by Cacciopoli’s inequality
1V° <R7™E| Vg 12
9 lLa" (Byr\Br) = 9 \|L2(Byg\BR)
z_a
<cR7 2 |gollL2(By\Br )
<c R (n-1)
<cR'" 4

which is summable over dyadic radii provided g > n. Similarly, if R > 3,

n

x 1—s—=
IV(g® -9 )HLq’(BQR\BR) <cR ?

which is clearly summable provided ¢ is sufficiently large.

7. Pointwise estimates and perturbations of elliptic equations

We obtain an alternative argument for the boundedness of Calderén
zygmund operators with kernels satisfying

K (2,y)| < el —y| ™" [Day K (2, y)] < clo —y| ™"
THEOREM 6.30. Let r > 1. Then
TfH () < (M| f[")"" ().

Proor. We fix a ball B1(0) and decompose f = fi; + fo with f; =

XBs(0)f- Then
ITfillzr < ellfillzr < e(MIfI(@)'"
and, for z, % € B1(0),
T fo(x) = Tfo()] < cM fo(x).

Thus for p > r
ITfllee < WTFHlze < el (MIFIDV (2o < el flzo-

This proof uses the Calderén-Zygmund estimate. Instead we could set r =
Po, get bounded for p > pg, and apply duality.

LEMMA 6.31. Let f € BMO. Then

’{L’l —.%'2‘ +r1+ry
T+ T2

|fB (1) = fBry(ao)l < c(|In71/r2| +1n M flBaro

Proor. We prove this statement in several steps. We have

[/ Br) = [Bo(o)] <

B [ o

<(R/r)" | Br(y)| " / 1 — Fonuldz < (R/r)" f4(y)

if B,(z) C Br(x). If max{|z1 — z2|,m} < r2 < 2r; then we obtain immedi-
ately the assertion. Moreover, by applying the argument %k times

| fBy () = fBr@)] < 2"k f*(z)
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We choose
k =max{|lnre/ri|,In|xy — z2|/(r1 +72)} + 2
and R = 2 min{ry,r9}. Then

500 = I3y e] ) = o] + g — S
+ |fBR(a:1) - fBR(m)’
<(2k + 12" f¥ ()

Let a¥ € L>®(R") and
a"&;€; > kléf?

for all £ € R™ and almost every x. We consider u with second derivatives in

LP and and
Z al 82 U =
t,j=1

THEOREM 6.32. Let p € (1,00), a¥ € L™ and k > 0. There exists € > 0
such that if

la” | a0 < e
then
ID%ul s < e fl o
REMARK 6.33. This theorem provides an important and strong theme
in linear and nonlinear partial differential equations: Often not pointwise
conditions on coefficients are important, but uniform conditions on every

scale. This type of result goes back to Caffarelli and Xabre [1] in 1995 by
different techniques.

Proor. We claim that with r > 1
(6.22) D*uf < e(Mf[)V" + cllal| paro(M[D?ul") /7.
Then
ID%ul| Lo < €| fllze + clla”|| Brol| D*ul| o

The claim follows if c||a®|| a0 < 3.

As for the proof of Theorem 6.30 we fix a ball B = B1(0). To simplify
the notation we assume that a3 = §%.

We rewrite the equation as

Au= f+ (09 — a")0"u
and, redoing the argument above
10Yu — 09 up| p1(py <cll fllL-@p) + M f(z)

iJ z] 2]
el (07 = a0l vy,

e / 769 — ai9)duldy.
ly|>2
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Then,by Holder inequality, with % = %ﬂ, — % and the triangle inequality

167 = a)ou] e ) < (lafly — @) l2a + lais — al] (MID2al ()"
<cllall prro(M|D*ul" (0))"/"

where we also used Lemma 6.31 and the proof of Theorem 6.14.
Similarly

/ iy~ a¥ — 59| Duldy
B,k (0)\B

zkfl(o)
—k _Lic .. .. .. ..
<2 (2 Flla’? =0l Ny 0 00 + 198, 0) — 93 )
_nk 2
x (277 1Dl s, )
<27F(1 + k)| all Baso (M| D?ul"(0)) /"
This implies (6.22). O






CHAPTER 7

Littlewood-Paley theory and square functions

1. The range 1 <p < o0

We fix a function ¢ € S with [ ¢dx = 0. This conditions can be relaxed

in the sequel. For f € LP we define

(TF)(t,z) = f*de(x) = F(t,z) € L*(R™ x Ry, dadt/t)
Then the formal adjoint operator is

dt

T'F(@) = [ iy - )P ()T d,

Then T*T is the Fourier multiplier given by

m(E) = /0 " SE0a(te)

which is homogeneous of degree 0 and smooth.

dt
t

We consider T as an operator from L%(R") to L2(R", L?(dt/t)).

kernel is given by the convolution kernel

K(z—y) = (t = t7"¢((x —y)/t)) € L*(dt/t)

and
) 1/2
K (2)] = < / t—1—2”|¢<z/t>|2dt)
0
n g 2
SR
where

o) = ([ o opar) v

|p(v/t)| < cmin{t"** 1}

is bounded since

Similarly

00 1/2
100, K (2)] = ( / t“"M@@(z/t)Pdt)
)

=27 wi(

2]

The same type of estimate holds for T™*.

Its

The Calderén-Zygmund Theorem 5.4 applies to vector valued functions,

see the Remark 5.7 and we obtain

111
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PROPOSITION 7.1. Let 1 < p < o0,A > 0 and € > 0. We assume that
¢ € C(R™) satisfies
(7.1)

()] < AL+ 27", [De(x)] < AL+ ||, /¢d$ =0.

Then there exists ¢ depending on p, n and € so that

p2

p—1

HTfHLp(Rn,p(%)) <c (A+ llwllzoe) 1f | e (rmy

and
2

* p
T°F n <
T Fllsen < o2

(A + [l o) 11 ooy,

PROOF. We have seen that the operator satisfies the L? bound under
the assumption. The kernel estimates also hold. Hence the assertion follows
for 1 < p <2 for T and T*. Duality gives the full statement. O

Examples are
(1) The derivatives of the heat kernel, evaluated at ¢t = 1:

2 (|z|? - g)ef%ﬁ, 777”/2333'67@
(2) The derivatives of the Poisson kernel
2 — (n+1) 2]
T T e
Given ¢ we search v so that
TTyf = f

where use the index ¢ and v with the obvious meaning. For that we need
more angular regularity. Let ¢ = (i1,4i2) be a pair of (nonequal) indices
between 1 and n, and we define the angular derivatives

Di == xil&-Q - l‘i281'1.

Let a be the analogue of the multiindices for pairs of indices, and we denote
- by an abuse of notation

DOC
for the obvious product of angular derivatives. The angular derivative of
the Fourier transform is the Fourier transform of angular derivatives.

LEMMA 7.2. Suppose that ¢ satisfies the conditions (7.1) and
(7.2) D] < calx|™*

for all such multiindices and assume and é does not vanish identically on
any set {A\v : X\ > 0} with |v| = 1. Then there exists 1 € S satisfying
J ¥ =0 and hence (7.1) and

| dugieed -1
0

for all € # 0.
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REMARK 7.3. In particular
TiTof = TiTof = f
for all f € L? and hence for all f in LP.

PRrROOF. Let |v| = 1. Then there exist ¢ > 0, r and R so that

R ~
/ Bw/t)] > e

by continuity and compactness we can choose ¢, and R independent of v.
Given v we fix a smooth compactely supported function 1, on [r/2, 2R] with

[ =1
Then "
e~ [ B/ = pul6)

is smooth due to condition (7.2). Locally we can divide by p,. We use a
homogeneous partition 7;, of unity on S®~! to construct 1 by

b =3 ;’jjfg)%kﬂa) es.

supported in Bag\B, 2. O

DEFINITION 7.4 (Square function). Let ¢ satisfy (7.1) . We define

o = ([ |f*¢t<x>|2‘it)1/2

1/2
* _ —n—1 * 2
53(z) = ( / ’ /| Fx (et )] dydt>

1/2
gr(z) = (Zf*wﬁ(x)) :

k

and

THEOREM 7.5. Suppose that 1 < p < co. Then
Issllee < cll fllze,

[s¢llze < c|lfllze
and

lglle < el f]lze-
If ¢ satisfies the assumption of Lemma 7.2 then

[fllze < cllsgll e,
1f*llze < cllsklzr.
If ¢ satisfies the assumptions of Lemma 7.2 with:

For all £ # 0 there exists k so that
$(2%¢) # 0.

replacing the integral condition then
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1fller < cllgglize-

PROOF. The claims on s follow from Proposition 7.1 and Lemma 7.2.
For s*(f) we observe that

o0
155]12, = / / gt / F * il — y) Pdydtda
R JO ly|<t

= t * r pdt .
_/|y§1/n/0 [+ (o +9))e) (@) " dxdy
— £12 > 2@

Bl [ 1 [ lacor e

and we obtain the L? bound. It also follows that with ¢ as in Lemma 7.2 -
assuming that the assumptions are satisfies - ¢ defines a left inverse to the
vector values operator.

Similarly we obtain the kernel bound for Ty, for all |y| < 1, and
hence also when we integrate y with respect to the unit balls.

Replacing the ¢ integration by a summation for gy does not require sub-
stantial changes. Only the analogue of Lemma 7.2 needs some consideration.
We want to find ¢ so that

> d(2Fp(2R¢) =1
k=—o00
for £ # 0. This is done as in Lemma 7.2. O

2. Square functions, tents and Carleson measures

Theorem 6.10 applies here and gives

t N
| ; e x fI5 lpr ey < ell flla-
We also have
LEMMA 7.6. Let ¢ satisfy (7.1). Then
-1 R 2 dl 2
sup | B 1 % 0Py < cllulfiao
z,R Bgr(z) JO

PROOF. As usual is suffices to prove the bound for B = B;(0). We may
assume that fop = 0, since we may add a constant. We write

f=hH+f

with fi = fx2p. Then fi € L? and Ty, f1 € L2(R™ x (0, 00), dz%). It remains
to consider fs. We claim that

T fo(t, )| = | f2 % de(x)| < et]| fll Bmo
if |x| + ¢ < 1. This follows from Lemma 6.31,

/ M é(y)ldy < T
ly|>1

and scaling. The inequality is a consequence of the bounds on ¢. U
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It will be useful to consider more general functions F. We define

1/2
s*(F)(z) = </| Ktt_”_l]F(t,a: + y)]Qdydt>

and the analogues construction based on tends instead of cones

R

2
C(F)(z) = sup / tHE(t 2 +y)|*dydt | .
ly|+t<R
We call |F|? a Carleson measure if Cp is bounded.
The following duality statement holds.
PROPOSITION 7.7.
o0 dt
/ / F(t,a:)G(t,x)7da: < C/S}ngx.

nJo

PROOF. We define 7(x) for a large constant A by

7(z) = sup {7’ >0: /0 /|| tt7"71G2(t,x —y)dtdy < ACg(x)}.
yl<

We claim that there exists Ag and ¢ > 0 so that if A > Ag then for all balls
B = B,(x)

(7.3) {x € B:7(x) >r}| > c|Br(z)|.

Then, for any nonnegative function H

/ / H(y,t)t"dydt < ¢~ / / H(y,t)dydtdzx.
n n y\<t

We take H = FGt~"! and get

/R/OOOF(t,x)G(t,m)itdx <c~ /3 (F)(z)x
/ /l " GR (¢ @ — y)dydt
yl<r

§— spCadx
C Jrn

by the definition of 7(z).

It remains to prove (7.3). Let B = B,(zo) be a ball, y € B, and
T ={(t,z) : |t —y|+t < 3r} the tent over the ball of 3 times the radius
around y. Thus, by an application of Fubini, similar to the treatment of sx,

// G*(t,z — y)dydt < |B1(0 \/]th\dy
ly|<t
Hence

r dt
G?(t,x — ddt<cninf/G2d<cninfC )
// e ( y)dydt < inf Tl "dy— < [nf c(y)

This implies (7.3) if we choose Ay > cp. O
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THEOREM 7.8. Suppose that ¢ satisfies the assumptions of Lemma 7.2.
Then

1 fllBao < cl|Cryllree
and
[ fllz < ellspyllz

PROOF. Let ¢ be as in Lemma (7.2). Then

——dt
/fgdx = /T¢fT¢gtdx
By duality and Proposition 7.7

o <Coup { [ fode gl <1}
dt
:Csup{/Tngtd$: llgllzr < 1}

:CSup{/C’Tfs}gdx gl < 1}

<C|Crsllzee sup{llstgllcr = gl < 1}
| fllBrmo < cl|Cryllne

and similarly
gllze < cllStgll L1
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