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CHAPTER 1

Introduction

Harmonic analysis is concerned with describing, decomposing and ana-
lyzing functions and operators with some ’structure’ coming from the struc-
ture of the Euclidean space. Its relevance comes from the insight that the
same structures are relevant in different areas of mathematics like partial
differential equations, signal processing, Fourier analysis and mathemati-
cal physics. Key notions are Fourier transform, maximal functions, square
function, BMO and Hardy spaces, Calderón-Zygmund operators and their
relation to partial differential equations.

1. An example

The series

(1.1)
∞∑
n=1

1

n
zn

converges absolute for |z| < 1, and uniformly on every ball of radius < 1
since

f(z) =

m∑
n=1

1

n
|z|n ≤

m∑
n=0

|z|n =
1− |z|m+1

1− |z|
≤ 1

1− |z|
.

I claim that, given ε > 0, it converges uniformly in

{z : |z| ≤ 1, |z − 1| > ε}.

This is proven by an argument going back to Abel and mimics an integration
by parts:

m−1∑
j=n

zj

j
=

1

m

m−1∑
j=n

zj +

m−1∑
j=n

(
j∑

k=n

zk

)(
1

j
− 1

j + 1

)

=
1

m

m−1∑
j=n

zj +
m−1∑
j=n

zn − zj+1

1− z

(
1

j
− 1

j + 1

)
.

To verify the formula, compare the coefficients of zj , n ≤ j ≤ m− 1:

1

j
=

1

m
+
m−1∑
l=j

1

l
− 1

l + 1
.

Then ∣∣∣∣∣∣
m∑
j=n

zj

j

∣∣∣∣∣∣ ≤ 4

nε
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6 1. INTRODUCTION

and the partial sums are a Cauchy sequence. The limit is continuous, as a
uniform limit of continuous functions. It is not hard to identify it:

f ′(x) =
1

1− x
which is the derivative of − ln(1 − x) and a check at x = 0 shows that
f(x) = − ln(1− x). Hence

f(z) =− lnC(1− z) = − ln |1− z| − i arctan

(
Im(1− z)
Re(1− z)

)
=− ln |1− z|+ i arctan

(
Im z

1− Re z

)
for |z| ≤ 1, z 6= 1.

Define

g(x) :=

∞∑
n=1

(eix)n

n
=

∞∑
n=1

einx

n
= −1

2
ln |2− 2 cosx|+ i arctan

sin(x)

1− cos(x)

since

|1− eix| =
√

(1− cos(x))2 + sin(x)2 =
√

2− 2 cos(x).

By elementary geometry of the inscribed angle or the addition theorem

sin(x)

1− cos(x)
=

2 sin(x/2) cos(x/2)

1− cos2(x/2) + sin2(x/2)

=
cos(x/2)

sin(x/2)
=

sin(π−x2 )

cos(π−x2 )
= tan(

π − x
2

)

and we obtain for the imaginary part

(1.2) h0(x) :=
∞∑
n=1

sin(nx)

n
=
π − x

2
.

for 0 < x < 2π. Define the absolute convergent series

h1(x) =
∞∑
n=1

cos(nx)

n2
.

and for 0 < x < 2π∫ x

π
h0(t)dt = lim

n→∞

∫ x

π

n∑
j=1

sin(jx)

j
dx

=− lim
n→∞

 n∑
j=1

cos(jx)

j2
+

n∑
j=1

cos(jπ)

j2


=− h1(x) + h1(π)

and −h1 is a primitive of h0. Thus there exists a ∈ R such that

h1(x) =
x2

4
− πx

2
+ a



1. AN EXAMPLE 7

and we want to determine a. Since
∫ 2π

0 cos(nt)dt = 1
n(sin(2πn)+sin(0)) = 0

we get

0 =

∫ 2π

0
h1(t)dt =

2π3

3
− π3 + 2aπ

and a = π2

6 . The evaluation at t = 0 gives the value of the Riemann ζ
function at the value 2.

Lemma 1.1.

(1.3) ζ(2) =

∞∑
n=1

1

n2
=
π2

6
.

Similarly

(1.4) ζ(4) =

∞∑
n=1

1

n4
=
π4

90
.

We have seen different notions of convergence.

(1) Point-wise convergence
(2) Uniform convergence
(3) Absolute convergence
(4) Convergence in L2

in connection with Fourier series. The notions are important since we
want to differentiate resp. integrate term by term.





CHAPTER 2

Fourier series

1. Definitions

We denote the one dimensional torus by T = R\Z. Functions on the
torus are identified with periodic functions on R with period 1. We denote
the space of Radon measures ( complex Borel measures which are finite on
compact sets) on a metric space X by M - these are objects which can be
written as

µ+ + µ− + iµi− − iµi−

with non negative Radon measures µ+, µ−, µi+ and µi−.

Definition 2.1. Let µ ∈ T . We define the Fourier coefficients

µ̂(n) = µ̂n =

∫ 1

0
e−2inπxµ

and we write formally

µ ∼
∞∑

n=−∞
µ̂(n)e2inπx

for the relation between the series and the measure µ. If f is an integrable
function we write

f̂(n) = f̂n =

∫ 1

0
e−2inπxf(x)dx

and

f ∼
∞∑

n=−∞
f̂(n)e2inπx.

The functions (e2inπx)n are orthonormal in the sense that

ê2iπnx(m)

∫
e2inπxe2imπxdx =

{
1 if n = m
0 if n 6= m

The convergence questions of the Fourier series are interesting, impor-
tant, and a prototype for similar question in all areas of analysis.

9



10 2. FOURIER SERIES

We define the Dirichlet kernel through

SNf(x) =
N∑

n=−N
f̂(n)e2inπx

=
N∑

n=−N

∫
T
e−2inπx′f(x′)dx′e2inπx

=

∫
T

∑
n=−NN

e2inπ(x−x′)f(x′)dx′

=

∫
T
DN (x− x′)f(x′)dx′

=DN ∗ f(x)

where

DN (x) =
N∑

n=−N
einx =

sin[(2N + 1)πx]

sinπx
.

We may formulate the convergence question as: When and in which sense
does DN ∗ f(x) converge to f(x)?

2. The convolution and Young’s inequality

Motivated by the occurrence of the convolution we take a closer look
at its properties. For X = T, R or Rn we define the convolution of two
continuous functions with compact support by

f ∗ g(x) =

∫
f(x− y)g(y)dy.

We will need the convolution in much more general context. For that we
consider

If,g,h =

∫
Rn×Rn

f(x)g(x− y)h(y)dxdy

Lemma 2.2. Suppose that 1 ≤ p, q, r ≤ ∞ and

1

p
+

1

q
+

1

r
= 2.

Then the integral defining I is integrable for all f ∈ Lp, g ∈ Lq and h ∈ Lr
and

|If,g,h| ≤ ‖f‖Lp‖g‖Lq‖h‖Lr

Proof. The case when one of the exponents is ∞ and the others are 1
is simple. Hence we may assume that 1 ≤ p, q, r <∞. Let

F1(x, y) =|f(x)|p/r′ |g(x− y)|q/r′ ,

F2(x, y) =|g(x− y)|q/p′ |h(y)|r/p′ ,

F3(x, y) =|f(x)|p/q′ |h(y)|r/q′

where ′ denotes the Hölder dual exponent

1

p
+

1

p′
=

1

q
+

1

q′
=

1

r
+

1

r′
= 1,
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with the obvious interpretation of the exponent∞. Then, applying Hölder’s
inequality twice, since 1

p′ + 1
q′ + 1

r′ = 1

Ifgh ≤
∫
F1F2F3dxdy

≤
(∫

(F1F2)qdxdy

)1/q

‖F3‖Lq′

≤‖F1‖Lr′‖F2‖Lp′‖F3‖Lq′

=‖f‖
p
r′
Lp‖g‖

q
r′
Lq‖g‖

q
p′
Lq‖h‖

q
p′
Lr‖f‖

p
q′
Lp‖h‖

r
q′
Lr

=‖f‖Lp‖g‖Lq‖h‖Lr
�

The lemma is the ’dual’ statement to Young’s inequality.

Proposition 2.3 (Young’s inequality). Suppose that 1 ≤ p, q, r ≤ ∞
and

1

p
+

1

q
= 1 +

1

r
.

If f ∈ Lp and g ∈ Lq then for almost all x the integrand of∫
f(x− y)g(y)dy

is integrable and it defines a function in Lr(Rn). Moreover

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp‖g‖Lq .
If r = ∞ then the integrand is integrable for all x and f ∗ g is a bounded
continuous function.

Proof. Let h ∈ Lr′ . By Lemma 2.2∣∣∣∣∫ h(x)f(x− y)g(y)dxdy

∣∣∣∣ ≤ ‖f‖Lp‖g‖Lq‖h‖Lr′ .
It is an exercise to work out the details, including the last statement. �

The convolution has nice algebraic properties.

(1) f ∗ g(x) = g ∗ f(x)
(2) (f ∗ g) ∗ h(x) = f ∗ (g ∗ h)(x)
(3) f ∗ (g + h)(x) = f ∗ g(x) + f ∗ h(x)

(4) f̂ ∗ gn = f̂nĝn for integrable functions on the torus.

The Dirichlet kernel satisfies

|DN (x)| ≤ cmin{|N |,max{1

x
,

1

1− x
}}

for 0 ≤ x ≤ 1. If 1
100N ≤ |x| ≤

1
2 this follows from

|DN (x)| ≤ 1

| sinπx|
and for |x| ≤ 1

100N it follows from the Taylor expansion of sinNπx.
We claim that there exists a constant c > 0 so that

ln(1 +N)/c ≤ ‖DN‖L1 ≤ c ln(1 +N).
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The upper estimate follows by integrating the upper bound. For the lower
bound we restrict the integration to

{x ∈ [0, 1] : d(Nx− 1

2
,Z) ≤ 1

100
}.

For those values x

|DN (x)| ≥ cmin{N, (sinπx)−1}
and integration gives the lower bound.

Definition 2.4. Let 0 < s < 1, X a metric space. We say that : X → C
is Hölder continuous with exponent s if

|f(x)− f(y)| ≤ cd(x, y)s.

The best constant is the Hölder semi-norm.

Lemma 2.5. If f : T→ C is Hölder continuous with exponent s then

DN ∗ f → f

uniformly as N →∞.

Proof. A term-wise integration shows that
∫
TDN (x)dx = 1. Thus

|DN ∗ f(x)− f(x)| =
∣∣∣∣∫ 1

0
(f(x− y)− f(x))DN (y)dy

∣∣∣∣
≤
∫ δ

−δ
|DN (y)||(f(x− y)− f(x)|dy

+

∣∣∣∣∫ 1−δ

δ
DN (y)(f(x− y)− f(x))dy

∣∣∣∣
≤2c

∫ δ

−δ
|y|−1|y|sdy‖f‖Ċs

+

∣∣∣∣∫ 1−δ

δ

f(x− y)− f(x)

sin(πy)
sin((2N + 1)πy)dy

∣∣∣∣
≤4c

s
δs‖f‖Ċs +

∣∣∣∣∫ 1−δ

δ
hx(y) sin((2N + 1)πy)dy

∣∣∣∣
It remains to estimate the second term on the right hand side. We denote
it by B and use that sin((2N + 1)πy) = − sin((2N + 1)π(y + 1

2N+1)). Thus

B ≤
∣∣∣∣∫ 1−δ

δ
(hx(y)− hx(y − 1

2N + 1
) sin((2N + 1)πy)dy

∣∣∣∣
+

∣∣∣∣∣
∫
δ− 1

2N+1

|hx(y)|dy

∣∣∣∣∣+

∣∣∣∣∣
∫ 1−δ+ 1

2N+1

1−δ
hx(y)dy

∣∣∣∣∣
≤(2N + 1)−sδ−1‖f‖Ċs + (2N + 1)−1δ−2‖f‖sup.

The estimate holds for all δ. We choose δ = N−
s
3 and obtain

|DNf(x)− f(x)| ≤ c
(
N−

s2

3 +N−
2s
3 +N−1+ 2s

3

)
.

�
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We can improve the convergence by using Cesáro means resp. the Fejér
kernel.

σNf =
1

N

N−1∑
n=1

Dn ∗ f(x)

KN ∗ f(x)

where

KN =
N−1∑
n=0

Dn(x) =
1

N

(
sinNπx

sinπx

)2

.

It satisfies

K̂N (n) =

(
1− |n|

N

)
+

which is seen by checking the Fourier transform

(2.1) 0 ≤ KN (x) ≤ C

N
min{N2, | sin(πx)|−2}

by definition (left hand side) and as for DN (right hand side),∫ 1

0
Kn(x) =

∫ 1

0
|KN (x)| = 1

which we can read off the Fourier coefficients and

(2.2) |K ′N (x)| ≤ C min{N2, | sin(πx)|−2}.

which is a straight forward calculation for 1
100N ≤ x ≤ 1− 1

100N , and which
follows from Taylor expansion in the remaining interval.

We call a function approximate identity.

Definition 2.6. The family Φn of functions on T, R or Rn is called
approximate identity if

(1)
∫ 1

0 Φn(x)dx = 1

(2) supN
∫ 1

0 |Φn(x)|dx <∞
(3) For all δ > 0 one has

∫ 1−δ
δ |Φn(x)|dx→ 0 as n→∞

Proposition 2.7. Let Φn be an approximate identity. If f ∈ C(T) then

Φn ∗ f → f

uniformly as n→∞. If f ∈ Lp(T), 1 ≤ p <∞, then

‖Φn ∗ f − f‖Lp(T) → 0

as n→∞. If µ ∈M(T) then

Φn ∗ µ→ µ

in the sense of measures.
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Proof. The proof uses some constructions which we will need often.
Let f : T→ R be continuous, and Φn and approximate identity. Then

f(x)− f ∗ Φn(x) =

∫ 1

0
(f(x)− f(x− y))Φn(y)dy

=

∫ δ

−δ
(f(x)− f(x− y))Φn(y)dy

+

∫ 1−δ

δ
(f(x)− f(x− y))Φn(y)dy

We define the modulus of continuity

ωf (t) = sup
|x−y|<t

|f(x)− f(y))|.

Then limt→0 ωf (t) = 0 since f is uniformly continuous. Then

|f(x)− f ∗ Φn(x)| ≤ 2ω(δ)‖Φn‖L1 + 2‖f‖sup
∫ 1−δ

−δ
|Φn(y)|dy

and

lim sup
n→∞

sup
x
|f(x)− f ∗ Φn(x)| ≤ 2ω(δ) sup

n
‖Φn‖L1

This holds for all δ, hence the lim sup is zero.
Assume now that f ∈ Lp for some 1 ≤ p <∞. Continuous functions are

dense in Lp(T). Given ε there exists a continuous function fε such that

‖f − fε‖Lp(T) ≤ ε.

Then

I = ‖f − f ∗Φn‖Lp ≤ ‖fε− fε ∗Φn‖Lp + ‖f − fε‖Lp(T) + ‖(f − fε) ∗Φn‖Lp(T).

By Young’s inequality with p = r and q = 1

‖(f − fε) ∗ Φn‖Lp(T) ≤ ‖Φn‖L1‖f − fε‖Lp

Then

In ≤ ‖fε − fε ∗ Φn‖sup + ε(1 + ‖Φn‖L1)

and

lim sup
n→∞

In ≤ lim sup
n→∞

‖fε − fε ∗ Φn‖sup + ε(1 + ‖Φn‖L1)

≤ε(1 + ‖Φn‖L1)

This holds for all ε and hence the lim sup is 0.
The convolution of a measure with an L1 function is a integrable func-

tion. The extension of the dual Young’s inequality is easy.
Let µ be a measure and h a continuous function. If (Φn) is an approxi-

mate identity then the same is true for Φ̃n(t) = Φn(−t) and∫
µ ∗ Φnh(x)dx =

∫
Φ̃n ∗ h(x)µ→

∫
hµ

This is the definition of the convergence of measures. �
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Corollary 2.8. The trigonometric polynomials are dense in Lp for
1 ≤ p <∞ and in C(T). For f ∈ L2 the identity of Plancherel

(2.3) ‖f‖2L2 =
∞∑

n=−∞
|f̂n|2

holds. The complex exponentials (e2πinx)n are an orthonormal basis of L2(T)
and for f, g ∈ L2 one has Parsevals identity∫

fḡdx =
∑

f̂nĝn.

The inner product of L2(T) is given by the formula in the corollary. The
space is a Hilbert space i.e. ‖f‖2L2 = 〈f, f〉 is a norm, and the space if
complete with this norm.

Proof. (Kn) is an approximate identity. By Proposition 2.7 we have

f ∗ Kn → f in Lp for any f ∈ Lp if p < ∞. Now K̂n is a trigonometric
polynomial, and hence f∗Kn is a trigonometric polynomial. This implies the
density. The identity of Plancherel is trivial for trigonometric polynomials:
When we expand them and integrate all nondiagonal terms will give 0. Now

‖f‖2L2 = lim
n→∞

‖f ∗Kn‖2L2 = lim
n→∞

n∑
j=−n

|f̂j |2(1− j

n
)2 =

∞∑
j=−∞

|f̂j |2

by monotone convergence. Let f, g ∈ L2(T). Then, using Plancherels for-
mula

1

2

∫ 1

0
fḡ + gf̄dt =

1

4

∫ 1

0
|f + g|2 − |f − g|2dx

=
1

4

∞∑
j=−∞

|f̂n + ĝn|2 − |f̂n − ĝn|2

=
1

2

∞∑
j=−∞

f̂nĝn + ĝnf̂n

which is Parsevals identity for the real part for the formula. We replace f
by if to obtain imaginary part of the formula. The complex exponentials
e2πinx are clearly orthonormal. if

∫
fe2πinxdx = n for all n then f = 0 by

Plancherels identity. �

3. Lp convergence of partial sums

Proposition 2.9. Let 1 ≤ p <∞. Then the following is equivalent:

(1) For all f ∈ Lp we have ‖DN ∗ f − f‖Lp → 0

(2) supn
‖DN∗f‖Lp
‖f‖Lp

<∞.

Proof. (1) =⇒ (2) is a consequence of the uniform boundedness prin-
ciple. The reverse implication follows from the density of trigonometric
polynomials and Young’s inequality. �

Corollary 2.10. There exists f ∈ L1 so that DN ∗ f does not converge
to f in L1. There exists f ∈ C(T) so that DN ∗f does not converge uniformly
to f .
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Proof. We have seen that

‖DN‖L1 ≥ c ln(1 +N).

Let fδ(x) = (2δ)−1χ|x|≤δ. Then ‖f‖L1 = 1 and, if δ < 1
4N , ‖DN ∗ f‖L1 ≥

c ln(1 + N). This contradicts (2) and hence there exists f ∈ L1 so that

DN ∗ f does not converge to f in L1. If f(y) = DN (−y)
|DN (−y)| if DN (y) 6= 0 and

0 otherwise then

|DN ∗ f(0)| ≥ c ln(1 +N).

By dominated convergence

lim
ε→0

DN ∗
DN

ε+ |DN |
(0)→ DN ∗ f(0)

and hence

sup
N≥1

sup
f∈C(T),|f |≤1

‖DN ∗ f‖sup =∞.

Arguing as in the proposition with the uniform boundedness principle this
implies that there is f ∈ C(T) such that DN ∗f does not converge uniformly
to f . �

The variant of the argument gives a stronger statement: There exist
f ∈ L1 (resp. f ∈ C(T) so that lim supN→∞ ‖DN ∗ f‖L1 → ∞ (resp.
lim supN→∞ ‖DN ∗ f‖sup =∞). Exercise: Find such functions.

4. Regularity and Fourier series

Proposition 2.11 (Bernstein’s inequality). Let f be a trigonometric

polynomial with f̂(k) = 0 for |k| > n. Then

‖f ′‖Lp ≤ Cn‖f‖Lp

Proof. We define the de la Vallée Poussin kernel

VN (x) =
1

N

2N∑
k=N+1

k−1∑
j=1−k

e2πijx

=2K2N (x)−KN (x)

=
1

N

(
sin2 2Nπx− sin2Nπx

sin2 πx

)
Then, by Young’s inequality (and a tedious bound of the L1 norm)

‖f ′‖Lp =‖(VN ∗ f)′‖Lp
=‖V ′N ∗ f‖Lp
≤‖V ′N‖L1‖f‖Lp
≤CN‖f‖Lp .

�

We define Sobolev spaces on the torus.
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Definition 2.12. Let s ∈ R. We define the Hilbert space Hs(T) as the
completion of the trigonometric polynomials in the norm

‖f‖Hs :

 ∞∑
j=−∞

(1 + n2)s|f̂(n)|2
1/2

.

If s ≥ 0 then Hs(T) ⊂ H0(T) = L2(T). If f ∈ H1 then f ′ ∈ L2 and

‖f ′‖2L2 + ‖f‖2L2 = ‖f‖2H1 .

This holds for trigonometric polynomials, and we use it to define the deriv-
ative of functions in H1.

Theorem 2.13. Let 0 < s ≤ 1. Then Cs ⊂ Hσ for all σ < s.

Proof. We claim that

(2.4)
∑

2j≤|n|≤2j+1

|f(n)|2 ≤ c2−2js‖f‖2Cs(T).

Then

∞∑
n=−∞

|n|2σ|f̂(n)|2 ≤ 2
∞∑
j=0

22jσ
∑

2j≤|n|≤2j+1

|f(n)|2 ≤ C
∞∑
j=0

22j(σ−s)‖f‖Cs

To prove the claim (2.4) we observe that it follows from

‖Kn ∗ f − f‖L2 ≤ sup
x
|Kn ∗ f(x)− f(x)|

≤2

∫ 1/2

0
|Kn(y)||y|sdy‖f‖Cs

≤cn−s‖f‖Cs

(see (2.1)) with n = 2j−1 since∑
2j≤|n|≤2j+1

|f(n)|2 ≤ ‖K2j−1 ∗ f − f‖L2 .

�

5. Complex Interpolation

Holomorphic functions satisfy a maximum principle.

Lemma 2.14. Let U ⊂ C be open, f : U → C holomorphic. If z0 ∈ U
and

|f(z0)| = max{|f(z)| : z ∈ U}
then f is constant.

Proof. 1) There is nothing to show if f(z0) = 0. Otherwise we divide
by f(z0) and may assume that f(z0) = 1 The Taylor series

f(z) = 1 +

∞∑
j=1

aj(z − z0)j
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converges in a neighborhood of z0. There is a first non-vanishing coefficient
am with m ≥ 1. There exists b with bm = am. We consider g(z) = f(z/b).
It has the form

g(z) = 1 + zm +
∞∑

n=m+1

anz
n.

Then
d

dt
|g(1 + t)|

∣∣∣
t=0

= m

and we obtain a contradiction.
2) By the Cauchy integral formula, resp. the mean value property of

harmonic functions, for r > 0 and small

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit)dt

This implies that the maximum is assumed at the boundary. If it is assumed
in an interior point then |f(z)| is constant and the holomorphic function
z → lnC f(z) has constant real part. The Cauchy-Riemann equations imply
now that f is constant. �

Lemma 2.15 (Three lines theorem). Let f : {z ∈ C : 0 ≤ Re z ≤ 1} → C
be bounded, continuous and holomorphic in the interior. Then

|f(x+ iy)| ≤
(

sup
y
|f(y)|

)1−x(
sup
y
|f(1 + iy)|

)x
.

Proof. Let

fε(z) = eεz
2
f(z)

(
sup
y
|f(iy)|

)z−1(
sup
y
|f(1 + iy)|

)−z
.

Then

|fε| ≤ ceε(1−y
2) → 0 as y → 0.

Thus there exists z = x + iy with 0 ≤ x ≤ 1 where |fε| is maximal. Then
either fε is constant and hence identically 0, or the maximum is assumed at
the boundary. But then

sup |fε(z)| ≤ max{sup
y
|fε(iy)|, sup

y
|fε(1 + iy)|}

and hence

|f(z)| ≤ eε
(

sup
y
|f(y)|

)1−x(
sup
y
|f(1 + iy)|

)x
�

Theorem 2.16 (Riesz-Thorin interpolation theorem). Let µ and ν be
measures on X resp. Y , Tz maps characteristic functions of measurable sets
of bounded µ measure to functions which are integrable over sets of finite
measure, for 0 ≤ Re z ≤ 1 such that for all measurable sets A ⊂ X and
B ⊂ Y of finite measure the map

z →
∫

(TzχA(y))χB(y)dy
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is bounded and continuous and holomorphic in the interior of the strip. Sup-
pose that

1 ≤ p0, p1, q0, q1 ≤ ∞
and,

1

pz
=

Re z

p1
+

1− Re z

p0

1

qz
=

Re z

q1
+

1− Re z

q0
.

Suppose that ∣∣∣∣∫ (Tiy′f)gν

∣∣∣∣ ≤ C0‖f‖Lp0‖g‖Lq′0∣∣∣∣∫ (T1+iy′f)gν

∣∣∣∣ ≤ C1‖f‖Lp1‖g‖Lq′1 .

Then Tλ has a unique extension to a continuous linear operator

Tλ : Lpz(µ)→ Lqz(ν)

with norm C1−Re z
0 CRe z

1 .

Proof. By duality and density it suffices to prove∣∣∣∣∫ (Tzf)gν

∣∣∣∣ ≤ C1−Re z
0 CRe z

1 ‖f‖Lp‖g‖Lq′

for 0 < t < 1, for finite sums of characteristic functions of sets of finite
measure. We fix z0, p = pz0 , q = qz0 , f and g a finite sum of characteristic
functions of sets of finite measure on X resp Y ,

fz(x) = |f(x)|
t−z
t

p−p0
p0 f(x), gλ(y) = |g(x)|

t−z
t

q′−q′0
q′0 g(y)

ft(x) = f(x) gt(y) = g(y)

|fiy′(x)|p0 = |f(x)|p, |giy′(y)|q′0 = |g(y)|q′

(Re z0 − 1)

(
p

p0
− 1

)
= Re z0

(
p

p1
− 1

)
|f1+iy′(x)|p1 = |f(x)|p, |g1+iy′(y)|q′1 = |g(y)|q′ .

We taking the difference quotients and using dominated convergence

d

dz

∫
(Tzfz)(y)gz(y)ν(y) =

∫
(
d

dz
Tz)fz(y)gz(y)ν(y) +

∫
(Tλ

d

dz
fz)gzν(y)

+

∫
(Tzfz)

d

dz
gzν(y)

and hence
∫
Tzfzgzν is holomorphic in z. Boundedness and continuity are

immediate.
By Hölder’s inequality and the construction∣∣∣∣∫ (Tiy′fiy′)giy′ν(y)

∣∣∣∣ ≤‖Tiy′fiy′‖Lq0‖giy′‖Lq′0
≤c0‖fiy′‖Lp0‖giy′‖Lq′0
≤c0‖f‖p/p0Lp ‖g‖

q′/q′0
Lq′

.
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and ∣∣∣∣∫ (T1+iy′f1+iy′)g1+iy′dy

∣∣∣∣ ≤ C1‖f‖p/p1Lp ‖g‖
q′/q′1
Lq′

.

By the three lines theorem∣∣∣∣∫ Tz0fg

∣∣∣∣ ≤(C0‖f‖p/p0Lp ‖g‖
q/q′0

Lq
′
0

)1−Re z0 (
C1‖f‖p/p1Lp ‖g‖

q′/q′1
Lq′

)Re z0

=C1−Re z0
0 CRe z0

1 ‖f‖
p
(

1−Re z0
p0

+
Re z0
p1

)
Lp ‖g‖

q′
(

(1−Re z0)

q′0
+

Re z0
q′1

)
Lq′

=C1−Re z0
0 CRe z0

1 ‖f‖Lp‖g‖Lq′ .
�

The lemma of Schur is a consequence.

Lemma 2.17 (Schur). Let K : X × Y → C be µ × ν measurable and
suppose that

sup
x

∫
|K(x, y)|ν(y) ≤ C1, sup

y

∫
|K(x, y)|µ(x) ≤ C∞

Let 1 ≤ p ≤ ∞ The linear map defined on characteristic functions by

T (χA)(y) =

∫
A
K(x, y)dµ(x)

has a unique extension to a continuous linear map T : Lp(X,µ)→ Lp(Y, ν)
which satisfies

‖Tf‖Lp(Y,ν) ≤ C
1
p

1 C
1− 1

p
∞ ‖f‖Lp(X,µ).

Proof. If f ∈ L∞(X,µ) then |Tf(y)| ≤ C∞‖f‖L∞ . If f ∈ L1 then∫
|
∫
Tf(y)|ν(y) ≤

∫
|K(x, y)||f(x)|µ(x)ν(y)

≤ sup
x

∫
|K(x, y)|dν(y)‖f‖L1(X,µ)

≤C1‖f‖L1 .

This holds first for simple functions. There is a unique extension to T :
L1(X,µ)→ L1(Y, ν) bounded by C1 and a unique extension to L∞(X,µ)→
L∞(Y, ν) bounded by C∞. The Riesz-Thorin theorem implies the full state-
ment. �

Alternatively we may estimate as in Young’s inequality:∣∣∣∣∫ f(x)K(x, y)g(y)dµ(x)dν(y)

∣∣∣∣
≤‖f(x)|K(x, y)|1/p‖Lp(µ×ν)‖|K(x− y)|1/p′g(y)‖Lp′ (µ×ν)

≤‖f‖Lp(µ)‖g‖Lp′ (ν) sup
x
‖|K(x, .)|1/p‖Lp(ν) sup

<
‖|K(., y()|1/p′‖Lp′ (µ).

This second proof gives a stronger statement: Existence of the defining
integral for almost all y.
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We could derive the bound in Young’s inequality via the Theorem of
Riesz-Thorin from the extremal cases p = 1, q =∞ and p = 1, q = 1. With
this type of argument we would however loose the existence of the integral
for almost all y. Up to that Young’s inequality with p = 1 is a special case
of Schur’s lemma.

Lemma 2.18 (The Hausdorff-Young inequality). Let f ∈ Lp(T,C), 1 ≤
p ≤ 2. Then

‖f̂‖lp′ ≤ ‖f‖Lp

Proof. The case p = 2 is the Plancherel identity. The case p = 1 is
trivial. If

1

p
= λ+

1− λ
2

then
1

p′
=

1− λ
2

The assertion follows from Theorem 2.16 with µ the Lebesgue measure and
ν the counting measure. �

6. The Hardy-Littlewood maximal function and real
interpolation

Definition 2.19. Let f ∈ L1
loc(Rn). We define the (uncentered) Hardy-

Littlewood maximal function as

Mf(x) = sup
x3BR(y)

|BR(y)|−1

∫
BR(y)

|f(z)|dz

Theorem 2.20 (Hardy-Littlewood maximal function). Let 1 ≤ p ≤ ∞
and f ∈ Lp(Rn). The Hardy-Littlewood maximal function Mf is measurable
and finite almost everywhere. It satisfies

‖Mf‖Lp(Rn) ≤ c(n)
p

p− 1
‖f‖Lp(Rn).

and

mn({x : Mf(x) > λ}) ≤ 3n

λ
‖Mf‖L1

Definition 2.21. Let f ∈ L1
loc. We call x ∈ Rn Lebesgue point if

lim
R→0

sup
BR(x1)∩Br(x2)3x,r≤R

∣∣∣∣(BR(x1))−1

∫
f(y)dy − (Br(x2))−1

∫
f(y)dy

∣∣∣∣ = 0

We may (and usually do ) assume that at a Lebesgue point f is equal
to the limit of the averages as R→ 0.

Theorem 2.22. Let f ∈ L1
loc. Then there is a set A of measure 0 so

that all point in Rn\A are Lebesgue points.

Proof. We may assume that f is compactly supported and integrable.
Given ε > 0 there exists a continuous compactly supported function g with
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‖f − g‖L1 < ε. Since for continuous functions all points are Lebesgue points
it remains to consider h = f − g. Then

At ={x : lim sup
r,R

|fBR(x1) − fBr(x2)| > t}

⊂ {x : lim sup
r,R

|hBR(x1) − hBr(x2)| > t}

⊂ {x : Mh(x) > t/2}

and its measure is bounded by cε
t . We let ε→ 0 to see that

mn(At) = 0.

Denote the set of Lebesgue points by L. Then

Rn\L =
⋃
j

A1/j

is a countable union of sets of measure 0, hence its union has measure 0. �

Proof of Theorem 2.20. The proof consists of two steps, the first
being the proof of the weak type inequality for p = 1, and the second being
an interpolation argument.

Lemma 2.23 (Covering argument of Vitali). Let (X, d) be a metric space
and (Bi)1≤i≤N = (Bri(xi))1≤i≤N by a finite set of balls. Then there exists a
pairwise disjoint subset (Bij )1≤j≤M so that

N⋃
i=1

Bi ⊂
M⋃
j=1

B3rij
(xij ).

Proof. We choose the balls recursively. Suppose we have chosen dis-
joint balls Bij for j < m. Let Bijm be the ball of the largest radius which
is disjoint to the previous ones. If there is no such ball we are done. This
process ends at some point. We have to verify the covering statement.
Let Bri(xi) be one of the balls. If it has been chosen it is certainly con-
tained in the union to the right. If not there is a largest index m so that
rim ≥ ri. Since we did not choose Bri(xi) in this step it has a nonempty
intersection with one of the balls Brij with j ≤ m. But then ri ≤ rij and

Bri(xi) ⊂ B3rij
(xij ). �

Let f ∈ L1(Rn) and t > 0. The set U = {x : Mf > t} is open. For each
point x ∈ U there is a ball Br(y) 3 x with∫

Br(y)
|f(y)|dy > λmn(Br(y)).

Let K ⊂ U be a compact set. Since K is compact, and covered by these
balls there exists a finite number of such balls (Bri(xi))1≤i≤N which cover
K. By Lemma 2.23 there is a subset of disjoint balls (Brij (xij ))

K ⊂
N⋃
i=1

Bri(xi) ⊂
M⋃
j=1

B3rij
(xij )
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Thus

mn(K) ≤mn(K)

 M⋃
j=1

B3rij
(xij )


≤3nmn

 M⋃
j=1

Brij (xij )


≤3nt−1

∫
Mf>t

|f |

≤3n

t
‖f‖L1

and

mn({x : Mf(x) > t}) = sup
K
mn(K) ≤ 3n

t
‖f‖L1 .

Clearly Mf(t) ≤ ‖f‖L∞ . Let 1 ≤ p < ∞. There is the bath tube
representation

(2.5)

∫
|f |dx = mn+1({(x, t) : 0 ≤ t < |f(x)|}) =

∫ ∞
0

mn({|f | > t})dt

and

(2.6)

∫
|f |pdx =

∫ ∞
0

mn({|f | > s1/p})ds = p

∫ ∞
0

tp−1mn({|f | > t})dt.

Given t > 0 we define

ft =

{
f if |f | ≤ t

t f|f | if |f | > t

and

f t = f − ft.
The maximal function is sublinear, i.e.

Mf(x) ≤Mft(x) +Mf t(x).

Thus

‖Mf‖pLp =2pp

∫ ∞
0

tp−1mn({Mf > 2t})dt

≤2pp

∫ ∞
0

tp−1
(
mn({Mft > t}) +mn({Mf t > t})

)
dt

≤2pp

∫ ∞
0

tp−1mn({Mf t > t})dt

≤2p3n
∫ ∞

0
tp−2

∫
|f |>t
|f |dxdt

=2pp3n
∫
Rn
|f(x)|

∫ |f(x)|

0
tp−2dt

=
2p3n

p− 1
‖f‖pLp
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and

‖Mf‖Lp ≤
(

23n

p− 1

)1/p

‖f‖Lp .

�

By Tschebychevs inequality

µ({|f | > λ}) ≤ λ−p‖f‖pLp .

We define the weak norm by

(2.7) ‖f‖Lpw(µ) = sup
λ
λµ({|f | > λ})1/p

This is an abuse of notation, since the ’norm’ does in general not satisfy the
triangle inequality but only

(2.8) ‖f + g‖Lpw ≤ C
(
‖f‖Lpw + ‖g‖Lpw

)
.

If p =∞ we set L∞w = L∞.

Theorem 2.24 (Marcinkiewicz). Let 1 ≤ p0 < p1 ≤ ∞, 1 ≤ q0 6= q1 ≤
∞. Suppose that T is a sublinear operator mapping the span of characteristic
function of µ measurable sets of finite to functions which are ν integrable
over ν measurable sets of finite ν measure, such that,

(1) For all finite collections of measurable sets Aj ⊂ X and B ⊂ Y of
finite measure the map

RN 3 (a)→
∫
B
T
∑

ajχAjν

is continuous.
(2) T (tf)(y) = tT (f)(y) for t > 0 and |T (f+g)(x)| ≤ |Tf(x)|+|Tg(x)|

almost everywhere.
(3)

∣∣∫ T (χA)χBdy
∣∣ ≤ min{c0µ(A)1/p0µ1/q′0(B), c1µ(A)1/p1µ1/q′1(B)}

If 0 < λ < 1
1

p
=

1− λ
p0

+
λ

p1
,
1

q
=

1− λ
q0

+
λ

q1

then T defines a unique continuous sublinear operator from Lpw to Lqw.

‖Tf‖Lqw ≤ c(p, q, λ)‖f‖Lpw
and ∣∣∣∣∫

Y
T (tχA)g(y)dν

∣∣∣∣ ≤ c(p, q, λ)|t|µ(A)1/p‖g‖
Lq
′
w

If p ≤ q then T : Lq → Lp and

‖Tf‖Lq ≤ c(p, q, λ)‖f‖Lp .

We apply the Marcinkiewicz interpolation theorem to an important ver-
sion of Young’s inequality before we prove it.

Lemma 2.25 (Weak Young’s inequality). Let

1 < p, q, r <∞, 1

p
+

1

q
= 1 +

1

r



6. THE HARDY-LITTLEWOOD MAXIMAL FUNCTION AND REAL INTERPOLATION25

and f ∈ Lp and g ∈ Lpw. Then the integral

f ∗ g(x) =

∫
f(x− y)g(y)dy

exists for almost all x and

‖f ∗ g‖Lr ≤ c‖f‖Lp‖g‖Lqw .

Proof. Truncating g = g1 + g1 as above it is not hard to see that the
integral exists for almost all x. By Young’s inequality

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq
for all such triple. We fix p and f ∈ Lp and define

Tg = f ∗ g, T : Lq → Lr

for all admissible triple. Thus, by duality,∣∣∣∣∫ Tghdx

∣∣∣∣ ≤ ‖g‖Lq‖h‖Lr′
and we can apply the interpolation theorem of Markinciewicz for all admis-
sible exponent beside q = 1 or r =∞:

‖f ∗ g‖Lrw ≤ c‖f‖Lp‖g‖Lqw .
Now we fix g ∈ Lqw and define

Tf = f ∗ g, T : Lpw → Lrw.

This implies ∣∣∣∣∫
B
T f̃χAdx

∣∣∣∣ ‖f̃‖L∞ |A|1/p|B|1/r′ ,
and, since p ≤ r,

‖Tf‖Lr ≤ c‖f‖Lp‖g‖Lqw
for triples which we obtain by interpolation, which are those of the lemma.

�

The assumption of the theorem implies for all simple functions

(2.9)

∣∣∣∣∫
B
TfχAgν

∣∣∣∣ ≤ c‖f‖L∞(µ)‖g‖L∞(ν)µ(A)1/p0ν(B)1/q′0

with a similar estimate for the index 1. Allowing for a factor 4 in the
constant it suffices to verify this for nonnegative functions f and g. We can
then write

f =
∑
j

fjχAj , g =
∑

gjχBj

with 0 ≤ fj , gj ,
∑
fj = ‖f‖L∞ ,

∑
gj = |g‖L∞ , Aj ⊂ Aj1 and Bj ⊂ Bj−1 for

all j. We expand the sum and use the sublinearity to arrive at (2.9).

Lemma 2.26. If 1 < p <∞ and f ∈ Lpw the inequalities

1

2
‖f‖Lpw ≤ sup

µ(A)>0
µ(A)−1/p′

∣∣∣∣∫
A
fµ

∣∣∣∣ ≤ ( 1

p− 1

)1/p

‖f‖Lpw

hold. As a consequence there exists an equivalent norm so that Lpw is a
Banach space.
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Proof. Set A = {|f(x)| > t}. Then

tp|{|f(x)| > t}| ≤
∫
A
tp−1|f |dµ ≤tp−1

∫ ∞
t

µ({|f | > s})ds

≤tp−1‖f‖p
Lpw

∫ ∞
t

s−pds

≤ 1

p− 1
‖f‖p

Lpw

Thus, for f > 0

‖f‖p
Lpw
≤ sup tp−1µ(|f | > t)1/p′ sup

A
(µ(A))−1/p′

∫
A
fdµ

≤tp−1t
− p
p′ ‖f‖

p
p′

Lpw
sup
A

(µ(A))−1/p′
∫
A
fdµ

=‖f‖p−1
Lpw

sup
A

(µ(A))−1/p′
∫
A
fdµ

which yields the left inequality in the lemma after dividing by ‖f‖p−1
Lpw

. The

inequality on the right hand side follows from the second inequality above.
The quantity in the middle satisfies the triangle inequality. Completeness is
easy. �

Proof of Theorem 2.24. Let f be a simple function with ‖f‖Lpw = 1.
We claim that

(2.10) ‖Tf‖Lqw ≤ c‖f‖Lpw
This follows from ∣∣∣∣∫ TfχBdy

∣∣∣∣ ≤ c‖f‖Lpwν(B)1/q′

by Lemma 2.26

‖Tf‖Lqw ≤ c sup
B
ν(B)

− 1
q′

∣∣∣∣∫
B
Tfν

∣∣∣∣ ≤ c′‖f‖Lpw .
f =

∑
fjχAj

with fj(x) = f(x) if 2j ≤ |f | ≤ 2j+1. We decompose fj into the positive
and negative part, and argue similar for both. Let fj ≥ 0. We can write it
as

fjχAj =
∑

tlχCl

with tl ≥ 0 and Cl+1 ⊂ Cl ⊂ Aj for all l. Then∣∣∣∣∫
B
T (fjχAj )ν

∣∣∣∣ ≤ c‖f‖L∞µ(Aj)
1/p0µ(B)1/q′0 .

since
∑
tj ≤ ‖f‖L∞ . We obtain the same estimate with the index 1.
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Let ‖f‖Lpw = 1 and s = ν(B). Then∣∣∣∣∫
B
|Tf |ν

∣∣∣∣ ≤c∑
j

∫
B
|TfχAj |ν

≤
∑
j

2j min{µ1/p0(Aj)ν
1/q′0(B), µ1/p1(Aj)ν

1/q′1(B)}

≤c
∑

min{2j−jp/p0s1/q′0 , 2j−jp/p1s1/q′1}

≤c

∑
j≤J

2j−jp/p1s1/q′1 +
∑
j>J

2j−jp/p0s1/q′0


≤C(2

J(1− p
p1

)
s1/q′1 + 2

J(1− p
p0

)
s1/q′0)

≤2Cs1/q′

if we choose J appropriately so that both summands have the same size:

Jp

ln2 s

(
1

p0
− 1

p1

)
=

1

q′0
− 1

q′1

then (check if p = p0 and p = p1 , plus linearity)

2
J(1− p

p1
)+

ln2 s

q′1 = s
1
q′ .

The same argument yields

(2.11)

∣∣∣∣∫ fχAg

∣∣∣∣ ≤ cµ(A)1/p‖f‖L∞‖g‖Lq′w .

We read (2.10) and (2.11) as L∞ resp L1 estimates. We define the
Lorentz spaces rsp. norms

(2.12) ‖f‖qLpq := q

∫ (
tµ({x : |f(x)| > t})1/p

)q dt
t
.

Then

‖f‖Lpw = ‖f‖Lp∞ ≤ ‖f‖Lpq
since

tµ({|f(x)| > t})1/p ≤
∫ t

0
qsq−1dsµ({|f(x)| > t})1/p

≤q
∫ ∞

0
(sµ({|f | > s})1/p)q

ds

s
.

and, if q1 < q2

‖f‖q2Lpq2 ≤ ‖f‖
q1
Lpq1‖f‖

q2−q1
Lp∞ ≤ ‖q2Lpq1

hence

(2.13) ‖f‖Lpq1 ≤ ‖f‖Lpq1 .

Lemma 2.27. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then the generalized
Hölder inequality

(2.14)

∣∣∣∣∫ fgµ

∣∣∣∣ ≤ c‖f‖Lpq‖g‖Lp′q′
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holds and

(2.15) ‖f‖Lpq ≤ c sup
‖g‖

Lp
′q′≤1

∫
fgµ.

Proof. To prove (2.14) for functions f and g we define monotonically
decreasing functions f∗, g∗ : (0,∞)→ [0,∞) so that

|{f∗ > s}| = µ({|f | > s})

for all s > 0. With this notation the Hardy-Littlewood inequality holds:

(2.16)

∫
fgµ ≤

∫ ∞
0

f∗(t)g∗(t)dt.

We have ∫
|f(x)g(x)|µ =

∫
X

∫ ∞
0

∫ ∞
0

χ|f(x)|≥sχ|g(x)|≥tdsdt

=

∫
X

∫ ∞
0

∫ ∞
0

χ{|f(x)|>s,|g(x)|>t}dsdt

=

∫ ∞
0

∫ ∞
0

µ({|f(x)| > s, g(x) > t})ds dt

≤
∫ ∞

0

∫ ∞
0

m1({f∗ > s} ∩ {|g∗ > t})ds dt

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

χf∗>s(u)χg∗>t(u)du dt ds

=

∫ ∞
0

f∗(u)g∗(u)du.

Inequality (2.14) follows by Hölder’s inequality from this estimate:∫
fgdµ ≤

∫ ∞
0

f∗g∗du

≤
(∫ ∞

0
tq/p(f∗(t))q

dt

t

)1/q (∫ ∞
0

tq
′/p′(g∗(t))q

′ dt

t

)1/q′

and, with the Riemann Stieltjes integral (or less transparently, by substitu-
tion with s = f∗(t))

q

p

∫ ∞
0

tq/p(f∗(t))q
dt

t
=

∫ ∞
0

(f∗(t))qdtq/p

=

∫ ∞
0

tq/pd(f∗)q

=q

∫ ∞
0

(sµ({|f | ≥ s})1/p)q
ds

s
.

This completes the proof of (2.14).

Let q <∞ and f ∈ Lp(µ). Then, with g = |f |p/p′ f|f |∫
fgµ = ‖f‖pLp , ‖g‖Lp′ = ‖f‖p−1

Lp .
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Let f ∈ Lpq. We write it as f =
∑
fjχAj as above. The first Ansatz is

g =
∑
j

(
2jµ(Aj)

1/p
)q−p

2j(p/p
′) f

|f |
χAj .

Then ∫
fgµ ∼ ‖f‖Lpq(µ).

Recall that this sum is finite,
∑N

j=−N . For κ > 0 we set

gκ =
∑
j

(
2j(1+pκ)µ(Aj)

1/p
)q−p

2j(p/p
′) f

|f |
χBj .

with Bj ⊂ Aj and µ(Bj) = 2−κ(j+N)µ(Aj). A tedious calculation shows
that ‖gκ‖Lpq(µ) is bounded independent of the the exponents provided κ is
sufficiently large.

The case q =∞ follows from Lemma 2.26 and

‖f‖Lpq(µ) ∼ ‖‖fjχAj‖Lp‖lq .
�

We read (2.11) as

‖Tf‖Lq1 = ‖tν({y : |Tf(y)| > t})1/q‖L1 ≤ c‖tµ({x : |f(x)| > t)1/p‖L1

Now the real interpolation argument of for the maximal function with a
small modification in the definition of ft which yields

(2.17) ‖Tf‖Lqr ≤ ‖f‖Lpr .
for 1 ≤ r ≤ ∞. If p ≤ q we set r = p and conclude by

‖Tf‖Lq ≤ ‖Tf‖Lqp ≤ c‖f‖Lp .
The transition from simple functions to general functions is an approxima-
tion argument. It suffices to prove norm continuity on simple functions. Let
p ≤ q and f, g ∈ Lp(µ). The argument is similar for Lpw. Let h ∈ Lq′ . It
suffices to show

|
∫

(Tf − Tg))hν| ≤ c‖h‖Lq′‖f − g‖Lp .

Let

φ(f) = |
∫
Tfhν|.

It satisfies for t > 0
φ(tf) = tφ(f),

0 ≤ φ(f + g) ≤ φ(f) + φ(g)

and
φ(f) ≤ c‖f‖Lp(µ)‖h‖Lq′ (ν).

The continuity follows from

|φ(f)− φ(g)| ≤ c‖h‖Lq′ (ν)‖f − g‖Lp(ν).

Continuity on simple functions of∫
Tfhdµ
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follows from the continuity assumption of the theorem. We consider

η(t) =

∫
T (f + t(g − f))hdµ

for 0 ≤ t ≤ 1. If η(t) = 0 for some t then∣∣∣∣∫ Tghµ

∣∣∣∣+

∣∣∣∣∫ Tfhµ

∣∣∣∣ ≤ c‖h‖Lq′‖f − g‖Lp .
Otherwise it does not change sign, and the assertion follows again from the
continuity of φ. �

7. Higher dimensions

The definition of the convolution and the Fourier transform carries over
to several different situations.

7.1. Fourier transform on Tn. We define the n dimensional torus by
Rn\Tn. Again we identify functions on Tn by 1 periodic functions on Rn.
We define the Fourier coefficients for m ∈ Zn by

f̂(m) =

∫
Tn
f(x)e−2πim·xdx.

Many but not all of the statements have analogues in this higher dimensional
setting. In particular the functions (e2πim·x)m are an orthonormal basis.

7.2. The case of a general lattice. Let vi ∈ Rn, 1 ≤ i ≤ n be a basis
in Rn. Its linear combinations with integer coefficients define a lattice in
Rn. We denote it by L. The dual lattice consists of all vectors in the dual
space (which we identify with Rn) which map the elements of the lattice L
to Z. We denote it by L∗. Again we identify functions on the torus Rn/L
with L periodic functions. The Fourier coefficients are defined for m ∈ L∗
by

f̂(m) =

∫
Rn/L

e−2πim·xf(x)dx.

The functions
| det(v1, . . . , vn)|−1/2e2πim·x

are an orthonormal basis.

7.3. The case of Rn. We will later look at the Fourier transform which
for integrable functions in Rn is defined by

f̂(ξ) =

∫
e2πix·ξf(x)dx.



CHAPTER 3

Harmonic functions and the Poisson kernel

1. Basic properties and the Poisson kernel

Definition 3.1. Let U ⊂ Rn be open. A two times differentiable func-
tion u is called harmonic if

∆u =

n∑
j=0

∂2
xju = 0

(1) The real part of holomorphic functions is harmonic.
(2) Harmonic function satisfy the mean value property. A function u

is harmonic if and only if

u(x) =
1

n|B1(0)|

∫
∂B1(0)

u(x+ ry)dHn−1(y)

whenever Br(x) ⊂ U . This follows by computing

d

dr

∫
∂B1(0)

u(x+ ry)dHn−1(y) =

∫
∂B1(0)

y · ∇y(x+ ry)dHn−1(y)

=

∫
B1(0)

∆y(x+ ry)dmn(y)

=0

and a slightly refined argument gives the converse.
(3) They satisfy a maximum principle: If the maximum is assumed in

the interior then a harmonic function is constant on the connected
part of its domain of definition.

(4) There is the fundamental solution

g(x) =

{
− 1

2π ln |x| if n = 2
1

n(n−2)|B1(0)| |x|
2−n if n ≥ 3

and

−∆g ∗ f = f

whenever f ∈ Cs(Rn) with compact support: First ∆g(x) = 0 if
x 6= 0, and then, formally

∂jg ∗ f = − 1

n|B1(0)|
xj
|x|n
∗ f

31
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and

∂l

∫
Rn\Br(x)

f(y)
xj − yj
|x− y|n

=

∫
Rn\Br(x)

n(xj − yj)(xl − yl)− δjl|x− y|2

|x− y|n+2
f(y)dy

− r1−n
∫
∂Br(0)

yjyl
|y|2

f(x− y)dσ.

The first term vanishes for the Laplacian ∆ (if we sum over j = l.
The second converges to −n|B1(0)|f(x) as r → 0. See (Evans,
PDE) for details. The Hölder regularity is needed to show existence
of second derivatives.

1.1. The Greens function in the half space and the Poisson
kernel. We denote x′ for the first n − 1 components of x ∈ Rn and by en
the nth vector for the standard basis.

We define the Greens function in the half space by

gH(x, y) = g(x, y)− g(x, (y′,−yn) = gH(y, x).

In physical terms g is the potential of an electric field with the charge in y,
with a conducting boundary at xn = 0, normalized so that g vanishes in this
hyperplane. This effect is obtained by putting a particle with the opposite
charge at the reflected point.

If f is Hölder continuous then

u(x) =

∫
yn>0

gH(x, y)f(y)dy

satisfies the inhomogeneous Dirichlet problem

−∆u = f u(x) = 0

Let u be a bounded continuous function on xm ≥ 0, harmonic in xn > 0,
satisfying

|u(x)| ≤ c|x|−1, |Du(x)| ≤ c|x|−2.



1. BASIC PROPERTIES AND THE POISSON KERNEL 33

Then, for ε > 0 and xn > ε, since the second part of the Poisson kernel
is harmonic in H, by several applications of the divergence theorem,

0 =

∫
yn>0,|x−y|>ε

u(y)∆ygH(x, y)dy

=−
∫
Rn−1

u(y′)∂yngH(x, y′)mn−1(y′)− 1

n|B1(0)|

∫
|y|=1

u(x+ εy)dσ(y)

− εn−1

∫
|y|=1

u(x+ εy)y · ∇g(x+ εy − x̃)dσ(y)

−
∫
yn>0,|x−y|>ε

∇yu∇ygH(x, y)dy

=−
∫
Rn−1

u(y′)∂yngH(x, y′)mn−1(y′)− 1

n|B1(0)|

∫
|y|=1

u(x+ εy)dσ

− εn−1

∫
|y|=1

u(x+ εy)y · ∇g(x+ εy − x̃)dσ

+
ε

(n− 2)n|B1(0)|

∫
|y|=1

y · ∇u(x+ εy)dσ

+ εn−1

∫
|y|=1

g(x+ εy − x̃)y · ∇u(x+ εy)dσ

+

∫
yn>0,|x−y|>ε

∆ugH(x, y)dy

→− u(x) +

∫
Rn−1

u(y′)P (x, y′)dmn−1(y′)

(3.1)

where we define the Poisson kernel by

P (x, y′) := −∂yngH(x, y′) =
1

n|B1|
2xn

|x− y′|n
.

There is a small modification by an additional logarithmic term if n = 2.
We claim that

(3.2)
1

n|B1|

∫
Rn−1

2xn

(x2
n + |x′ − y′|2)n/2

mn−1(y′) = 1.

To see this we apply the identity above to

ut(x) = tn−1∂xng(x+ ten).

Then ut(x) converges to a nonzero constant as t→∞ and we obtain (3.2).
Moreover ∣∣∂αx′P (x, y′)

∣∣ ≤ cαxn|x− y′|−n−|α|.
Thus t → 2t

(t2+|x′|2)n/2
is an approximate identity (with the continuous pa-

rameter t instead of n, where t→ 0 corresponds to n→∞, it satisfies

(1) supt
∫
|P (x′ + ten, 0)|dx′ <∞

(2)
∫
P (x′ + ten, 0)dx′ = 1

(3) for all δ > 0∫
Rn−1\Bδ(0)

|P (x′ + ten, 0)|dx′ → 0 as t→ 0



34 3. HARMONIC FUNCTIONS AND THE POISSON KERNEL

and ut ∗ f → f almost everywhere where ut(x
′) = P (x′ + ten, 0) and

ut ∗ f =

∫
P (x′ + ten, y

′)f(y′)dy′

if f ∈ Lp(Rn−1).

Lemma 3.2. Suppose that g ∈ C(Rn−1) has compact support. Let

u(x) =

∫
Rn−1

P (x, y′)f(y′)dy′.

Then u is bounded and harmonic on xn > 0 and continuous up to xn = 0.
Moreover u(x′, 0) = g(x′).

1.2. Green’s function and Poisson kernel on the unit ball. We
define the reflection at the unit sphere by

Rn\{0} 3 x→ x

|x|2
= x̃

and we define
gB(x, y) = g(y − x)− g(|y|(x− ỹ))

If |x| = 1 and y 6= 0

|y|2|x− ỹ|2 =|y|2(|x|2 − 2y · x
|y|2

+
1

|y|2
)

= |y|2 + 2y · x+ 1 = |x− y|2

and thus
gB(x, y) = 0

if |x| = 1. Also
gB(x, y) = gB(y, x).

This has the same interpretation as for the half space. In particular, if
f ∈ C(B1(0)) and

u(x) =

∫
B1(0)

gB(x, y)f(y)dy

then u it two times continuous differentiable in B1(0), −∆u = f and u(x) =
0 if |x| = 1.

We define the Poisson kernel for |x| < 1 and |y| = 1 by

P (x, y) =−
∑
i

yi∂igB(x, y)

=
1

n|B1|
1− |x|2

|x− y|n
.

Let g ∈ C(∂B) and

u(x) =

∫
∂B1(0)

P (x, y)g(y)dσ(y)

is harmonic and continuous up to the boundary. Moreover

u(x) = g(x)

if |x| = 1. The first statement is obvious. The second statement follows as
for the half space, with modifications for the approximate identity on the
sphere, which we do not discuss here.
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Lemma 3.3. Suppose that f ∈ C(∂B1(0)) and

u(x) =

∫
∂B1(0)

P (x, y)f(y)dσ

then u is continuous on the closure, twice continuously differentiable and it
satisfies

∆u = 0

and u = f on ∂B1(0).

1.2.1. The Poisson integral in the two dimensional case. We define the
Poisson integral in polar coordinates for 0 ≤ r < 1

Pr(x) =

∞∑
n=−∞

r|n|e2πinx

=
1− r2

1− 2r cos 2πx+ r2

= Re

(
1 + re2πix

1− ri2πix

)(3.3)

where the second identity is an evaluation of the two geometric series, and
the third is an algebraic manipulation. Comparison with the kernel above
shows that

P (re2πix, e2πiy) = Pr(x− y).

There is an alternative derivation in this case. Let f ∈ Cs(T). We
expand it into a Fourier series

f(x) =
∞∑

n=−∞

∫
e−2πinyf(y)dy e2πinx

If f is real then ∫
e−2πinyf(y)dy =

∫
e2πinyf(y)dy

and

u(re2πix) =
∞∑

n=−∞
r|n|

∫
T
e2πinx−yf(y)dy

=

∫
T
Pr(x− y)f(y)dy

Let

(3.4) Qr(x) = Im

(
1 + re2πix

1− re2πix

)
=

2r sin(2πx)

1− 2r cos(2πx) + r2
.

Then

Pr(x) + iQr(x)

is a holomorphic function if z = re2πix. We denote the unit disc by D.
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2. Boundary behaviour of harmonic functions

Given a real measure µ ∈M(T) we define the harmonic function

u(re2πix) =

∫
Pr(x− y)µ(y).

We recall that

Pr(x) = Re

(
1 + re2πix

1− re2πix

)
satisfies

(1) 0 ≤ Pr(x) for 0 ≤ r < 1
(2)

∫
Pr(x)dx = 1 for 0 ≤ r < 1

(3)
∫ 1−δ
δ Pr(x)dx→ 0 as r →∞

and hence it is an approximate identity.

Theorem 3.4. The function u satisfies

sup
0≤r≤1

∫ 1

0
|u(re2πix)|dx = lim

r→1

∫ 1

0
|u(re2πix)|dx = ‖µ‖M.

Any such function determines a measure uniquely.

(1) µ is absolutely continuous with respect to the Lebesgue measure if
and only if u(re2πi.) converges in L1 to the density with respect to
the Lebesgue measure.

(2) Let 1 < p ≤ ∞ and µ = fm1. The following assertions are equiva-
lent:
• f ∈ Lp(T).
• sup0<r<1 ‖u(re2πi.)‖Lp(T) <∞
• u(re2πi.) converges in Lp resp. weak ∗ in L∞.

(3) f is continuous if and only if u defines a continuous function on
B1(0).

Before we turn to the proof we formulate a useful result.

Lemma 3.5. (1) Suppose that F ∈ C(D) is harmonic in the open
disc. Then Fr = Pr ∗ F1 for 0 ≤ r < 1.

(2) If F is harmonic in the interior then Fsr = Pr ∗Fs for 0 ≤ r, s,< 1.
(3) If F is harmonic in the interior and 1 ≤ p ≤ ∞ then r → ‖Fr‖Lp(T)

is non-decreasing.

Proof. Let F be as in (1). Then Pr ∗ F1 defines a continuous har-
monic function (since Pr is an approximate identity as r → 1). Thus
v = F (re2πix) − Pr ∗ F1(x) is harmonic and zero at the boundary. By
the maximum principle v = 0. Point (2) follows by rescaling. By (2) and
Young’s inequality ‖Frs‖Lp(T) ≤ ‖Fr‖Lp(T). �

Proof of Theorem 3.4. Let F be harmonic in D with

(3.5) sup
r
‖Fr‖L1(T) = C <∞.

The Fr defines a uniformly bounded family of real measures on T. The space
of measuresM is dual to the separable space C(T) of continuous functions.
By the theorem of Banach Alaoglou the closed unit ball in M(T) is weak*
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compact, and there exists a weakly converging subsequence Frj → µ as
rj → 1. Then, for 0 < r < 1

Pr ∗ µ = lim
j→∞

Pr ∗ Frj = lim
j→∞

Frjr = Fr

and, for f ∈ C(T),∫
fFrdx =

∫
fPr ∗ µdx =

∫
Pr ∗ fµ→

∫
fµ

as r → 1. Thus Fr → µ weak* in M(T) and any harmonic function which
satisfies (3.5) determines a measure on T. Moreover

‖µ‖M(T) ≤ lim inf
r→1

‖Fr‖L1(T).

We have seen that Young’s inequality implies the converse statement and
hence we have equality. If f ∈ L1(T) then Proposition 2.7 implies conver-
gence in L1(T). Conversely, if Tr → f in L1 then µ = fdx.

The similar statements of the next point follow by the same type of
argument.

Finally, if f is continuous then Fr = Pr ∗ f defines by Proposition 2.7 a
continuous function. The converse statement is obvious. �

3. Almost everywhere convergence

Definition 3.6. Let (Φn) by an approximate identity. We say it is
radially bounded if there exists functions Ψn so that |Φn| ≤ Ψn, Ψn is radial
and radially nonincreasing ( ψn(x) ≥ ψn(y) if 0 ≤ |x| ≤ |y| ≤ 1

2) and
supn ‖Ψn‖L1 <∞.

Lemma 3.7. Let (Φn) and Ψn be as in the definition. Then for f ∈ L1(T)

sup
n
|Φn ∗ f(x)| ≤ sup

n
‖ψn‖L1(T)Mf(x).

Proof. Let K be even and radially nonincreasing. We claim that

|K ∗ f(x)| ≤ ‖K‖L1Mf(x).

Assume that this is true. Then the statement follows from

|Φn ∗ f(x)| ≤ ψn ∗ |f |(x) ≤ ‖ψn‖L1Mf(x).

The claim holds for even characteristic functions, and for radially nonin-
creasing simple functions, and by a further approximation it holds in the
generality of the lemma. �

Theorem 3.8. Let (Φn) be a radially bounded approximate identity. Let
f ∈ L1(T). Then Φn ∗ f → f almost everywhere as n→∞.

Proof. Pick ε > 0 and g ∈ C(T) with ‖f − g‖L1(T) < ε/2. Then

|{x ∈ T : lim sup
n→∞

|Φn ∗ f(x)− f(x)| > ε1/2}|

≤|{x ∈ T : lim sup
n→∞

|Φn ∗ (f − g)(x)− (f − g)(x)| > ε1/2}|

≤3 sup
n
‖ψn‖L1ε−1/2‖f − g‖L1

≤3 sup
n
‖ψn‖L1ε1/2
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As a consequence

|{x ∈ T : lim sup
n→∞

|Φn ∗ f(x)− f(x)| > 0}| = 0.

�

4. Subharmonic functions

Definition 3.9. Let U ⊂ Rn be open. A function f : U → [−∞,∞
is called subharmonic if it is continuous (with the obvious meaning for the
value −∞) and if for all x ∈ U there exists r > 0 so that

f(x) ≤ 1

n|B1(0)|

∫
∂B1(0)

f(x+ sy)dσ(y).

for all 0 ≤ s < r.

Lemma 3.10. (1) If f and f are subharmonic then max{f, g} is
subharmonic.

(2) A function f ∈ C2(U) is subharmonic if and only if ∆f ≥ 0.
(3) If F is holomorphic then ln |F | and |F |α for α > 0 are subharmonic.
(4) If f is subharmonic and φ is increasing and convex then φ ◦ f is

subharmonic.

Proof. The first claim follows immediately from the definition. Subhar-
monicity follows from ∆f ≥ 0 by the argument for the mean value property:

d

dr

1

n|B1(0)|

∫
∂B1(0)

f(x− sy)dσ(y) =

∫
B1(0)

∆f(x+ y)dy.

It also implies the converse implication. Let x be a point where ∆f(x) < 0.
Then for small radii the mean value inequality is violated. We turn to the
fourth point. By monotonicity and the mean value inequality resp. definition
and Jensen’s inequality

φ(f(x)) ≤φ

(
1

n|B1(0)|

∫
∂B1(0)

f(x+ ry)dσ(y)

)

≤ 1

n|B1(0)|

∫
∂B1(0)

φ ◦ f(x+ ry)dσ(y)

If F is holomorphic then ln |F | is continuous, with values in [−∞,∞). If
F (z0) 6= 0 then Re lnF (z) = ln |F (z)| is harmonic in a neighborhood and it
satisfies the mean value identity near z0. If F (z0) = −∞ there is nothing
to prove. Since |F |α = exp(α ln |F |) the last statement follows from the
previous points. �

Lemma 3.11. Let Ω ⊂ Rn be a bounded domain, u, v : Ω→ R continuous
and subharmonic resp harmonic. If u ≤ v on ∂Ω then u ≤ v in Ω.

Proof. The function u− v is subharmonic, ≤ 0 at ∂Ω. The definition
of subharmonic function implies the maximum principle, and the maximum
is assumed at the boundary. �
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Lemma 3.12. Let Ω ⊂ Rn be open, f : Ω → [−∞,∞) be subharmonic,

Br(x) ⊂ Rn. Then

f(x) ≤ 1

n|B1(0)|

∫
∂B1(0)

f(x+ ry)dσ(y)

Proof. Let
fn(x) = max{f(x),−n}.

It is subharmonic and it suffices to verify the assertion for fn, or, by an
abuse of notation, we assume that f is bounded. Let u be the harmonic
function on Br(x) which coincides with f at the boundary. By the previous
lemma f ≤ u on Br(x), and hence

f(x) ≤ u(x) ≤ 1

n|B1(0)|

∫
∂B1(0)

u(x+ ry)dσ =
1

n|B1(0)|

∫
∂B1(0)

f(x+ ry)dσ

as claimed. �

The prove implies also

Corollary 3.13. Suppose that f is subharmonic on the open set U ⊂
Rn and Br(x0) ⊂ U . Then, if x ∈ Br(x0)

f(x) ≤
∫
P (
x− x0

r
, y)f(x0 + ry)dσ(y).

Proposition 3.14. Suppose that g is a nonnegative subharmonic func-
tion on B1(0) ⊂ R2 which satisfies

|‖g‖|1 := sup
0<r<1

‖g(re2πix)‖L1 <∞

Let

(3.6) g∗(x) = sup
0≤r<1

|g(re2πix)|.

Then

(1) |{x : g∗(x) > t}| ≤ c
t |‖g‖|1

(2) If 1 < p ≤ ∞ and

|‖g‖|p := sup
r
‖g(re2πix)‖Lp(T) <∞

then
‖g∗‖Lp ≤ c|‖g‖|p

Proof. Suppose that grj → µ as j →∞ with rj → 1. Existence of such
a sequence and µ follows from the weak* compactness argument. Then, as
in the proof of Theorem 3.4 combined with Lemma 3.13

g(re2πix) ≤ Pr ∗ µ(x)

and
lim
r→1
‖gr‖L1 = ‖µ‖M = |‖g‖|1.

But now
0 ≤ g(re2πix) ≤ Pr ∗ µ(x) ≤Mµ(x)

and hence
g∗(x) ≤Mµ(x)
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This implies the weak inequality. The estimate in Lp follows in the same
fashion. �

5. The theorems of Riesz

Definition 3.15 (complex Hardy space). Let 1 ≤ p ≤ ∞. We denote
the unit disc by D. The space Hp(D) is the space of holomorphic functions
F on D such that

‖F‖Hp(D) = sup
0≤r<1

‖Fr‖Lp(T) <∞.

Theorem 3.16. If F ∈ H1(D) then F ∗ ∈ L1(T).

Proof. The function |F |
1
2 is subharmonic and |Fr|

1
2 is bounded in

L2(T), uniformly in r. By Proposition 3.14 (|F |1/2)∗ ∈ L2. This implies
the statement of the theorem. �

By Theorem 3.4 Fr = Pr ∗µ for a complex measure µ on T. By Theorem
3.16 there is the integrable majorant |F |∗ for the functions Fr. The func-
tions Fr converge to the measure µ in the sense of measures. Because of the
integrable majorant µ is absolutely continuous with respect the Lebesgue-
measure and can be written as µ = fm1 with f ∈ L1. Moreover Fr = Pr ∗f .
But then, due to the pointwise convergence of Theorem 3.8 Fr → f as r → 1
almost everywhere. We obtain the second version of the Riesz theorem.

Theorem 3.17. If F ∈ H1(D) and f = limr→1 Fr(x) almost everywhere
then f ∈ L1(T) and

Fr(x) = Pr ∗ f(x).

Theorem 3.18. Suppose that µ ∈ M(T) satisfies µ̂(n) = 0 for n < 0.
Then µ is absolutely continuous with respect to the Lebesgue measure.

Proof. Let F be defined by Pr ∗ µ. Then the real and imaginary part
of F are harmonic. Harmonic functions are smooth and even analytic (this
can be seen from the representation by the Poisson formula) and near z = 0
we can expand F in a Taylor expansion (by expanding the Poisson kernel)
which converges in D

F =
∑
m,n≥0

amnz
nz̄m.

We apply the Laplace operator ∆ = 4∂z∂z̄ with ∂z = 1
2(∂x − i∂y) and

∂z̄ = 1
2(∂x + i∂y). Then

0 = ∆F =
∑
n,m≥0

amn∂z∂z̄(z
nz̄m)

with ∂z∂z̄(z
nz̄m) = nmzn−1z̄m−1. Thus we can write

F (z) =
∞∑
n=0

anz
n + bnz̄

n.

Now we apply the assumption: For k < 0∫
e−2πikxµ(x) = 0
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and hence∫
e−2πikxPr ∗ µdx =

∫
Pre
−2πikxµ =

∫
r|k|e−2πikxµ = 0

since z−k is holomorphic and hence real and imaginary part are harmonic.
Thus F ∈ H1(D) and the assertion follows from Theorem 3.17. �

Theorem 3.19. Let F ∈ H1(D). Suppose that F is non identically 0
and let f be as in Theorem 3.17. Then ln |f | ∈ L1. In particular is does not
vanish on a set of positive measure.

Proof. We first assume that F (0) 6= 0. Since ln |F | is subharmonic

ln |F (0)| ≤
∫
T

ln |Fr|dx.

We want to take the limit as r → 1. We know that Fr → f almost every-
where and

ln |F | ≤ |F |∗

is an integrable majorant for the positive part. Let gr = |F |∗ − ln |Fr| ≥ 0.
It converges almost everywhere to g1 = |F |∗ − ln |f | and by the Lemma of
fatou ∫

g1dr ≤ lim inf
r→1

∫
g1 ≤

∫
|F |∗ − ln |F (0)|.

We have to remove the assumption that F (0) 6= 0. There exists a point
z0 ∈ B1/2(0) with F (z0) 6= 0. We apply a Möbius transform to transport z0

to 0. The Möbius transform maps circles to circles with possibly different
radii and centers. For large circle the L1 norm is bounded by |F |∗ before
the transform.

�

This is considerable sharpening of a statement from complex analysis.

6. Conjugate functions

Definition 3.20. Let u be harmonic and real valued on D. We define
the conjugate function ũ to be the unique harmonic function with ũ(0) = 0
such that u+ iũ is holomorphic.

Lemma 3.21. If u is constant then ũ = 0. If f = u+ iv is holomorphic
and v(0) = 0 then ũ = v. If u is harmonic on D then̂̃ur(n) = −i sign(n)ûr(n)

where

sign(n) =

 −1 if n < 0
0 if n = 0
1 if n > 0

Proof. The function

u+ iv − (u+ iũ)

is purely imaginary and holomorphic, hence constant. We expand

ur(x) =
∑
k∈Z

ak(r)e
2πikx
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where

ak =

∫
u(re2πix)e−2πikxdx

and ak = a−k since u is real valued. Then

r2∆u =
∑
k∈Z

(r2a′′k(r) + ra′k − k2ak(r))e
2πikx

and hence ak(r) = akr
|k| and

ur(x) =
∑
k∈Z

akr
|k|e2πikx

with ak = a−k. Then

u+ iv = u(0) + 2

∞∑
k=1

akz
k

is holomorphic with real part u. Checking the Fourier coefficients gives the
claimed relation of the Fourier coefficients.

�

We begin with an important weak-L1 bound due to Besicovitch and
Kolmogorov.

Theorem 3.22. Let u be harmonic in D and satisfy

|‖u‖|1 = sup
0<r<1

‖ur‖L1(T) <∞.

Then

|{x : ũ∗(x) > t}| ≤ c

t
|‖u‖|L1 .

Proof. By Theorem 3.4 ut = Pt∗µ for a measure µ. It suffices to verify
the assertion for nonnegative measures µ. Let

Es = {x : ũ∗(x) > s}.

We define the holomorphic function F = −ũ+ iu. Let

ωs(x, y) :=
1

π

∫
(−∞,−s)∪(s,∞)

y

(x− t)2 + y2
dt

which is harmonic for y > 0 and nonnegative. Moreover

• ωs(x, y) ≥ 1
2 if |x| > s,

• ωs(0, y) ≤ 2y
πs

since ∫ ∞
0

y

x2 + y2
dx =

∫ ∞
0

1

(x/y)2 + 1

dx

y

=

∫ ∞
0

1

1 + z2
dz

= arctan(∞)− arctan(0)

=
π

2
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and

ωs(0, y) =
1

π

∫
(−∞,−s)∪(s,∞)

y

t2 + y2
dt ≤ 2

π

∫ ∞
s/y

dt

1 + t2
≤ 2y

πs
.

The composition ω ◦ F is harmonic and, if x ∈ Es then ω(F (x)) ≥ 1
2 for

some 0 < r < 1. By Proposition 3.14

|Es| ≤ |{y : (ωs ◦ F )∗ ≥ 1

2
}| ≤ 6|‖ωsF‖|1.

Since ωs ◦ F ≥ 0 the mean value property implies

|‖ωs ◦ F‖|1 = ωs(F (0)) = ωs(iu(0)) ≤ 2

π

u(0)

s
=

2

π

|‖u‖|1
s

which gives

|Es| ≤
12

π

|‖u‖|1
s

.

�

Lemma 3.23. Let u be harmonic on D. Then

‖ũr‖2L2 + u(0)2 = ‖ur‖2L2

Proof. This is seen by Plancherel and the relation of the Fourier coef-
ficients. �

Corollary 3.24. If f ∈ L2(T) and ur = Pr ∗ f then the limit g(x) =
limr→1 ũr(x) exists almost everywhere and in L2.

Proof. By the previous lemma |‖ũ‖|2 ≤ |‖ũ‖|2. By Theorem 3.4 ur and

ũr converge in L2 to some functions f and f̃ in L2. Since |ur(x)| ≤Mf(x)

and |ũr(x)| ≤Mf̃(x) we obtain pointwise convergence. �

7. The Hilbert transform

We formally introduce the Hilbert transform H of a measure µ ∈M(T)
as

Hµ = µ̃ = lim
r→1

P̂r ∗ µ

It is not clear whether and in which sense the limit exists. It does for
µ = fm1 for a square integrable f .

Corollary 3.25. If u is harmonic and |‖u‖|1 <∞ then

g = lim
r→1

ũr

exists almost everywhere. It satisfies the weak bound

|{x : |g(x)| > t}| ≤ c

t
‖f‖L1

Proof. By Theorem 3.4 ur = Pr ∗ µ. If µ = fm1 with f ∈ L2 then
the almost everywhere convergence follows from Corollary 3.24. Next we
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consider µ = fm1 with f ∈ L1(T). Given ε > 0 there exists g ∈ L2 with
‖f − g‖L2 ≤ ε. Let vr = Pr ∗ g. Then, by Theorem 3.22,

|Eε| =|{| lim sup
s,r→1

|(u+ iũ)(re2πix)− (u+ iũ)(se2πix)| > ε1/2}|

=
∣∣∣{| lim sup

s,r→1
|(u− v + i(ũ− ṽ))(re2πix)

− (u− v + i(ũ− ṽ))(se2πix)| > ε1/2}
∣∣∣

≤ c

ε1/2
‖f − g‖L1

≤cε1/2.

Thus

|{| lim sup
s,r→1

|(u+ iv)(re2πix)− (u+ iv)(se2πix)| > 0}| = lim
ε→0
|Eε| = 0.

Let µ be a general measure on T. We decompose into the absolutely
continuous part and a singular part: There exists f ∈ L1(T) and a set B of
measure 0 so that

µ(A) =

∫
A
fdx+ µ(A ∩B).

The first part we have dealt with above, and we consider a Borel measure µ
such that there exists B of measure 0 so that µ(A) = µ(A ∩B). Since

µ(B) = sup
K⊂B,compact

µ(K)

for every µ measurable set, given ε > 0 there exists K so that µ(A) <
µ(K) + ε. We define

µK(A) = µ(A ∩K).

If I is an open interval disjoint from K and if ut = Pt ∗ µK and w = u+ iũ
then u has a continous extension to the image of I on the arc of the unit
circle defined by I and the real part vanishes. By the Schwarz reflection
principle w has a holomorphic extension across this arc, and hence all limits
exist in the complement of the compact set K of measure 0.

As in the first step we derive the existence of the limit almost everywhere.
The bound is a consequence of Theorem 3.22.

�

Theorem 3.26. If 1 < p <∞ then

‖Hf‖Lp ≤
{

tan( π2p) if 1 < p ≤ 2

cot( π2p) if p ≥ 2

}
‖f‖Lp

Proof. We have seen that

‖Hf‖L2 ≤ ‖f‖L2

By the interpolation theorem of Markinciewicz this implies together with
the weak estimate that

‖Hf‖Lp ≤ cp‖f‖Lp
for 1 < p ≤ 2. Since ∫

Hfgdx = −
∫
fHgdx
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the estimate (up to the sharp constant) for p ≥ 2 follows by duality.
We provide a second proof following Grafakos’ variant of Pichorides’

proof, which yields a sharp constant.

Lemma 3.27. For a, b real and 1 < p ≤ 2

|b|p ≤ tan(
π

2p
)|a|p −Bb Re[(|a|+ ib)p]

with

Bb =
sinp−1( π2p)

sin( (p−1)π
2p )

We set a = f(x) and b = Hf(x) and integrate. Then∫ 1

0
|Hf(x)|pdx ≤ tanp(

π

2p
)

∫ 1

0
|f(x)|pdx−Bp

∫ 1

0
Re[(|f(x)|+ iHf(x))p]dx

and the theorem follows once we show that∫
Re[(|f(x)|+ iHf(x))p]dx ≥ 0.

Let u+ iv be the harmonic (holomorphic) extensions of f + iHf .

Lemma 3.28. The function g(x, y) = Re((|x| + iy))p) is subharmonic
and g(u, v) is also subharmonic.

Then

0 ≤ g(u(0), v(0)) ≤
∫ 1

0
Re[(|f(x)|+ iHf(x))p]dx

which concludes the proof up to a duality argument.
�

Sharpness follows by taking

f = Re

(
1 + z

1− z

)s
for suitable s.

The Hilbert transform is not bounded in L∞: The real part of i lnC(1−
e2πix) is π(x − 1

2) for 0 < x < 2π and the imaginary part is ln |1 − e2πix|,
which is not bounded.

We recall that

Im
1 + e2πix

1− e2πix
=

cosπx

sinπx
= cot(πx).

Proposition 3.29. If f ∈ C1(T) then

f(x) = lim
ε→0

∫
|x−y|>ε

cot(π(x− y))f(y)dy

Proof. By symmetry∫
|x−y|>ε

cot(π(x− y)f(y)dy =
1

2

∫
|x−y|>ε

cot(π(y)(f(x− y)− f(x+ y))dy

and the second integrand is bounded. �
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Proposition 3.30. Suppose that ‖f‖L∞ ≤ 1. Then∫ 1

0
eα|Hf(x)|dx ≤ 2

cosα

for 0 ≤ α < π
2 .

Proof. Let f be as in the proposition. Let u be the harmonic extension
of f and F = ũ− iu. Then by the maximum principle |u| ≤ 1 and cos(αu) ≥
cosα. Hence

Re eαf = Re eαũe−iαu = cos(αu)eαũ ≥ cosαeαũ

and with the mean value property∫
T

Re eαFr(x)dx = Re e−iα(u(0)) = cosαu(0) ≤ 1

and therefore ∫
T
eαũr(x)dx ≤ 1

cosα
.

The estimate follows now by the Lemma of Fatou, and the same argument
for −f . �

Theorem 3.31. Let SN be the partial sum of Fourier series and 1 <
p <∞. Then

sup
N

sup
‖f‖Lp(T )

‖SNf‖Lp(T) <∞

and for all f ∈ Lp(T)

SNf → f in Lp as N →∞.

Proof. We write (which we check by checking the effect on the Fourier
coefficients)

SNf =e−2πiNx 1− iH
2

[
e2πi(2N)x 1 + iH

2

(
e−2πiNxf

)]
+

1

2
(aNe

2πiNx + a−Ne
2πiNx)

and obtain by the boundedness of the Hilbert transform

sup
N
‖SNf‖Lp(T) ≤ cp‖f‖Lp(T).

This implies the assertion by Proposition 2.9. �

Pointwise convergence is true but it is considerably harder, and much
more recent.

ßß



CHAPTER 4

The Fourier transform on Rn

1. Definition and first properties

Definition 4.1. The Fourier transform of a complex valued function
f ∈ L1(Rn) is

f̂(ξ) =

∫
e−2πiξ·xf(x)dx.

Properties:

(1) f̂ is a bounded continuous function which converges to 0 as |ξ| →
∞. Moreover

|f̂(ξ)| ≤ ‖f‖L1(Rn).

(2) If f ∈ L1(Rn), h, η ∈ Rn and fh(x) = f(x− h) then

f̂h(ξ) = e−2πih·yf̂(ξ)

and
̂e−2πiηxf = f̂(ξ + η)

(3) If f, g ∈ L1(Rn) then f̂ ∗ g = f̂(ξ)ĝ(ξ) and by Fubini∫
fĝ(ξ)dξ =

∫
f̂(x)g(x)dx.

(4) If A : Rn → Rn is an invertible linear map then

f̂ ◦A(ξ) = |detA|−1f̂(A−tξ).

Lemma 4.2.
̂exp(−π|x|2)(ξ) = exp(−π|ξ|2)

Proof. We calulate more than we need.

In =

∫
e−π|x|

2
dmn =

∫ 1

0
|{x : |x| ≤

(
− ln(t)

π

)1/2

}|dt

=|B1(0)|π−n/2
∫ 1

0
| ln(t)|n/2dt

=|B1(0)|π−n/2
∫ ∞

0
s
n
2 e−sds

=|B1(0)|π−n/2Γ(
n+ 2

2
).

In particular
I2 = Γ(2) = 1

Alternatively, by Fubini
In+m = InIm

47
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and hence
In = 1.

As a consequence

(4.1) mn(B1(0)) =
πn/2

Γ(n+2
2 )

and

Γ(
1

2
) =

1

2
Γ(3/2) = π1/2.

Let n = 1, f(x) = e−π|x|
2

and∫
e−πx

2−2πiξxdx = e−π|ξ|
2

∫
e−π(x−iξ)2dx.

We denote

J(t) =

∫
e−π(x−it)2dx.

Then

d

dt
J(t) =

∫
e−π(x−it)2(2πi)(x− it)dx

=− i
∫

d

dx
e−π(x−it)2dx

=0

This implies the formula in the one dimensional case. The higher dimen-
sional case follows by Fubini. �

An example:

(4.2)

∫
R
e2πixξ 1

1 + x2
dx = πe−2π|ξ|

by the residue theorem since

1

x2 + 1
=

1

2i

(
1

x+ i
− 1

x− i

)
.

2. The Fourier transform of Schwartz functions

Definition 4.3. The space of Schwartz functions S(Rn) on Rn is the
space of all smooth functions for which the seminorms

sup |xα∂βf(x)|
are bounded for all multiindices.

Properties :

(1) If f ∈ S and g ∈ C∞ with derivatives bounded by polynomials
then fg ∈ S.

(2) If f ∈ S and h, η ∈ Rn then fh(x) = f(x−h) ∈ S and e2πiη·xf ∈ S.
(3) S ⊂ L1(Rn) and the Fourier transform is defined for functions in
S.

(4) ̂(−2πi)xjf = ∂ξj f̂

(5) ∂̂xjf = 2πiξj f̂
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(6) It follows that, if f ∈ S,

ξα∂βξ f̂ = (2π)|β|−|α|(−i)|α|+|β|∂̂αxxβf

is a bounded continuous function since it is the Fourier transform
of a Schwartz function.

The inversion theorem is a consequence:

Theorem 4.4. If f, g ∈ S(Rn) then

(4.3) f(x) =

∫
Rn
e2πix·ξ f̂(ξ)dξ

(4.4)

∫
Rn
fgdx =

∫
Rn
f̂ ĝdξ.

In particular the Fourier transform defines a unitary map on L2(R).

We denote the inverse transform by f̌ .

Proof. The family of functions

φt = tne−π|tx|
2

is an approximate identity as t→∞. Its Fourier transform is

φ̂t = e−π
|ξ|2

t2

Thus, by the dominated convergence theorem and Fubini∫
e2πix·ξ f̂(ξ)dξ = lim

t→∞

∫
e2πixξe−π

|ξ|2

t2 f̂(ξ)dξ

= lim
t→∞

∫ ∫
e2πi(x−y)ξe−π

|ξ|2

t2 dξf(y)dy

= lim
t→∞

∫
tne−πt

2|x−y|2f(y)dy

=f(x).

Now, since
∫
fĝ =

∫
f̂g and ĝ = ǧ,∫

fgdξ =

∫
f ˇ̂gdξ

=

∫
f ˆ̂gdx

=

∫
f̂ ĝdξ

�

We obtain

Proposition 4.5. The Fourier transform maps S(Rn) to itself. It is
invertible and it satisfies

(4.5) f̂ ∗ g = f̂ ĝ

(4.6) f̂g = f̂ ∗ ĝ
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Proof. Only the last statement has to be shown. We apply the in-
verse Fourier transform to the right hand side of the second equality. The
statement then follows from the first equality. �

2.1. The Fourier transform of complex Gaussians. Let A = Ar+
iAi be a symmetric invertible complex matrix with Ar positive definite. The
function

f(x) = exp(−πxtAx)

is a Schwartz function. We want to compute its Fourier transform. We
write Ar = BtB and y = Bx. Then, with g(y) = exp(−π|y|2− iπytCy) with
C = B−tAiB we have

f̂(ξ) = |detB|−1ĝ(B−tξ).

If Ai = 0 we know the Fourier transform of g and obtain

(4.7) ̂exp(−πxtArx) = (detAr)
−1/2 exp(−πξtA−1

r ξ).

Lemma 4.6. The Fourier transform of

exp(−πxtAx)

is, by an abuse of notation

(4.8) (detA)−1/2 exp(−πξtA−1ξ).

where (detA)−1/2 denotes the product of the square roots of the eigenvalues
of A.

The eigenvalues have positive real part, and the square root is uniquely
defined. This is not necessarely true for the determinant. It is both remark-
able and important that both f and the formula of its Fourier transform are
well defined for invertible complex matrices with nonnegative real part.

Proof. By the considerations above it suffices to prove the statement
for A = 1 + iC. By the Schur decomposition we can also diagonalise A and
it suffices to verify the formula in one dimension. Let

h(τ, ξ) = (1 + iτ)1/2eπ(1+iτ)−1ξ2
∫
e−2πiξx−π(1+iτ)x2dx

We differentiate with respect to ξ:

dh

dξ
=(1 + iτ)1/2eπ(1+iτ)−1ξ2

∫
[− 2πiξ

1 + iτ
− 2πix]e−2πiξx−π(1+iτ)x2dx

=− (1 + iτ)−1/2eπ(1+iτ)−1ξ2
∫

d

dx
e−2πiξx−π(1+iτ)x2dx

=0

hence h(τ, ξ) = h(τ, 0) and

dh(τ, 0)

dτ
=i(1 + iτ)

1
2

∫
[

1

2(1 + iτ)
− πx2]e−π(1+iτ)x2dx

=
i

4π
(1 + iτ)−

3
2

∫
d

dx2
e−π(1+iτ)x2dx

=0

This completes the proof since h(0, 0) = 1. �
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3. The Fourier transform on tempered distributions

The space of tempered distributions S ′(Rn) is the topological dual of S,
or, in different words, the set of all continuous linear maps from S to C.

Definition 4.7. T : S → C is a tempered distribution if

(1) T is linear
(2) T is continuous, i.e. there exist N and C so that

|T (f)| ≤ C sup
|α|≤N,|β|≤N,x

|xα∂βf |

Let µ be a measure. It defines a distribution by

Tµ(f) =

∫
fdµ.

Let 1 ≤ p ≤ ∞. Then g ∈ Lp defines a tempered distribution by

Tg(f) =

∫
fgdx

We often identity f and Tf . It is important that the formulas do not
lead to ambiguities when several interpretations are possible.

Let φ ∈ C∞ with (polynomially) bounded derivatives. We define

(φT )(f) = T (φf)

(∂xjT )(f) = −T (∂xjf)

and
(φ ∗ T )(f) = T (φ̃ ∗ f)

where φ̃(x) = φ(−x). Then φ ∗ T is the smooth (C∞) function

φ ∗ T (x) = T (φ(x− .))
since this expression is continuously differentiable, and

φ ∗ T (f) = T (φ̃ ∗ f) = T (

∫
φ(x− y)f(x)dx) =

∫
T (φ(x− .))f(x)dx.

The last inequality would be obvious for sums, and it is verified by writing
the integral as a limit of sums.

Every Schwartz function defines a tempered distribution. Test functions
are dense in the space of tempered distribution in the sense that, given a
tempered distribution T there exists a sequence of functions φj ∈ C∞0 such
that ∫

φjfdx→ T (f)

for all φ ∈ S: Let η ∈ C∞0 have integral 1. Then

T (t−nφ(t.) ∗ φ(x/t)f) =

∫
T (t−nφ(t(x− .)))φ(x/t)f(x)dx→ T (f).

Definition 4.8 (Support of a distribution). The support of the distri-
bution T is defined as complement of the union of all open sets U with the
property that T (φ) = 0 if φ is supported in U .

Lemma 4.9. Let T be a distribution with compact support. The convo-
lution with T defines a continuous linear map on S.
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We will not go much into the notion of continuity here. One way of
formulating it: For all N > 0 there exists M and C such that

sup
|α|+|β|≤N

|xα∂βxT ∗ φ| ≤ C sup
|α|+|β|≤M

|xα∂βφ|.

Proof. We assume that the support of T is contained in the ball of
radius R. Then there exists N so that

|T (φ)| ≤ CN sup
|α|≤N,|x|≤R

|∂αφ|

and

T ∗ φ(x) = T (φ(x− .))
satisfies

|T ∗ φ(x)| ≤ CN sup
|α|≤N,|x−y|≤R

|∂αφ(y)| ≤ C(1 + (|x| −R)+)−M

for all M . Moreover ∂xi(T ∗ φ) = T ∗ (∂xiφ). �

Let T be a tempered distribution and S a compactly supported distri-
bution. We define S̃(φ) = S(φ̃) and

S ∗ T (φ) = T ∗ S(φ) = T (S̃ ∗ φ) = T (S(φ(.−))).

Definition 4.10. The Fourier transform of the tempered distribution T
is defined by

T̂ (φ) = T (φ̂)

Properties:

• Since we identify functions with tempered distributions it is impor-
tant that this does not introduce ambiguities:

(4.9) T̂f (φ) = Tf (φ̂) =

∫
fφ̂dx =

∫
f̂φdx

• Ŝ ∗ T = ŜT̂ whenever both sides satisfy the conditions for convo-
lutions resp. products.

• Similarly ŜT = Ŝ ∗ T̂ .

Definition 4.11. A distribution is called homogeneous of degree m ∈ C
if

T (φ) = λm+nT (φ(λx))

for λ > 0.

An homogeneous distribution is tempered (exercise)

Lemma 4.12. The Fourier transform of a homogeneous distribution of
degree −m is a homogeneous distribution of degree −m− n.

Proof.

T̂ (φ) = T (φ̂) = T (λ−m−nφ̂(./λ)) = T̂ (λ−mφ(λ(x)).

�
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Examples:

(4.10) 1̂(φ) =

∫
φ̂(ξ)dξ = φ(0) = δ0(φ)

(4.11) δ̂0(φ) = δ0(φ̂) = φ̂(0) =

∫
φdx =

∫
δ0(e−2πixξ)φ(ξ)dξ

The same proof as for Fourier series shows

Theorem 4.13 (Hausdorff-Young inequality). Let 1 ≤ p ≤ 2 and 1/p+
1/p′ = 1. Then

‖f̂‖Lp′ ≤ ‖f‖Lp

and

Lemma 4.14 (Riemann-Lebesgue). Let f ∈ L1 . Then f̂ and f̌ are
continuous and

lim
ξ→∞

f̂(ξ) = 0

Proof. Let fj ∈ C∞0 (Rn) with ‖f − fj‖L1 < 1/j.Then

‖f̂ − f̂j‖sup ≤ 1/j

and fj → f uniformly. The assertion holds for fj since fj ∈ S, and hence
for f by uniform convergence. �

3.1. The Fourier transform of 1/x. Let f(x) = 1 if x > 0 and 0
otherwise. Then formally ∫ ∞

0
e−2πixξdx =

1

2πiξ
.

How do we define the right hand side? There are at least four possibilities

(4.12)
1

2πix
(φ) =

1

2

∫
1

2πix
(φ(x)− φ(−x))dx

(4.13)
1

2πix+ i0
= lim

t→0,t>0

1

2πix+ t

(4.14)
1

2πiξ − i0
= lim

t→0,t<0

1

2πiξ − t
and as principle value

(4.15)
1

2πiξ
(φ) = lim

ε→0

∫
|ξ|>ε

1

2πiξ
(φ(ξ)− φ(−ξ))dξ

It is an exercise to compare the different definitions and to choose the
correct one.
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3.2. Gaussians, heat and Schrödinger equation. We consider the
heat equation

ut −∆u = 0

We make the Ansatz that u and ut are tempered distributions in x uniformly
in time. A Fourier transform in x leads to

ût + (2π)2|ξ|2û = 0

and

û(t, ξ) = e−4π2t|ξ|2 û(0, ξ)

for t > 0. The inverse Fourier transform of e−4π2t|ξ|2 is

gt(x) =
1

(4πt)n/2
e−
|x|2
4t

and

u(t, x) = gt ∗ u(0, .)(x)

for t > 0.
Similarly we deal with the Schrödinger equation

i∂tu+ ∆u = 0

and obtain with

gt(x) =
(

(4πit)1/2
)−n

e
|x|2
4it

formally

u(t) = gt ∗ u0.

We denote the map u0 → u(t) by S(t)u0. It is a unitary group:

(1) S(t+ s) = S(t)S(s) for s, t ∈ R, S(0) = 1.
(2) For all u0 ∈ L2 the map t→ S(t)u0 ∈ L2 is continuous.

Lemma 4.15. Let 1 ≤ p ≤ 2. Then

(4.16) ‖S(t)u0‖Lp′ ≤ (4π|t|)−n( 1
p
− 1

2
)‖u0‖Lp

for all u0 ∈ Lp. Suppose that u0 ∈ L2 and u(t, x) = S(t)u0(x). Then the
support of the space time Fourier transform of u is the ’characteristic set’

{(τ, ξ) : τ = −2π|ξ|2}

and

û(ψ) =

∫
Rn
ψ̂(−2π|ξ|2, ξ)dξ

The estimate follows as for Hausdorff Young. The remaining part is an
exercise.

Lemma 4.16 (Strichartz estimates for the Schrödinger equation). Let

p′ = 2(n+2)
n . If f ∈ Lp(R× Rn) and u0 ∈ L2 then the solution to

i∂tu+ ∆u = f, u(0, x) = u0(x)

given by Duhamel’s formula satisfies

sup
t
‖u(t)‖L2(Rn) + ‖u‖Lp′ (R×Rn) ≤ c

(
‖u0‖L2 + ‖f‖Lp(R×Rn)

)
.
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Proof. Formally

‖
∫
s<t

S(t− s)f(s)ds‖Lp′ (Rn) ≤ (4π)−n/2
∫ t

−∞
|t− s|−

n
n+2 ‖f(s)‖Lp(Rn)

and by the weak Young inequality

‖S(t− s)f(s)‖Lp′ (R×Rn) ≤ c‖f‖Lp(R×Rn).

Let T ∗ be the map from Lp((−∞, 0)× Rn) to L2(Rn) which maps

f →
∫ 0

−∞
S(−s)f(s)ds.

On the Fourier side we see that

TT ∗f(t) = i

∫ 0

−∞
S(t− s)f(−s)ds

and

‖T‖2
L2→Lp′ ((0,∞)×Rn)

=‖T ∗‖2Lp((0,∞)×Rn)→L2

=‖TT ∗‖p((0,∞)×Rn)→Lp′ ((0,∞)×Rn)

which is bounded by the first step. �

Remark: Restriction theorem.

3.3. The Poisson summation formula. We denote the Dirac mea-
sure at the point x by δx. Let

T =
∑
k∈Zn

δk

resp

T (f) =
∑
k∈Zn

f(k).

Theorem 4.17. The Fourier transform of T is T .

This statement is by the definition of the Fourier transform of distribu-
tions equivalent to the Poisson summation formula∑

k∈Zn
f(k) =

∑
k∈Zn

f̂(k)

for all f ∈ S(Rn).

Proof. If f ∈ S then

F (x) =
∑
k∈Zn

f(x− k)

is a smooth periodic function, hence, if m ∈ Zn,

F̂ (m) =
∑
k∈Zn

∫
[0,1)n

f(x− k)e−2πimxdx

=

∫
f(x)e−2πimxdx

=f̂(m)
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and

F (x) =
∑
m∈Zn

f̂(m)e2πimx

which is the Poisson summation formula. �

3.4. Homogeneous distributions and the Laplace operator. We
call T radial if for every f ∈ S and any orthogonal matrix O the identity
T (f) = T (f ◦ O) holds. The Fourier transform of a radial distribution is
radial.

Lemma 4.18. let 0 < Rem < n. Then the Fourier transform of

πm/2

Γ(m/2)
|x|m−n is

π(n−m)/2

Γ((n−m)/2)
|ξ|−m

Proof. We evaluate using polar coordinates and that the n− 1 dimen-

sional Hausdorff measure of the unit sphere is n|B1| = 2πn/2

Γ(n/2) for m > −n∫
|x|me−π|x|2dx =

π
n
2
−1

Γ(n/2)

∫ ∞
0

rm+n−2e−πr
2
2πrdr

=
1

πm/2Γ(n/2)

∫ ∞
0

s
m+n

2
−1e−sds

=
Γ((n+m)/2)

πm/2Γ(n/2)

Let T be homogeneous radial distribution of homogeneity m ∈ C. We
claim that there exists a radial function t of homogeneity m so that

T (φ) =

∫
tφdx

whenever φ ∈ C∞0 (R\{0}). An incorrect proof is given by choosen a smooth
cutoff function η supported in the interval B1/2(0) with integral 1 and cal-
culate for the n-th unit vector

t(en) =T (δen)

=

∫
B1/2(0)

|en − y|m+nφ(y)T (δen−y)dy

=T (

∫
B1/2(0)

|en − y|m+nφ(y)δen−ydy)

=T (φ(en + .)|.|m+n).

To do it correctly one has to apply this argument to an approximate identity.
It is clear that t is radial and of homogeneity m.

If Rem > −n then this function is locally integrable and the identity
holds for all functions in S, which is seen by a smooth truncation argument
and rescaling.

Now |x|−m for m < n defines a homogeneous radial distribution of degree
−m. Its Fourier transform is a radial distribution of degree m− n. By the
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considerations above it is given by a radial function of degree m− n, hence
cm|x|m−n. To determine the constant we use the first step:

Γ((n−m)/2)πm/2 =Γ(n/2)

∫
|x|−me−π|x|2dx

=Γ(n/2)

∫
cm|ξ|m−ne−π|ξ|

2

=cmΓ(m/2)π(n−m)/2

�

We apply these considerations to the Laplace operator for n ≥ 3. Then,
if u and f are tempered distributions

−∆u = f

implies

4π2|ξ|2û = f̂

and formally

û = (4π2)−1 f̂

|ξ|2

The function

1

|ξ|2

is locally integrable and defines a homogeneous distribution of degree −2.
Its inverse Fourier transform is

π2−n/2

Γ((n− 2)/2)
|x|2−n

and hence

u = g ∗ f

with

g(x) =
Γ((n+ 2)/2)

n(n− 2)πn/2
|x|2−n.

Moreover the inverse Fourier transform of

iξj
4π2|ξ|2

is

− πn/2−1

2nΓ((n+ 2)/2)

xj
|x|n

which remains true for n = 2.
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4. Oscillatory integrals and stationary phase

We begin with a study of complex Gaussian integrals. The first lemma
contains the algebraic part.

Proposition 4.19. Let p(x) be a polynomial in Rn. and let A = Ar +
iAi be symmetric with A invertible and inverse (aij) and Ar positive semi
definite. Then

(4.17)

∫
p(x)e−πx

tAxdx = (detA)−
1
2

∞∑
k=0

1

(4π)kk!

 n∑
i,j=1

aij∂
2
ij

k

p(x)

∣∣∣∣∣∣∣
x=0

If Ar is not positive definite we understand both sides as the limit as
ε→ 0 for A+ ε1.

Proof. It suffices to consider Ar positive definite since both sides are
continuous in A as long as A is invertible. By a change of coordinates
we reduce the assertion to diagonal matrices A. It suffices to prove it for
monomials, since polynomials are sums of monomials. An application of the
theorem of Fubini reduces it to the one dimensional case. (Check carefully.
There are binomial coefficients on the right hand side). So we want to
evaluate for Reµ > 0 ∫ ∞

−∞
xme−πµ|x|

2
dx

Both sides vanish if m is odd, and it remains to prove∫ ∞
−∞

x2ke−πµ|x|
2
dx = µ−1/2−k 1

(2π)kk!
(2k)!

which in turn follows by induction on k∫ ∞
−∞

x2(k+1)e−πµ|x|
2
dx =− 1

2πµ

∫ ∞
−∞

x2k+1 d

dx
e−πµ|x|

2
dx

=
2k + 1

2πµ

∫ ∞
−∞

x2ke−πµ|x|
2

= µ−
1
2
−k 2k + 1

2(4π)k+1k!
∂2k
x x

2k

= µ−
1
2
−k 1

(4π)k+1(k + 1)!
∂2(k+1)
x x2(k+1)

�

We consider integrals of the type

I(τ) =

∫
Rn
eτφ(x)a(x)dx

where a is smooth and compactly supported, φ is smooth with nonnegative
real part and τ is supposed to be large. This integral is clearly bounded and
we are interested in the behavior for large τ .

Proposition 4.20. Suppose that there exists κ > 0 so that

|Dφ| − Reφ ≥ κ > 0



4. OSCILLATORY INTEGRALS AND STATIONARY PHASE 59

in the support of φ and that Reφ ≤ 0. Then, if N > 0 there exists cN so
that

(4.18) |I(τ)| ≤ cNτ−N

Proof. There exists a smooth function η so that

|∇Φ| ≥ κ/3

if x ∈ supp η ∩ supp a and

Re Φ < −κ/3
for x ∈ supp (1− η) ∩ supp a. We split the two cases by writing

a = aη + a(1− η).

For the second term we get pointwise bounds of the integrand by e−τκ/3,
which gives the estimate for this term. So we may assume that

|Dφ| ≥ κ

in the support of a. We calculate∫
eτφ(x)a(x)dx =τ−1

∫
a∇φ
|∇φ|2

∇eτφdx

=τ−1

∫
eτφ
∑
j

∂j
a∂jφ

|∇φ|2
dx.

where we used the divergence theorem to integrate by parts. We obtain the
claim by induction. �

The next situation with a fairly complete understanding is the one di-
mensional situation.

Lemma 4.21 (Van der Corput). We consider

I =

∫ d

c
eih(x)a(x)dx

for real functions h under the assumption that a is compactly supported and
that for one j ≥ 1

h(j) ≥ κ > 0.

If j = 1 we assume in addition that h′ is monotone. Then

|I| ≤ κ−
1
j (‖a′‖L1 + 23j‖a‖sup)

if a is compactly supported.

Proof. We begin with the case j = 1 and proceed by induction.∫ d

c
eih(x)a(x)dx =i

∫
eih∂x(a/h′)dx

=i

∫
eihax/h

′dx+ i

∫
eiha∂x(1/h′)dx

+ ieih(d)a(d)/h′(d)− ieih(c)a(c)/h′(c)
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for the first term we obtain the estimate with L1 and by monotony the
second term is bounded by∣∣∣∣∫ d

c
eiha∂x(1/h′)dx

∣∣∣∣ ≤‖a‖sup ∣∣∣∣∫ d

c
∂x(1/h′)dx

∣∣∣∣
=‖a‖sup|h′(c)−1 − h′(d)−1|
≤‖a‖supκ−1

We assume that we have proven the estimate for j − 1 ≥ 1 and we want
to prove it for j. So h(j) ≥ κ and h(j−1) has at most one zero, which we
assume to be 0. Let us assume that it is 0. We choose δ > 0. If |x| ≥ δ then

|h(j−1)(x)| ≥ κδ. We apply the previous argument on both sides and obtain

|I| ≤ 2δ sup
|x|≤δ|a(x)|

+δ−1/(j−1)κ−1/(j−1))(‖a′‖L1 + 43j−1‖a‖sup)

We choose δ = κ−1/j . This requires c < −δ and d ≥ δ, the modifications for
the other cases are trivial. �

In higher dimensions the only large contributions can come from sta-
tionary points, i.e. points x in the support of a where Reφ(x) = 0 and
∇φ(x) = 0. We always assume that these points are nondegenerate in the
sense that the Hesse matrix D2φ is invertible. We assume that Reφ ≥ 0.

Theorem 4.22. Under the assumptions above we assume that 0 is the
only stationary point of φ in the support of a where Reφ(0) = 0, and that
it is nondegenerate. Let

I(τ) =

∫
Rn
e−τπφadx

We write

φ = φ(0) + xTAx+ ψ(x).

Given N there exists M and C so that

∣∣∣∣∣∣∣I − e−τφ(0)τ−
n
2
−k(detA)−

1
2

M∑
k=0

1

(4π)kk!

 n∑
i,j=1

aij∂
2
ij

k

(a(x)e−τψ(x))

∣∣∣∣∣∣∣
x=0

∣∣∣∣∣∣∣
≤ Cτ−N .

(4.19)

There is a suggestive notation for the estimate:

I − e−τπφ(0)τ−n/2 det(A)−1/2 exp

(
1

4πτ

∑
aij∂

2
ij

)
(a(x)e−τψ(x))

∣∣∣∣
x=0

= O(τ−∞)

Proof. Again it suffices to consider Ar positive definite. Let η ∈
C∞0 (B1(0)), identically 1 on B1/2. We may assume that a is supported
in a small ball around x = 0 and that

∂αψ(0) = 0
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for |α| ≤ 3. We claim that for 1
3 < s < 1

2

I1(τ) =

∫
(1− η(xτ s))e−τπφadx

and N ∈ N there exists CN such that

|I1(τ)| ≤ cNτ−N

We observe that

D|Dφ(x)|−1 ≤ c|x|−2

near x = 0 in the support of a and each integration by parts brings a gain
of τ−1. After many integrations by parts we end up with

Cτ−k
∫

2|x|≥τ−s
|x|−2kdx ≤ Cτ−kτ2ks.

Since s < 1
2 this implies the assertion. Let pM be the Taylor expansion of

ae−τπψ at 0 of order M . Then

|pM − ae−τπψ| ≤ CM |x|M+1τ
M+1

3

|I2(τ)| =
∣∣∣∣∫ η(xτ1/4)e−πτx

TAx(pM − ae−τπψ)dx

∣∣∣∣ ≤ cτ (M+1)( 1
3
−s)

We obtain the statement by chosen M large. Finally we consider - under
the assuming that ReA is positive definite -

I3(τ) =

∫
(1− η(xτ s))e−τπx

TAxpMdx

in the same fashion as the first term, using also the Gaussian decay, which,
however, does not enter in quantitative fashion since the integration by parts
leads to factors |x|−N , which ensures integrability at ∞. This shows that∣∣∣∣I(τ)−

∫
(1− η(xτ s))e−τπφ(0)e−τπx

TAxpMdx

∣∣∣∣ ≤ cNτ−N
if M is sufficiently large. The second term has been evaluated in Proposition
4.19.

�

4.1. Example 1: Korteweg-de Vries equation and the Airy
function. The Korteweg-de Vries

ut + uxxx + 6uux = 0

is among the most fascinating partial differential equation. It describes one
dimensional water waves, for which it describes a second order approxima-
tion: To first order there is a linear transport resp. wave equation, but
waves are in general slower than the wave speed of the wave equation.

It it strongly related to Schrödinger operators

ψ → ψxx + uψ.

There is a complicated but amazingly explicite way of getting formulas for
solutions via the so called inverse scattering theory.

Here we will look at the linear part

ut + uxxx = 0
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By a Fourier transform

û(ξ) = eit(2π)3ξ3 û0(ξ)

and with

g(x) =

∫
ei[(2π)3ξ3+2πxξ]dξ

u(t) = t−1/3g(.t−1/3) ∗ û0

The Airy function is defined by

Ai(x) = (2π)−1

∫
ei(ξ

3/3+ixξ)dξ

which, as usual, is an abuse of notation and has to be as limit of the integral

with the additional factor e−εξ
2

or as inverse Fourier transform. Then

g(x) = 31/3(2π)−2 Ai(x(3t)−1/3).

By the Lemma of van der Corput Ai(x) is uniformly bounded, and since
we can differentiate under the integral and apply Proposition 4.20 it is a
smooth function (the noncompact interval does not change this fact, but
one has to pay attention to what happens at infinity). The phase function
is φ(ξ) = ξ3/3 + xξ with derivative ξ2 + x.

We consider first the case when x is negative and there are two sta-
tionary points ξ = ±

√
−x. Let x < −10 and choose a cutoff function

η ∈ C∞0 ((−2, 2)), identically 1 in (−1, 1) and write

Ai(x) =(2π)−1

∫
η(ξ −

√
−x)

∫
ei(ξ

3/3+ixξ)dξ

+ (2π)−1

∫
η(ξ +

√
−x)

∫
ei(ξ

3/3+ixξ)dξ

+ (2π)−1

∫ [
1− η(ξ +

√
−x)− η(ξ −

√
−x)

] ∫
ei(ξ

3/3+ixξ)dξ

The last term decays faster than any negative power of |x| by Proposition
4.20. The second is the complex conjugate of the first one. We apply
Theorem 4.22 to the first term and obtain the first part of

Lemma 4.23 (Asymptotics of Airy function).

Ai(x) = π−1/2(−x)−
1
4 sin(

2

3
(−x)3/2 +

π

4
) +O(r−

1
2

if x < 0 and∣∣∣∣∣Ai(x)− (2π)−1x−
1
4 exp(−2

3
x3/2)

N∑
k=0

(−9)kΓ(3k +
1

2
)/(2k)!x−

3k
2

∣∣∣∣∣
≤cN exp(−2

3
x3/2)x−

1
4
− 3k

2 .

It remains to prove the asymptotics for x > 0. We first verify for x > 1

Ai(x) = (2π)−1

∫
ei(ξ+iη)3+ix(ξ+iη)dξ
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for 0 ≤ η ≤ ξ, by differentiating with respect to η, and checking continuity
at η = 0. Then

Ai(x) =(2π)−1

∫
ei(ξ+i

√
x)3/3+ix(ξ+i

√
x)dξ

=(2π)−1e−
2
3
x3/2

∫
e−
√
xξ2+iξ3/3dξ.

The proof of Proposition 4.22 consists of taking a Taylor expansion. Here
we take a Taylor expansion of exp iξ3/3 and evaluate the integrals.

Mutliplication by |ξ|s on the Fourier side roughly corresponds to taking
s derivatives. Looking at the expansion of the Airy function suggests that
about half a derivative of the Airy function is bounded. A precise version
of that is the contents of the next lemma.

Proposition 4.24. There exists C so that∣∣∣∣∫ |ξ| 12+isei(ξ
3/3+xξ)dξ

∣∣∣∣ ≤ C(1 + |s|)

for s ∈ R.

Proof. We decompose the integral into an integral over (−2, 2) which
is always bounded, and integrals over (−∞,−1) and (1,∞) using η as above.
Then estimate follows if we prove the estimate∣∣∣∣∫ ∞

0
(1− η(ξ))|ξ|

1
2

+isei(ξ
3/3+xξ)dξ

∣∣∣∣ ≤ C(1 + |s|).

If x > −1/2 we define t = ξ3/3 + xξ and get∫ ∞
0

(1− η(ξ))|ξ|
1
2

+isei(ξ
3/3+xξ)dξ

=

∫ ∞
0

(1− η(ξ(t)))|ξ(t)|
1
2

+is 1

(ξ(t)2 + x)2

d

dξ
ei(ξ

3/3+xξ)

we integrate once by parts to obtain the desired estimate for x ≥ −1/2.
If x < 0 we decompose into [±

√
−x− 2,±

√
x+ 2] and the complement.

On the complement we argue as for x > −1/2. In these intervals we apply
the Lemma of von der Corput with j = 2. The second derivative is bounded
from below by (−x)1/2 and

d

dξ
|ξ|1/2+is = (

1

2
+ is)

ξ

|ξ|
|ξ|−

1
2

+is

which gives the estimate. �

Lemma 4.25. Let S(t) be the unitary group defined by the Airy equation.
Then

‖|D|
1
p
− 1

2S(t)u0‖Lp′ (R) ≤ c|t|
−( 1

p
− 1

2
)‖u0‖Lp(R)

Here |D|su = F−1(|ξ|sû). The analogue of the Strichartz estimate is an
immediate consequence.

Proof. Let for 0 ≤ Re z ≤ 1
2

Tzu0 = ez
2F−1(eiξ

3/3û0)
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If z = is then by Plancherel

‖Tisu0‖L∞ ≤ ‖u0‖L2

and if z = 1
2 + is T 1

2
+is is the convolution by a bounded function according

to the previous Proposition by

ce
1
4
−s2(1 + |s|)

which is uniformly bounded, hence the operator is bounded from L1 to L∞.
By the Theorem of Riesz-Thorin on complex interpolation

‖Ttu0‖Lp′ ≤ c‖u0‖Lp

if 1 ≤ p ≤ 2, 0 ≤ t ≤ 1
2 , 1

p + 1
p′ = 1, 1

p′ = t. This implies the assertion for

t = 1. For general t

gt(t, x) = t−1/3g1(x/t1/3)

and

‖|D|
1
2 gt‖L∞ ≤ c|t|−1/2.

The same argument yields the claimed estimate. �

4.2. Example 2: The half wave equation.

5. Quantization

Quantization means a map from functions on Rn×Rn to operators on Rn.
We choose a so called semiclassical calculus with a semi classical parameter
h > 0, basically Planck’s constant in physics.

We begin with several preliminary observations. Denote (x, y) ∈ Rn ×
Rm. If u ∈ S(Rn) and v ∈ S(Rm) then (x, y) → u(x)v(y) ∈ S(Rn+m). If
T ∈ S ′(Rm) and u ∈ S(Rn+m) then x → T (u(x, .)) ∈ S(Rn) and for the
partial Fourier transform we have

(Fyu)(x, η) ∈ S(Rn+m).

5.1. Semiclassical Fourier transform. We define

Fhφ(ξ) =

∫
Rn
e−

i
h
〈x,ξ〉φ(x)dx = φ̂(ξ/(2πh))

with inverse

F−1
h φ(x) =

1

(2πh)n

∫
Rn
e−

i
h
〈x,ξ〉φ(ξ)dξ.

Our Fourier transform is the one with h = 1
2π and we could restrict to this

h in the sequel.
We denote point in Rn × Rn by (x, ξ) and we call x position and ξ

momentum.
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5.2. Definition of quantization.

Definition 4.26. Let a ∈ S(Rn×Rn). We define the Weyl quantization
to be the operator

(4.20) (aw(x, hD)u)(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(

x+ y

2
, ξ)u(y)dydξ,

the standard quantization

(4.21) (a(x, hD)u)(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(x, ξ)u(y)dydξ,

and, for 0 ≤ t ≤ 1, the t quantization

(4.22) (Opt(a)u)(x) :=
1

2πh

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ)u(y)dydξ.

We denote by

Dj =
1

i
∂xj

and Dα for multiindices α with the obvious meaning.

(1) Opt(ξ
α) = (hD)αu

(2) If a(x, ξ) =
∑
|α|≤N aα(x)ξα then

a(x, hD)u =
∑
|α|≤N

aα(x)(hD)αu

(3) 〈x, hD〉wu = h
2 〈D,xu〉+ h

2 〈x,Du〉

Lemma 4.27. Let a ∈ S(Rn × Rn) and 0 ≤ t ≤ 1. Then Opt(a) defines
a continuous linear operator from S ′ to S. The formal adjoint is Opt(a)∗ =
Op1−t(ā).

Proof. We have

Opt(a)u(x) =

∫
Rn
Kt(x, y)u(y)dx

with

Kt(x, y) =
1

(2πh)n

∫
Rn
e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ)dξ

=
[
F−1
h (a(tx+ (1− t)y, .)

]
(x− y)

The partial Fourier transform g(z, w) = (F−1a(z, .))(w) is a Schwartz func-
tion by the considerations above. The equations

tx+ (1− t)y = z, x− y = w

define linear maps, and hence Kt is a Schwartz function. Let T ∈ S ′(Rn).
Then

x→ T (Kt(x, .)) ∈ S(Rn)

which proves the first assertion.
The statement about the formal adjoint follows from the definition. �

In particular, if a is real then aw(x, hD) is formally self adjoint.

Lemma 4.28. Let a ∈ S ′(Rn × Rn) and 0 ≤ t ≤ 1. Then Opt(a) defines
a continuous linear operator from S(Rn) to S ′(Rn).
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Proof. By the same argument as above the partial inverse Fourier
transform defines a distribution, and the contructions above of the kernel
defines a tempered distribution T on Rn × Rn. If u, v ∈ S(Rn) then

u(x)v(y) ∈ S(Rn).

and, given v ∈ S(Rn) the map u→ T (u(x)v(y)) defines a unique tempered
distribution which coincides with the quantization whenever the previous
definition applies. �

5.3. Simple examples.

Lemma 4.29. If a(x, ξ) = b(x) then

Opt(a)u = b(x)u

Proof. The claim follows from Fourier inversion if t = 0. It suffices to
proof it for a ∈ S(Rn). Let u ∈ S and compute

∂t Opt u

=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉

n∑
j=1

(∂jb)(tx+ (1− t)y)(xj − yj)u(y)dydξ

=
1

ih(2πh)n

∫
Rn

n∑
j=1

∂ξj ·
(∫

Rn
e
i
h
〈x−y,ξ〉(∂jb)(tx+ (1− t)y)u(y)dy

)
dξ

= 0

by the divergence theorem (applied on balls with radii tending to infinity,
and using the decay of the Schwartz functions), and since the inner integral
defines a Schwartz function. �

Lemma 4.30. Let l(x, ξ) = 〈x∗, x〉+ 〈ξ∗, ξ〉 be a linear function (x∗, ξ∗ ∈
Rn). Then

Opt(l)u = 〈x∗, x〉u+ 〈ξ∗, hDu〉.
If c(x, ξ) =

∑n
J=1 cj(x)ξj then

cw(x, hD)u =
h

2

n∑
j=1

(Dj(cju) + cjD
ju)

Proof. The first statement is a consequence of the previous considera-
tions. For the second we use the definition

cw(x, hD)u =
1

(2πh)n

∑∫
Rn

∫
Rn
cj(

x+ y

2
)ξje

i
h
〈x−y,ξ〉u(y)dξdy

=− 1

(2πh)n

∑∫
Rn

∫
Rn
cj(

x+ y

2
)hDyje

i
h
〈x−y,ξ〉u(y)dξdy

=
1

(2πh)n

∑ h

i

∫
Rn

∫
Rn
∂xjcj(

x+ y

2
)e

i
h
〈x−y,ξ〉u(y)dξdy

+
1

(2πh)n

∑∫
Rn

∫
Rn
cj(

x+ y

2
)e

i
h
〈x−y,ξ〉hDyju(y)dξdy

=
h

2i
(∂xjcj)u+ h

∑
cj(x)Dxju

This implies the second statement. �
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Lemma 4.31. The following identities hold:

(Dxja)w = [Dxj , a
w]

and

h(Dξja)w = −[xj , a
w]

There is symplectic quadratic form

(4.23) σ(z, w) = ξ · y − x · η, z = (x, ξ), w = (y, η)

on R2n. We can write it via the Euclidean inner product

σ(z, w) = 〈Jz, w〉 J =

(
0 1
−1 0

)
.

Lemma 4.32.(
e
i
h
l
)w

u = e
i
h
l(x,D)u := e

i
h
〈x∗,x〉+ i

2h
〈x∗,ξ∗〉u(x+ ξ∗).

If l,m ∈ R2n then

e
i
h
l(x,hD)e

i
h
m(x,hD)u = e

i
2h
σ(l,m)e

i
h

(l+m)(x,hD)

Consider the PDE

ih∂sv + l(x, hD)v = 0

Its solution is - independent of t

v(1, x) = e
i
h
〈x∗,x〉+ i

2h
〈x∗,ξ∗〉u(x+ ξ∗).

which is the meaning of the not rigorously defined second equality.

Proof.

(e
i
h
l)wu =

1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉e

i
h

(〈ξ∗,ξ〉+〈x∗,x+y
2
〉)u(y)dydξ

=
e
i
h
〈x∗,x〉

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y+ξ∗,ξ〉(e

i
2h
〈x∗,y〉u(y))dydξ

=
e
i
h
〈x∗,x〉

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉(e

i
2h

(〈x∗,y+ξ∗〉)u(y + ξ∗)) dy dξ

=e
i
h
〈x∗,x〉+ i

2h
〈x∗,ξ∗〉u(x+ ξ∗).

This implies the first assertion. The second assertion follows from an
application of the first formula: Let l = (x∗, ξ∗) and m = (y+; η∗). Then

(e
i
h
l)w(e

i
h )wu(x) =(e

i
h
l)w
[
e
i
2h
〈y∗,ξ∗〉e

i
h
〈y∗,.〉u(.+ η∗)

]
=e

i
2h

(〈x∗,ξ∗〉+〈y∗,η∗〉)e
i
h
〈y∗,ξ∗〉e

i
h
〈x∗+y∗,x〉u(x+ η∗ + ξ∗)

=e
i
2h

(〈y∗,ξ∗〉−〈x∗,η∗〉)(e
i
h

(l+m))wu(x).

�

If symbols only depend on ξ and not on x then all quantization yield the
same result.
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5.4. Composition of semiclassical pseudodifferential operators.

Theorem 4.33. Let Q be a nonsingular selfadjoint n× n matrix. Then

e
ih
2
〈QD,D〉u(x) =

|detQ|−
1
2

(2πh)n/2
e
iπ
4

signQ

∫
Rn
e−

i
2h
〈Q−1y,y〉u(x+ y)dy

eihσ(Dz ,Dw)u(z, w) =
1

(2πh)2n

∫
R2n

∫
R2n

e−
i
h
σ(z1,w1)u(z + z1, w + w1)dz1dw1

Here signQ is the signature, the number of positive eigenvalues minus
the number of negative eigenvalues.

Proof. The second statement is a special case of the first one with the
quadratic form given by the matrix(

0 −J
J 0

)
.

We compute

e
i
h
〈QD,D〉u(x) =e

i
2h
〈QhD,hD〉u(x)

=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉e

i
2h
〈Qξ,ξ〉u(y)dydξ

=
| detQ|−

1
2

(2πh)n/2
e
iπ
4

signQ

∫
e−

i
2h
〈Q−1(x−y),x−y〉u(y)dy

=
| detQ|−

1
2

(2πh)n/2
e
iπ
4

signQ

∫
e−

i
2h
〈Q−1(y),y〉u(x+ y)dy

where we exchanged the order of integration (first multiplying by e−ε|ξ|
2

and
then we passed to the limit as ε → 0. The ξ integration yields the inverse
Fourier transform of the complex Gaussian. The last integral follows by the
translation invariance of the integration. �

With Proposition 4.22 we get an asymptotic series for this integral in
powers of h.

Theorem 4.34.

F−1aw(x, hD)F = aw(hD,−x)

Proof. We prove the claim for a ∈ S(Rn × Rn). The integral kernel
Kh(x, y) of F−1

h awFh is

1

(2πh)2n

∫
Rn

∫
Rn

∫
Rn
e
i
h

(〈x′,x〉+〈x′−y′,ζ〉−〈y′,y〉)a((x′ + y′)/2, ζ)dy′dx′dζ

=
1

(2πh)2n
2−n

∫
Rn

∫
Rn

∫
Rn
e
i
h

2(〈x′,ζ+x+y
2
〉−〈z,y+ζ〉)a(z, ζ)dx′dzdζ

=
1

(2πh)n

∫
Rn
e
i
h
〈x−y,z〉a(z,−x+ y

2
)dz

where we used in the last step that

F−1
h (e

2i
h
〈x′,ζ+x+y

2 ) = 2nδ0(ζ +
x+ y

2
).

�
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Interpretation: The map (x, ξ) = J(x, ξ) is a symplectic map. The
semiclassical Fourier transform quantizes the symplectic map J .

We define

A(D) = σ((Dx, Dξ); (Dy, Dη))

Theorem 4.35 (Composition for Weyl quantization). With

a#b(x, ξ) := eihA(D)(a(x, ξ)b(y, η))
∣∣∣
y=x,ξ=η

we have

(a#b)wu = awbwu

and with

c(x, ξ) = e
i
h
σ(h(Dx,Dξ,Dy ,Dη)(a(x, ξ)b(y, η)

∣∣∣
x=y,ξ=η

a(x, hD)b(x, hD)u = c(x, hD)u.

Proof. Let

â(l) =

∫
R2n

e−
i
h
〈l,(x,ξ)〉a(x, ξ)dxdξ

By the inversion formula

aw(x, hD) =
1

(2πh)n

∫
R2n

â(l)e
i
h
l(x,hD)dl

We apply this formula for a and b to get

aw(x, hD)bw(x, hD) =
1

(2πh)4n

∫
R2n

∫
R2n

â(l)b̂(m)e
i
h
l(x,hD)e

i
h
m(x,hD)dmdl

=
1

(2πh)2n

∫
R2n

ĉ(r)e
i
h
r(x,hD)dr

where, by Lemma 4.32

ĉ(r) =
1

(2πh)2n

∫
R2n

â(l)b̂(r − l)e
iσ(l,r−l)

2h dl

=
1

(2πh)2n

∫
R2n

∫
R2n

(
1

(2πh)2n

∫
R2n

e
i
h
〈l+m−r,z〉dz

)
e
i
2h
σ(l,m)â(l)b̂(m)dldm

Hence, since

e
i
2h
σ(hDz ,hDw)e

i
h

(〈l,z〉+〈m,w〉) = e
i
2h
σ(l,m)e

i
h

(〈l,z〉+〈m,w〉)

c(z) =
1

(2πh)4n

∫
R2n

∫
R2n

e
i
2h
σ(hDz ,hDw)e

i
h

(〈l,z〉+〈m,w〉)
∣∣∣
z=w

â(l)b̂(m)dldm

The statement follows now by Theorem 4.33.
The functions are called symbols. The proposition allows to compute the

symbol of the composition from the symbols of the operators. The method
of stationary phase allows to obtain an expansion in terms of powers of h.
This expansion is given by formally expanding the exponential, and then
applying the operators to the functions.
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Since there is exactly one stationary point we can apply this expansion
even if we have unbounded symbols. The first term is always the product.
The second term is

A(D)a(x, ξ)b(y, η)|x=y,ξ=η = h

n∑
j=1

∂xja∂ξjb− ∂ξja∂xjb.

This is the first term in the expansion of the operator. The expression on
the RHS is h times the Poisson bracket of the symbols a and b, h{a, b}.

Here we already see an important property of the semiclassical limit
h→ 0: The composition becomes closer and closer to a multiplication.

This suggest that as first approximation to composition of operators we
may consider the multiplication. In particular we expect some approximate
inverse to be given by taking the inverse of the symbol. So if we consider
the elliptic equation with smooth coefficients

−aij∂2
j u = f

then the operator is given by the classical symbol aij(x)ξiξj . One can proof
that

D[(1 + aij(x)ξiξj)
−1,waij∂2

ij − 1]

is bounded operator on Lp.
To carry that program out we need

(1) Criteria for Lp boundedness
(2) A calculus for pseudodifferential operators, i.e. the operators ob-

tained by quantizing symbols.

�

6. Cotlar’s Lemma and the Theorem of Calderón-Vaillancourt

In this section we will prove L2 boundedness of semiclassical operators
under fairly weak assumptions on the symbol a. As a start we consider
Schwartz functions.

Lemma 4.36. Let a ∈ S(Rn × Rn). Then

‖Opt(a)f‖L2(Rn) ≤ c(n) sup
|α|,|β|≤n+1

sup
x.ξ
|∂αx ∂

β
ξ a(x, ξ)|‖f‖L2

It suffices to assume that the quantity on the right hand side is bounded.

Proof. The partial Fourier transform ǎ = F−1
h z

a(w, .)(z) is a Schwartz
function. It satisfies

|zβ ǎ| = |F−1((hD)βξ a)| ≤ c(n) sup
|γ|≤n+1

h−|β||ξγ∂βξ a(x, ξ)|

We obtain for the integral kernel

Kt(x, y) = h−nǎ(tx+ (1− t)y, (x− y))

and

|Kt(x, y)| ≤ c(n)h−n(1 + |x− y|/h)−n−1 sup
|α|,|β|≤n+1

sup
w,ξ
|ξα∂βξ a|.
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Then

sup
x

∫
|Kt(x, y)|dy + sup

y

∫
|Kt(x, y)|dx ≤ c2(n) sup

|α|,|β|≤n+1
sup
w,ξ
|ξα∂βξ a|

and the assertion follows from Schur’s lemma 2.17. �

The product of two functions with disjoint support is zero. This fails
to be true for the composition of pseudodifferential operators, but it re-
mains approximately true. We focus on h = 1 in the sequel and recover the
assertion for 0 < h by a standard rescaling.

Lemma 4.37. Let h > 0, ũ(x) = u(h1/2x) and ah(x, ξ) = a(h
1
2x, h

1
2 ξ).

Then
aw(h

1
2x, hD)u(h

1
2x) = awh (x,D)ũ.

Proof.

aw(h1/2x, hD)u(h1/2x)

=
1

(2πh)n

∫
Rn

∫
Rn
a(
h1/2x+ y

2
, ξ)e

i
h
〈h1/2x−y,ξ〉u(y)dydξ

=
1

(2π)n

∫
Rn

∫
Rn
ah(

x+ y

2
, ξ)ei〈x−y,ξ〉ũ(y)dydξ

�

Lemma 4.38. Let a, b ∈ C∞(Rn × Rn) with

d = d(supp a, supp b) > 0

and

|∂αx ∂
β
ξ a|+ |∂

α
x ∂

β
ξ a| ≤ B for x, ξ ∈ Rn, |α|, |β| ≤ 6n+N + 2

Then
‖aw(x,D)bw(x,D)f‖L2 ≤ c(n,N)d−NB2‖f‖L2 .

Proof. We recall that the symbol of the composition is

c(z) =
1

(2π)2n

∫
R2n

∫
R2n

e−
i
2
σ(w1,w2)a(z + w1)b(z + w2)dw1dw2

The point 0 is the unique critical point, and the integrand vanishes for
|(w1, w2)| ≤ d/

√
2. The integrations by parts in the stationary phase argu-

ment lead to bound (since the same type of argument holds for derivatives)

|∂αc| ≤ cNB2d−N .

This implies the statement of the Theorem of Calderón-Vaillancourt below.
At this point we prove the statement under the additional assumption that
b is supported in a unit ball B1(x0, ξ0) Then

|∂αz c(z)| ≤ cd−N (1 + |z − (x0, ξ0)|)−M .
This implies that the symbol c is a shifted Schwartz function. Since

[cw(x,D)u](x+ x0) = cw(x+ x0, D)u(.+ x0)

and
e−i〈ξ0,x〉cw(x,D)(ei〈ξ0,y〉u(y))(x) = cw(x,D − ξ0)u
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and neither translation nor multiplication by the complex exponential changes
the L2 the boundedness assertion follows from Lemma 4.36.

It remain to count the number of derivatives we need. For the application
of (4.36) we need n+1 derivatives and a decay of power n+1. Each derivative
in the argument above gives one inverse power of d resp. one inverse power
of |z − (x0, ξ0)| or one of |w|−1. The integration is over a 4n dimensional
space and it uses up 4n inverse powers of w. Thus we need 4n+(2n+2)+N
derivatives for this argument. It is clearly not optimal.

This special case will suffice to proof the Theorem of Calderón Vail-
lancourt 4.40, which in turn implies the full statement of the proposition
here. �

Lemma 4.39 (Cotlar’s lemma). Let H be a Hilbert space and Tj : H → H
a family of operators, and γ : Z→ R+ such that

‖T ∗j Tk‖L(H) ≤ γ2(j − k), ‖TjT ∗k ‖L(H) ≤ γ2(j − k)

for all j, k. Suppose that
∞∑

l=−∞
γ(l) =: A <∞

Then

‖
N∑
j=1

Tj‖L(H) ≤ A

for all N .

Proof. We have with T =
∑N

j=1 Tj

(T ∗T )n =

N∑
j1,...jn,k1,...,kn=1

T ∗j1Tk1 . . . T
∗
jnTkn

Now
‖T ∗j1Tk1 . . . T

∗
jnTkn‖ ≤ ‖Tj1‖‖Tkn‖

∏
‖TkiT

∗
ji+1
‖

‖T ∗j1Tk1 . . . T
∗
jnTkn‖ ≤

∏
‖T+

ji
T ∗ki‖

We multiply and take square roots

‖T ∗j1Tk1 . . . T
∗
jnTkn‖ ≤ (‖Tj1‖‖Tkn)1/2‖

∏
‖TkiT

∗
ji+1
‖1/2

∏
‖T+

ji
T ∗ki‖

1/2

and thus with B = sup ‖Tj‖

‖(T ∗T )n‖ ≤
N∑

j1,...jn,k1,...,kn=1

B
∏

γ(ji − ki)γ(ki − ji+1) ≤ NBA2n−1

Since T ∗T is selfadjoint

‖T‖2L(H) = ‖T ∗T‖L(H) = ‖(T ∗T )n‖1/nL(H) ≤ (NB)1/nA2− 1
n

We let n tend to infinity to obtain the assertion. �

Let a ∈ C8n+4(Rn × Rn) satisfy

(4.24) sup
x,ξ,|α|+|β|≤c(n)

|xβ∂αx a(x, ξ)| ≤ B
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Lemma 4.40 (Calderón-Vaillancourt). , The operators

T = aw(x,D)

satisfies
‖Tf‖L2 ≤ c(n)B‖f‖L2 .

Proof. We choose a function η supported in [−1, 1]n so that∑
k∈Zn

η(x− k) = 1.

(Choose η̃ ∈ C∞0 ((−1, 1)2n) nonnegative and identially 1 on [−1/2, 1/2]2n.
Then set

η(z) =
η̃(z)∑

k η̃(z + k)

Given k ∈ Z2n we define ak(z) = a(z)η(z + k)

Tkf = awk f

We claim that

(4.25) ‖T ∗kTl‖L(L2) + ‖T ∗kTl‖L(L2) ≤ C(1 + |k − l|)−2n−1

Since the square roots of the bounds on the RHS are summable this implies

‖
∑
|k|≤N

Tklf‖L2 ≤ C‖f‖L2 .

It is not difficult to let N tend to infinity.
Both terms on the left hand side have the same structure and it suffices

to deal with one of them. Now

T ∗kTl = ak
w(x,D)awl (x,D)

We apply Proposition 4.36 twice to see that

‖T ∗kTl‖L(L2) ≤ CB2

and, if |k − l| ≥ 2n, by Proposition 4.38

‖T ∗kTl‖L(L2) ≤ cB2|k − l|−2n−1.

�

ß





CHAPTER 5

Singular integrals of Calderón-Zygmund type

1. The setting

The basic setting of this chaper are spaces of homogeneous type (X, d, µ)
where (X, d) is a complete metric space and µ is a Borel measure, finite on
bounded sets, which satisfies a doubling condition: There exists b so that

µ(B3r(x)) ≤ bµ(Br(x))

Lemma 5.1. Let A be a closed bounded set. Then A is compact.

Proof. We prove that A is totally bounded. Closed totally bounded
sets in a complete metric space are compact.

Since A is bounded there exists a ball A ⊂ BR(x0).
Let R > r > 0. There is at most a finite number of disjoint balls with

centers in A with radii = r/3 by the doubling condition: there exists k so
that

R ≤ 3k−3r.

Let Br/3(xj) a ball which intersects A. Then

A ⊂ BR ⊂ B3k−1(r/3)(xj)

and by the doubling condition

µ(A) ≤ µ(BR) ≤ bk−1µ(Br/3(xj).

Let Bj be N such disjoint balls. The measure of there union is at least

Nb1−kµ(B) ≤ µ(
⋃
Bj) ≤ bµ(B)

and hence there are at most bk such balls. Take a maximal such sequence
Br/3(xi). Then as for the Lemma of Vitali the union of Br(xi) covers A. �

Theorem 5.2. The measure µ is σ finite and regular, i.e.

(5.1) µ(A) = sup
K⊂A

µ(K) = inf
A⊂U

µ(U)

for every Borel set.

Proof. Let xo ∈ X. We define the Borel measure

µR(A) = µ(BR(x0) ∩A).

It is finite and µ = limn→∞ µn, and hence it is σ finite. Let A be the set
of Borel set for (5.1) holds. We will show that A contains all compact sets,
with A it contains its complement, and it closed under countable unions. So
it is a σ algebra containing all open sets. The Borel σ algebra is the smallest
such σ algebra, and hence A consists of all Borel sets.

75
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For compact sets K inner regularity (approximation by compacts) is
trivial. Since K = ∩Uj with Uj(d(x,K) < 1/j) is countable intersection
µ(K) = limj µ(Uj) and outer regularity follows.

A is an inner regular Borel set if and only if X\A is outer regular -
this obvious for compact metric spaces, and requires use of σ finiteness in
general.

Let A =
⋃
Aj be a countable union of inner regular sets, and let ε > 0.

Then there exists compact sets Kj and open sets Uj with

Kj ⊂ Aj ⊂ Uj

and

µ(Uj) ≤ µ(Kj) + 2−1−jε.

Then
⋃N
j=1Kj is compact and

µ(

N⋃
j=1

Kj)→ µ(
∞⋃
j=1

Kj).

Moreover

µ(A) ≤ µ(
⋃
Kj) + ε

and inner regularity follows. Outer regularity is similar but simpler. �

The most important such space is the Euclidean space with the Lebesgue
measure.

Definition 5.3. We call a linear operator T Calderón-Zygmund opera-
tor if

(1) There exists 1 < p0 ≤ ∞ such that T : Lp0(µ)→ Lp0(µ)and

‖Tf‖Lp0 (µ) ≤ A‖f‖Lp0 (µ).

(2) There exists a continuous kernel function K : X ×X\{(x, x) : x ∈
X} which satisfies

Tf(x) =

∫
K(x, y)f(y)dµ

whenever f is compactly supported and x is not contained in the
support of f . Moreover∫

d(x,y)≥2d(y,z)
|K(x, y)−K(x, z)|dµ(x) ≤ A

for all y, z ∈ X.

The Hilbert transform on R or T is the most important example. It
is bounded by the constant 1 as linear operator on L2, and has the kernel
c(x− y)−1 for R.
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2. The Calderón-Zygmund theorem

We denote the doubling constant by b in this section.

Theorem 5.4. Let T be a Calderón-Zygmund operator. Then the weak
type estimate holds for all f ∈ Lp0 ∩ L1.

µ({x : |Tf | > t}) ≤ (2p0 + b4)
A

t

∫
X
|f |dµ

Let 1 < p ≤ p0. Then T defines a unique bounded operator from Lp(µ) to
Lp(µ) which satisfies

‖Tf‖Lp ≤ c(p0)Ab4 p

p− 1
‖f‖Lp

The second statement follows from the weak type inequality by the in-
terpolation theorem of Marcinkiewicz 2.24 or even from the simpler version
in the proof of the bounds for the maximal function Theorem 2.20. The
uniform constant as p→ p0 involves a second application of complex inter-
polation Theorem 2.16.

We begin the proof by the Whitney covering lemma, first in Rn.
A dyadic cube is a cube of the form

Qs,k = 2j([0, 1)n + k)

with j ∈ Z and k ∈ Zn. A dyadic cube has 2n children and 1 parent. Given
s the cubes cover Rn.

If U ⊂ Rn is open, and not equal to Rn we can cover it by dyadic disjoint
cubes of size 2s between the distance of the cube to the boundary, and 2n

times the distance to the boundary. This is called a Whitney covering.
We formalize this for spaces of homogeneous type.

Lemma 5.5 (Whitney). Let U be open, U 6= X. Then there exists a
countable sequence of balls Bj so that

(1) The balls 1
3Bj are disjoint.

(2) The balls Bj cover U
(3) The balls 2Bj are contained in U .
(4) The balls 3Bj are not contained in U .

Proof. Given x ∈ U we define r(x) = d(x,X\U)/3.
The balls Br(x)/3(x) cover U . Let K ⊂ U be compact. There is a finite

number of the balls covering K. By the lemma of Vitali there is a disjoint
subset Bj = Br(xj)/3(xj) so that the balls Br(xj)(xj) this cover K. Fix
x0 ∈ X and let

Kl = {x ∈ U : d(x, x0) ≤ l, d(x,X\U) ≤ 1/l}
Then Kl is compact, monoton (Kl ⊂ Kl+1) and U =

⋃
Kl. We proceed

recursively, and always keep the balls we have already chosen. �

In the sequel we denote the doubling constant by b.

Lemma 5.6 (Calderón-Zygmund decomposition). Let f ∈ L1(µ) and
t > 1

µ(X)

∫
|f |dµ . Then there exists a decomposition

f = g + b
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and

b =
∑
k

bk

so that

(1) |g(x)| ≤ b2t,
∫
|g|dµ ≤

∫
|f |dµ.

(2) bk is supported in balls Bk. They satisfy∫
|bk|dµ ≤ 2tbµ(Bk),

∫
bkdµ = 0

(3)
∑

k µ(Bk) ≤ b2

t

∫
fdµ

Proof. Let

U = {x : Mf(x) > t}
and let Bj be the balls of the Whitney decomposition. By Theorem 2.20

µ(U) ≤ b

t
‖f‖L1

We define recursively

Qj = Bj ∩ {X\
j−1⋃
l=1

Ql}.

Then

(5.2)
1

3
Bj ⊂ Qj ⊂ Bj ,

the Qj are disjoint, and their union is U . We define

bj = χQj

(
f − 1

µ(Qj)

∫
Qj

fdx

)
and

g(x) =

{
f(x) if x /∈ U

1
Qj

∫
Qj
f if x ∈ Qj

We verify the properties. It is immediate that
∫
|g|dµ ≤ inf |f |dµ.By con-

struction

f = g + b with b =
∑

bj

Since ∫
Bj

|f |dµ ≤
∫

3Bj

|f |dµ ≤ tbµ(B)

and µ(Qj) ≥ b−1µ(Bj) we have

|g| ≤ b2t

in U . Outside U

|g(x)| ≤Mf(x) ≤ t
almost everywhere.
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Similarly ∫
Bj

|bj |dµ =

∫
Qj

∣∣∣∣∣f − µ(Qj)
−1

∫
Qj

fdµ

∣∣∣∣∣ dµ
≤2

∫
3Bj

|f |dµ

≤2btµ(Bj)

since 3Bj ∩X\U 6= {}, using the definition of the maximal function.
Now, by the weak type estimate of the maximal function∑

µ(Bj) ≤b
∑

µ(Qj)

=bµ(U)

≤b2

t
‖f‖L1 .

�

We turn to the proof of weak type estimate of Theorem 5.4.

Proof. We may choose A by multiplying T by a constant. There is
nothing to show if t ≤ µ(X)−1

∫
Rn |f |dµ. If t ≤ µ(X)−1

∫
|f |dµ then

µ(X) ≤
∫
|f |dµ/t

and the weak type estimate is trivial. Hence we assume t > µ(X)−1
∫
|f |dµ.

We decompose f = g+ b as in the Calderón-Zygmund decomposition. Then

‖g‖L1 ≤ ‖f‖L1

by the Calderón-Zygmund decomposition. Thus

µ(|T (g)(x)| > t/2) ≤(2/t)−p0‖Tg‖p0Lp0

≤
(

2A

t

)p0 ∫
|g|p0dµ

≤(2A)p0

t
b2p0−2‖g‖L1

≤(2A)p0

t
b2p0−2‖f‖L1 .

(5.3)

Since

t
∑

µ(3Bj) ≤ b2‖f‖L1

it suffices to bound (together with Tschebycheff’s inequality)∫
X\U
|Tb|dµ ≤

∑
j

∫
X\2Bj

|Tbj |dµ.

We observe that for x ∈ X\2Bj and zj the center

Tbj(x) =

∫
K(x, y)bjdµ =

∫
Bj

(K(x, y)−K(x, zj))bj(y)dµ(y)
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since the
∫
bj = 0. Thus∫

X\2Bj
|Tbj |dµ(x) ≤

∫ ∫
d(x,zj)≥2rj

|K(x, y)−K(x, zj)|dµ(x)|bj |dµ(y)

≤A
∫
|bj |dµ

≤2Atb2µ(Qj).

and hence

µ({Tb > t/2} ∩ (X\U)} ≤ 2

t
‖Tb‖L1(X\U) ≤ 4Ab2

∑
µ(Bj) ≤

4Ab4

t
‖f‖L1

and hence

µ({Tf > t}) ≤
(

2p0Ap0−1b2(p0−1) +A−1b2 + 4b4
)A
t
‖f‖L1 .

We choose A = b−2. �

Remark 5.7. (1) There are obvious vector valued versions. We
consider weakly continuous functions, i.e. f : U → E is weakly
measurable if for every element of the dual space e∗ e∗ ◦ f is mea-
surable. Definition and estimate for the maximal function work
without change for weakly measuable functions which assume val-
ues in Banach spaces.

The interpolation theorems of Marcinkiewicz and Riesz-Thorin
hold for operators from Lp(µ;E) to Lq(ν, F ) for real resp. complex
Banach spaces E and F . In that case the kernel function has values
in the Banach space of continuous linear operators from E to F .
Such a map to linear operators is measuable if for all e ∈ E and
f∗ ∈ F ∗ the map x → f∗(K(x, y)e is measurable. The integral
for weakly continuous integrable functions with values in Banach
spaces is defined through the application of a linear form.

(2) If T : Lp0(µ)→ Lp0(µ) then the adjoint maps Lp
′
0 to Lp

′
0. If K(x, y)

is the kernel function of T then K(y, x) is the kernel function of
T ∗. Thus, if∫

d(y,x)≥2d(y,z)
|K(x, y)−K(z, y)|dµ(x) ≤ A

then T ∗ is a bounded operator on Lp(µ) for 1 < p ≤ p′0. So under
this condition

‖Tf‖Lp ≤ c(b, p0)
p2

p− 1
‖f‖Lp .

Lemma 5.8. Suppose that there exists ε > 0 such that

min{µ(Bd(x,y)(x)), µ(Bd(x̃,ỹ)(x̃)}|K(x, y)−K(x̃, ỹ)| ≤ c
(
d(x, x̃) + d(y, ỹ)

d(x, y) + d(x̃, ỹ)

)ε
for all x, y, ỹ, ỹ then the kernel condition is satisfied for T and T ∗. In par-
ticular, if T : Lp0 → Lp0 has an integral kernel which satisfies the condition
above then it defines a unique bounded operator from Lp to Lp.
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In particular this holds for the Euclidean space with the Lebesgue mea-
sure if

(5.4) |DxK(x, y)|+ |DyK(x, y)| ≤ c|x− y|−n−1

where one of the conditions suffices for either p ≥ p0 or p ≤ p0.
It is not hard to see that if T is a Calderón-Zygmund operator with

integral kernal k then

(5.5) µ(Bd(x,y)(x))|K(x, y)| ≤ c(b)A

3. Examples

3.1. Fourier multipliers.

Lemma 5.9 (Mihlin-Hörmander). Let a ∈ Cn(Rn\{0}) and assume that

sup
|α|≤n+2

||ξ|αDαa(ξ)| ≤ A

The operator

T : L2 3 f → F−1af̂ ∈ L2

has a convolution kernel K(x, y) = k(x− y) with

sup
z
|z|n|k(z)|+ |z|n+1|Dk(z)| ≤ c(n)A

It is a Calderon-Zgymund operator.

Proof. Let φ ∈ C∞0 ({x : 1
2 ≤ |x| ≤ 4}). We claim that k(x) = φ(x)T

is a differentiable function which satisfies

(5.6) |k(x)|+ |Dk(x)| ≤ c
Since the integral kernel of the Fourier multiplier a(λ(x)) is λ−nk(x/n) and
since the conditions are invariant under rescaling this implies the full desired
estimate. The Fourier multiplier of the convolution by φ is the convolution
of the Fourier transform of k with a. Then k̂ ∈ S and∫

k̂ξαdξ = 0

Thus, with pn+1 the Taylor polynomial of degree n+ 1 at ξ

φ̂ ∗ a(ξ) =

∫
φ̂(η)(a(ξ − η)− pn(η))dη

and by the Taylor formula

|(a(ξ − η)− pn+1(η))| ≤ c(n)|ξ|−n−2|η|n+2

for |η| ≤ |ξ|/2 and hence

|φ ∗ a(ξ)| ≤

∣∣∣∣∣
∫
|η|≤|ξ|/2

φ̂(η)(a(ξ − η)− pn+1(η))dη

∣∣∣∣∣
+ c

∫
|η|≥|ξ|/2

|φ̂(η)||η|n+2dξ

≤c(n)(1 + |ξ|−n−2)

This implies the assertion. �
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The Riesz transforms defined by a Fourier multiplier are important ex-
amples:

a(ξ) = ξj |ξ|−1

with a convolution kernel (for n ≥ 2)

i
2Γ((n+ 1)/2

π
n−1
2

xj
|x|n+1

since

F|x|−1 =
Γ((n− 1)/2

π
n−1
2

|x|1−n

Then

K(x, y) = i
2Γ((n+ 1)/2

π
n−1
2

xj − yj
|x− y|n+1

It satisfies the conditions on the derivatives above. For n = 1 we obtain
again the Hilbert transform. We denote the Riesz transforms by Rj .

Similarly, if n ≥ 2, the second order Riesz transforms defined by the
Fourier multiplier

ξiξj
|ξ|2

then the kernel function is

cn
xixj − 1

nδij

|x|2+n
.

Again this follows for n ≥ 3 from taking derivatives of the inverse Fourier
transform of |ξ|−2, and we obtain a formula for the constant c.

The case n = 1 is trivial - the second order Riesz transform is the
identity.

For n = 2 we may take a detour via the Cauchy kernel and calculate

F−1 1

ξ1 + iξ2

and then take the real part.
We denote the second order Riesz transforms Rij . If

∆u = f

for u ∈ S then
∂2
xixju = Rijf

and we obtain from the Calderón Zygmund estimate

‖∂2
iju‖Lp ≤ c(n)

p2

p− 1
‖f‖Lp .

3.2. The heat equation. The heat equation leads to a Calderón-
Zygmund operator on a space of homogeneous type. Consider

ut −∆u = f

If u ∈ S then

ût =
iτ

iτ + |ξ|2
f̂

and hence
‖ut‖L2 ≤ ‖f‖L2
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and similarly

‖D2
xu‖L2 ≤ c‖f‖L2

The convolution kernel is of T : f → ut is

∂t
1

(4πt)n/2
e−
|x|2
4t = t−1(2nπ +

|x|2

4t
)

1

(4πt)n/2
e−
|x|2
4t

for t > 0 and 0 otherwise.
We define the metric

d((x, t), (y, s)) = max{|x− y|, |t− s|1/2}.

It is easy to verify the triangle inequality. Let µ be the Lebesgue measure.
The doubling condition with b = 3n+2 is immediate. Then

|g(x, t)| ≤ c(|x|+
√
|t|)−n−2

and

|∇xg| ≤ c(|x|+
√
|t|)−n−3

|∂tg| ≤ c(|x|+
√
|t|)−n−4.

This implies the kernel conditions of Lemma 5.8. The L2 boundedness
follows from the Fourier transform.

3.3. Weyl quantization of symbols in S0
1,0.

Definition 5.10. Let m ∈ R, ρ ≥ δ ∈ [0, 1]. We say that a ∈ Smρ,δ(Rn)

if a ∈ C∞(Rn × Rn) and if for all N ∈ N there exists cN such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ c|α|+|β|(1 + |ξ|)m−ρ|β|+δ|α|.

Let k(w, z) = F−1
ξ a(w, z). The kernel of the standard quatization is

K(x, y) = k(x, x− y)

and the kernel of Opt(a) is

K(x, y) = k(tx+ (1− t)y, x− y)

Let

g(w, z) = k(x− (1− t)z, z)
and let b be the Fourier transform of g with respect to z. Then b(x,D) =
Opt a. Equivalently

b(x, ξ) = (2π)−2n

∫
ei〈η−ξ,z〉a(x− (1− t)z, η)dηdz

Lemma 5.11. Suppose that 0 ≤ t ≤ 1 and ρ ≥ δ ≥ 0 and a ∈ Smρ,δ. Then
b ∈ Smρ,δ. Similarly, if b ∈ Smρ,δ then a ∈ Smρ,δ,

We only prove one direction. The reverse direction is similar.

Proof. Let ρ ∈ C∞(B2(0)), identically 1 on B1(0). Then, for all α, β
and N∣∣∣∣∂αx ∂βξ (2π)−2n

∫
ei〈η−ξ,z〉ρ(η)a(x− (1− t)z, η)dηdz

∣∣∣∣ ≤ c(1 + |ξ|)−N
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by stationary phase. Now let R > 1 and ρR(η) = ρ(η/(2R))−ρ(η/R). Then∣∣∣∣∂αx ∂βξ (2π)−2n

∫
ei〈η−ξ,z〉ρR(η)a(x− (1− t)z, η)dηdz

∣∣∣∣
≤ cN,α,βRm+δ|α|−ρ|β|(1 + |ξ|/R+R/|ξ|)−N .

To see this we apply the derivatives - the x derivatives fall directly on a, the
ξ derivatives after an integration by parts. This yields the factor Rm+δα−ρβ.
Now we change coordinates to x̃ = Rδx and ξ̃ = R−δξ. In the new variables
we use stationary phase. The only stationary point in the phase function is
(ξ, 0), and with each integration by parts we gain a power of the distance to
the support.

�

Theorem 5.12. The kernel K(x, y) of Opta(x,D) with a ∈ S0
1,0 satisfies

|K(x, y)| ≤ C|x− y|−n, |∇x,yK(x, y)| ≤ c|x− y|−n−1

In particular Opt a for a ∈ S0
1,0 defines a Calderón-Zygmund operator

with p0 = 2. The boundedness on L2 is a consequence of the Theorem of
Calderón-Vaillancourt, and the kernel estimates (which have to be verified)
imply that the assumption on the kernel of Theorem 5.4 is satisfied. It
suffices to prove the bound for K ∇yK for t = 1 by the previous lemma.

Proof. Let φ ∈ C∞(Rn) be nonnegative, radial, supported in B2(0),
indentically 1 on B1(0). Let

η0(x) = φ

and

ηj(x) = φ(2j+1x)− φ(2jx)

fpr j ≥ 1. Then ∑
j

ηj(x) = 1

for x 6= 0. We define

aj(x, ξ) = ηj(ξ)a(x, ξ)

and

kj(x, z) =
(
F−1
ξ aj

)
(x, z)

Then (this follows by several integrations by parts)

(5.7) |∂αx ∂βz kj(x, z)| ≤ c(M,α, β)2jn+|β|(1 + 2j |z|)−M

if j ≥ 1 and, since a0 is a Schwartz function with respect to ξ

(5.8) |∂αx ∂βz k0(x, z)| ≤ c(M,α, β)(1 + |z|)−M .

The case |z| ≥ 2−j−2 is the first inequality is see by scaling ξ = 2j ξ̃, x =
2−j x̃. The case |z| ≤ 2−j−2 follows by integration.

Finally

k(x, z) =
∑
j

kj(x, z)

satisfies

|∂αx ∂βz k(x, z)| ≤ c|z|−n−|α|
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We claim that
K(x, y) = k(x, x− y)

satisfies the Calderón Zygmund condition, as well as K(y, x). Then

|∇yK(x, y)| ≤ C|x− y|−n−1

�





CHAPTER 6

Hardy and BMO

This section follows to a large extend the work of Fefferman and Stein
[6] and Stein [13].

1. More general maximal functions and the Hardy space Hp

We fix a measurable function φ for which there is a radial and radially
decreasing majorant φ∗, |φ| ≤ φ∗. Then we have seen that

|φ ∗ f(x)| ≤ cMf(x).

We define φt(x) = t−nφ(x/t).
For N ∈ N we define the norm

‖f‖N = sup
|α|+|β|≤N

sup
x
|xα∂βf |

and the set of functions

FN = {φ : ‖Φ‖N ≤ 1}.
Definition 6.1. We define

(6.1) Mφf(x) = sup
t
|f ∗ φt(x)|,

the nontangential version

(6.2) M∗φf(x) = sup
t

sup
|y|≤t
|f ∗ φt(x+ y)|

and the ’grand’ maximal function

(6.3) MNf(x) = sup
φ:‖φ‖N≤1

sup
t
|f ∗ φt(x)|.

It is important in the following theorem that we allow p ≤ 1.

Theorem 6.2. Let f be a tempered distribution and 0 < p ≤ ∞. Then
the following conditions are equivalent

(1) There exists φ ∈ S(Rn) with
∫
φ = 1 so that Mφf ∈ Lp.

(2) There exist seminorms N so that MNφ ∈ Lp
(3) M∗

e−π|x|2
f ∈ Lp.

We define the real Hardy space Hp as the set of all functions for which
the equivalent conditions of the Theorem hold.

If p > 1 then any maximal function of f majorizes a multiple of f .
The second and the third are bounded by the standard Hardy-Littlewood
maximal function and hence Hp = Lp in that case.

For p = 1 the same argument shows that H1 ⊂ L1. The spaces Lp for
p < 1 are defined in the obvious fashion. They are not Banach spaces, and
they do not imbed into the space of distributions.

87
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There are typical elements of Hp called atoms.

Definition 6.3 (Atoms). Let 0 < p ≤ 1 A p atom is a bounded function
a for which there is a ball B = Br(x0) so that

supp a ⊂ B

|a| ≤ |B|−1/p∫
xαadx = 0

for all multiindices α with

|α| ≤ n(
1

p
− 1)

Lemma 6.4. Let φ ∈ S(Rn) and let a be a atom with the ball Br(x0).
Then there exist ε and c so that

Mφa ≤ C|Br(x0)|−1/p(1 +
|x− x0|

r
)
−n
p
−ε(n,p)

In particular ∫
|Mφa|pdx ≤ c(n, p).

Proof. Exercise �

We introduce a modified nontangential maximal function for a ≥ 1

Maf(x) = sup
t

sup
|y|≤at

|f ∗ φt(x− y)|

Lemma 6.5.
‖Maf‖Lp ≤ can/p‖f‖Lp

Proof. The claim follows from

(6.4) |{x : Maf > λ}| ≤ can|{x : M∗φf > λ}|
by integration.

Let O = {x : M∗φf > λ}. Suppose that Maf(x) > λ. Then there exist

(x̃, t̃) with f ∗ φt̃(x̃) > λ and |x− x̃| ≤ at. Then Bt(x̃) ⊂ O and hence

|O ∩Bat(x)|
|Bat(x)|

> a−n.

Let A = Rn\O and

A∗ = {x ∈ A :
|O ∩Br(x)|
|Br(x)|

< a−n for some r}

Then

(6.5) |Rn\A∗| ≤ (3a)n|Rn\A|
implies (6.4).

To prove (6.5) we turn to an argument in measure theory. Suppose that
A ⊂ Rn is a closed set and let 0 < γ < 1 (γ = 1− a−n) . Let A∗ ⊂ A be the
set of all points x so that

|A ∩B|
|B|

≤ γ
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for some ball B containing x. Then

Rn\A∗ =
{
x : M(χRn\A) > 1− γ

}
and by the estimate for the maximal function

|Rn\A∗| ≤ 3n

1− γ
|Rn\A|

�

For the proof of Theorem 6.2 we have to study the effect of changing the
function is the definition of the maximal function. This is the easier part of
the proof.

Lemma 6.6. Let φ, ψ ∈ S with
∫
φ = 1. For all M > 0 There exists a

sequence η(k) ∈ S such that for all N

‖η(k)‖N ≤ cN,M2−kM

and

ψ =
∑

η(k) ∗ Φ2−k

Proof. We fix ρ ∈ C∞0 (B2(0)), identically 1 on B1 and define

ρk(ξ) = ρ(2−kξ)− ρ(21−kξ)

for k ≥ 1 and ρ0 = ρ. Then

ψ̂ =
∞∑
k=0

ρkψ̂.

Now 1 =
∫
φdx = φ̂(0). Without loss of generality we assume |φ̂(ξ)| ≥ 1

2 for
|ξ| ≤ 2. Then

ψ̂(ξ) =

∞∑
k=0

ρk(ξ)

φ̂(2−kξ)
Ψ̂(ξ)φ̂(2−kξ) = η̂(k)φ̂(2−kξ)

Now Ψ̂ is a Schwartz function which leads to the claimed decay. �

The proof gives actually a stronger statement: Given M there exists N
so that the claim holds for ‖ψ‖N <∞.

We turn to the proof of the theorem.

Proof. Let Φ ∈ S with
∫

Φ = 1. We claim that there is are constants
c and N so that

(6.6) ‖MNf‖Lp ≤ c‖M∗Φf‖Lp

and

(6.7) ‖M∗Φf‖Lp ≤ c‖MΦf‖Lp

These two estimates imply all assertions of the theorem.
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To proof the first inequality we choose ψ ∈ S. The expansion gives

Mψf(x) = sup
t
|f ∗ ψt(X)| ≤ sup

t>0

∞∑
k=0

|f ∗ Φ2−kt ∗ η
(k)
t (x)|

≤ sup
t
t−n

∑
k

∫
|f ∗ Φ2−kt(x− y)||η(k)(y/t)|dy

≤ sup
t

∑
k

sup
y
|f ∗ Φ2−kt(x− y)|(1 +

|y|
2−kt

)−N
∫
t−n(1 +

|y|
2−kt

)N |η(k)(y/t)|dy

with N > n/p and

t−n
∫

(1 +
|y|

2−kt
)N |η(k)(y/t)|dy ≤ c2−k

if (which is ensured by Lemma 6.6 )

‖η(k)‖N+n ≤ c2−k(N+1).

We claim that

(6.8) ‖ sup
t

sup
y
|f ∗ Φt(x− y)(1 +

|y|
t

)−N‖Lp ≤ c‖M∗φf(x)‖Lp .

Then

sup
t

sup
y
|f ∗ Φt(x− y)(1 +

|y|
t

)−N ≤ sup
j=0,1...

2−jNM2jf(x)

and the assertion follows Lemma 6.5.
This implies (6.6).

To complete the proof we will prove

(6.9) ‖M∗φf‖Lp ≤ c‖f‖Lp .
Let

Fλ = {x : MNf(x) ≤ λM∗φf(x)}.
Since ∫

Rn\F
|M∗Φf |pdx ≤ λ−p

∫
Rn\F

|MNf |pdx ≤ cpλ−p
∫
|M∗Φf |pdx

we obtain ∫
Rn
|M∗Φf |pdx ≤ 2

∫
F
|M∗Φf |pdx

provided we choose λp ≥ 2cp.
We claim that on F and any q > 0

(6.10) M∗Φf(x) ≤ c[M |MΦf |q(x)]1/q.

This implies the desired estimate via∫
Rn
|M∗Φf |pdx ≤ 2

∫
F
|M∗Φf |pdx ≤ c1

∫
[M |MΦf |q]p/qdx ≤ c2

∫
|MΦf |pdx

by the estimate for the Hardy-Littlewood maximal function. It remains to
prove (6.10). Let

f(x, t) = f ∗ Φt(x), f∗(x) = M∗Φf(x)
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By definition, for any x there exists (y, t) with |x− y| ≤ t so that

|f(y, t)| ≥ f∗(x).

By the fundamental theorem of calculus

|f(x′, t)− f(y, t)| ≤ rt sup
|z−y|<rt

|Dxf(z, t)|

for |x′ − y| ≤ rt. However

∂xif(z, t) =
1

t
f ∗ (∂iΦ)t(z)

hence

|f(x′, t)− f(y, t)| ≤ cfMNf(x) ≤ crλM∗Φf(x) = cλrf∗(x)

if x ∈ F . We take r so small that cλr ≤ 1
4 to achieve

(6.11) |f(x′, t)| ≥ 1

4
f∗(x)

for |x′ − y| ≤ rt. Thus

|M∗Φf(x)|q ≤
(

1 + r

r

)n 4q

|B(1+r)t(x)|

∫
Bx,(1+r)t

|f(x′, t)|qdx′

≤cM [(MΦf)q](x).

The second inequality follows from

|f(x′, t)| ≤Mφ(x′)

and the first from the lower bound (6.11).
There is a last tricky part: We severely used that ‖M∗φf(x)‖Lp <∞. To

deal with that we repeat the arguments with

M ε,L
Φ f(x)) = sup

|x−y|<t<ε−1

|f ∗ Φt(y)| tL

(ε+ t+ ε|y|)L

instead of M∗. If f is a tempered distribution we choose L large and ε small

so that ‖M ε,L
Φ f‖Lp <∞

Then we introduce the factor

tL(ε+ 2−kt+ ε|x− y|)L

ε+ t+ ε|x|)−L(2−kt)−L(1 + 2k|y|
t )N

≤ c2kL(1 +
|y|
t

)L(1 +
2k|y|
t

)N

as suitable points. We complete the proof as above.
�

2. The atomic decomposition

The key part of the proof is a refined Calderón-Zygmund decomposition.
We recall that we can write any nonempty set U ⊂ Rn, U 6= Rn as the

union of dyadic cubes

Qkl = 2l([0, 1)n + k)

such that the length of the edge is at least the distance to the complement,
and at most n times the distance. We fix two numbers 1 < a < b < 1+1/(4n)

and denote Q̃ = aQ, Q∗ = bQ where aQ resp bQ denotes the cube Q scaled
by a with center the center of the cube.
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Proposition 6.7. Let f ∈ L1
loc with M

e−2π|x|2f ∈ L1 and λ > 0. Then
there is a decomposition

f = g + b, b =
∑

bk

and a collection of dyadic cubes Qk so that

(1) |g| ≤ c(n)λ
(2) supp bk ⊂ Q∗k and

∫
bkdx = 0

(3) The Qk are disjoint and⋃
Qk = {x : MNf > λ}

Proof. We fix ζ ∈ C∞0 ((0, 1)n)∗), identically one on [0, 1]n. For k ∈ Zn
and l ∈ Z we define

ζkl = ζ(2−lx− k)

which is supported in Q∗kl and identically 1 in Q̃kl.
Let O = {x : MNf(x) > λ}, let Qkj ,lj be a Whitney decomposition

(with disjoint cubes, and edge lengths comparable to the distance to the
complement), and

ηj =
ζkj ,lj∑
i ζki,li

a partition of unity. Then, if lj is the edge length,

|∂αηj | ≤ c2−lj |α|.
We define

bj = (f − cj)ηj , cj =

∫
fηjdx∫
ηj

Then, by the definition of Qj there exist r and x ∈ Rn\O such that

Qj ⊂ Br(x0)

and r ≤ c(n)|Qj |1/n. But then

‖ηj(
x− x0

r
)‖N ≤ c(n)

and ∣∣∣∣∫ ηjfdx

∣∣∣∣ ≤ c(n)rnMNf(x0) ≤ c(n)rnλ.

Thus

|cj | ≤ c(n)λ.

Now

|g| ≤ cMNf(x) ≤ cλ
for X /∈ O. Together this gives the bound on g. �

Theorem 6.8. Suppose that 0 < p ≤ 1 and f ∈ Hp. Then there exists
a sequence of p atoms aj and a summable sequence λj so that

f =
∑

λjaj

and ∑
|λj |p ≤ c(n, p)‖Me−π|x|2

f‖pLp .
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Remark 6.9. Since

|Mφ

∑
j

λjaj |p ≤
∑
j

|λj |p|Mφaj |

=
∑
j

|λj ||Mφaj |p

any such sum is bounded in Hp. The sum∑
λj

aj

converges in the space of tempered distributions.

Proof. We only consider p = 1. We have seen that H1 ⊂ L1. Let
f ∈ H1. It is integrable. For each integer l we apply the Calderón-Zygmund
decomposition at level 2l and we write f = gl + bl, bl =

∑
j b
l
j .

We claim that

gl → f

in H1 for l→∞, or, equvalently, ‖bl‖H1 → 0 as l→∞. This follows from

‖bl‖H1 ∼
∫
M
e−π|x|2

bjdx

≤
∑
j

∫
M
e−π|x|2

bjkdx

≤
∫
⋃
Qlj

(MNf)dx

=

∫
MNf>2l

MNfdx→ 0

Since |gl| ≤ c2l we have gl → 0 as l→ −∞ in the sense of distributions.
Hence

f =
∑
l

gl+1 − gl =
∑
l

bl − bl+1

in the sense of distributions. The difference gl+1 − gl is supported in

Ol = {x : Mnf > 2k}

and

gl+1 − gl = bl − bl+1 =
∑
j

(f − clj)ηlj −
∑
j

(f − cl+1
j ηl+1

j ) =
∑
j

Alj

with

Alj = (f − clj)ηlj −
∑
m

(f − cl+1
m )ηl+1

m ηlj +
∑
m

cj,mη
l+1
m

with

cj,m =

∫
(f − cl+1

m ηlj)η
l+1
m dx∫

ηl+1
m dx

,
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since ηlj is a partition of unity and hence∑
j

cj,m = 0.

Then ∫
Aljdx = 0

suppAlj ⊂ Q̃
l,∗
j

|Alj | ≤ c2l

by construction. We set

alj = c−12−l|Qlj |−1Alj

and

λlj = c2l|Qlj |.

Then the alj are atoms, and∑
λlj = c

∑
2l|Qlj | = c

∑
l

2l|{MNf > 2l}| ≤ c
∫
MNfdx.

�

It is not hard to see that H1 is a Banach space. We can use the atomic
decomposition to define a norm:

(6.12) ‖f‖H1 = inf{
∑
|λk| : there exists atoms with f =

∑
λkak}.

It is a consequence that the span of atoms is dense in H1.

Corollary 6.10. Let T be a Calderón-Zygmund operator. Then T
defines a unique continuous operator from the Hardy space H1 to L1. If T is
a convolution operator satisfying the assumptions of the Mihlin-Hörmander
theorem then T defines a unique continuous operator on H1.

Proof. We only prove the first part. The second part is an exercise.
Let a be an atom. We want to prove that

‖Ta‖L1 ≤ c(n).

By translation invariance we may assume that the corresponding ball has
center 0, and be rescalling we may assume that the radius is 1. Then

‖Ta‖Lp0 ≤ c‖a|Lp0 ≤ c(n)

where p0 is the exponent of the Calderón-Zygmund operator. We use this
bound on B2(0). Outside we argue as for the proof of the boundedness of
Calderón-Zygmund operators.

Now let f ∈ H1. By the atomic decomposition

f =
∑

λjaj

We define

Tf =
∑

λjTaj
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where the right hand side converges in L1. There is no other choice for the
definition, but wellposedness has to be proven. Suppose

f =
∑

λjaj =
∑

µjbj

with atoms (aj), (bj) and summable sequences λj and µj . We have to show
that for ε > 0 there exists N0 so that for all t > 0 and N > N0

(6.13) |{x : |
N∑
j=1

λjTaj −
N∑
j=1

µjTbj | > t}| < ε/t.

Then
∞∑
j=1

λjTaj =

∞∑
j=1

µjTbj

follows. Inequality (6.13) follows from two properties:

(1) The weak type inequality for Calderón Zygmund operators

|{x : |Tg(x)| > t}| ≤ c

t
‖g‖L1

(2) The convergence of the partial sums in L1.

By the convergence there exists for ε̃ > 0 and N0 so that

‖
∞∑
j=1

λjajdx−
N∑
j=1

λjaj‖L1 + ‖
∞∑
j=1

µjbjdx−
N∑
j=1

µjbj‖L1 < ε̃

and then

|{x : |
N∑
j=1

λjTaj −
N∑
j=1

µjTbj | > t}| < cε′/t.

�

3. Duality and BMO

Definition 6.11. Let f ∈ L1
loc(Rn). The sharp maximal function is

defined by

f ](x) = sup
Br(y)3x

|Br(y)|−n
∫
Br(y)

∣∣∣∣∣f(w)− |Br(y)|−1

∫
Br(y)

f(z)dz

∣∣∣∣∣ dw ∈ [0,∞]

Properties

(1) (f + g)](x) ≤ f ](x) + g](x)
(2) f ](x) ≤ 2Mf(x). Hence ‖f ]‖Lp ≤ cn p

p−1‖f‖Lp

Definition 6.12. We define BMO as the space of all function for which
the (semi) norm

‖f‖BMO = ‖f ]‖sup
is finite.

Certainly L∞ ⊂ BMO. Moreover ln(|x|) ∈ BMO.
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Theorem 6.13. Let L : H1 → R be a continous linear map. Then there
exists f ∈ BMO such that for every atom

(6.14) L(a) =

∫
afdx,

‖f‖BMO = ‖L‖(H1)∗ .

Vice versa: let f ∈ BMO. Then (6.14) defines a continuous linear func-
tional on H1.

Proof. We prove the second part first. If a is an atom with ball B then∫
fadx =

∫
B

(f − fB)adx ≤ ‖f − fB‖L1(B9)‖a‖L∞ ≤ f ](x0).

thus for f ∈ L∞ and g ∈ H1 or f ∈ BMO and g ∈ H1
a∫

fgdx ≤ ‖f‖BMO‖g‖1H

This implies the second statement.
Now let L be a linear function on H1 of norm at most 1. let B be a ball.

Then

L2(B) 3 f → L(f − fB)

defines a linear functional on L2 which is represented by a function gB so
that

L(f − fB) =

∫
gBfdx

and in particular
∫
B g

b = 0. We search for a function g so that

g − gB = gB

for all balls B. Let B ⊂ B′ be two balls and gB resp. gB
′

the functions
constructed above. For f ∈ L2(B) with

∫
fdx = 0 we have

L(f) =

∫
B
fgBdx =

∫
B′
fgB

′
dx

thus for such f ∫
B

(gB − gB′)fdx = 0.

Thus gB − gB′ is constant on B. We define

g = gB1(0)

if |x| < 1. Choose

cR = gBR(0) − g
for x ∈ B1(0) and define

g(x) = gBR(0)(x)− cR
for |x| < R and R ≥ 1. This gives a consistent choice, and by the consider-
ations of the first part g ∈ BMO. �

The following theorem has been proven by different methods by John
and Nirenberg [8].
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Theorem 6.14 (John-Nirenberg inequality). There exists δ > 0 such
that for all balls B and all functions f ∈ BMO∫

B
e
δ
|f(x)−fB |
‖f‖BMO dx ≤ c|B|

Proof. This is a consequence of the previous proof and the bound for
the maximal function. We assume that ‖g‖BMO ≤ 1. If p > 1 and g ∈
Lp
′
(B) with

∫
B g = 0 then

‖g‖H1 ≤ c
p′

1− p′
|B|1−

1
p′ ‖g‖Lp′ = p|B|

1
p ‖g‖Lp′

Then

|B|−1‖f − fB‖pLp ≤ cp
p‖g‖pBMO

and by Tschebychev

|{x ∈ B : |f − fB| > λ}| ≤ (cp)p

λp
|B|.

If λ > 1
2c we choose p = λ/(2c) and get

|{x ∈ B : |f − fB| > λ}| ≤
(

1

2

) λ
2c

|B| ≤ e−δλ|B|.

The assertion follows by integration with respect to λ. �

Theorem 6.15. Let 1 < p0 < ∞, T : Lp0(Rn) → Lp0(Rn) linear and
continuous with an integral kernel K(x, y) which satisfies∫

Rn\B2|y−ỹ|(y)
|K(x, y)−K(x̃, y)|dy ≤ A

Then

‖Tf‖BMO ≤ c‖f‖L∞

Proof. We fix a ball B = Br(x0) and ω = |B|. We decompose f =
f1 +f2 = χB2r(x0)f +χRn\B2r(x0)f and use Jensen’s inequality to control the
first term.

ω−1

∫ ∣∣∣∣Tf1 − ω−1

∫
Tf1

∣∣∣∣ ≤(ω−1

∫
|Tf1|p0

) 1
p0

≤Aω−1/p0‖f1‖Lp0
≤‖f‖L∞

Since for x, x̃ ∈ B1

|Tf2(x)− Tf2(x̃)| =

∣∣∣∣∣
∫
Rn\BR(x0)

(K(x, y)−K(x̃, y))f(y)dy

∣∣∣∣∣
≤
∫
Rn\B2R(x0)

|K(x, y)−K(x̃, y)|dy‖f‖L∞

≤A‖f‖L∞ .

�
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Theorem 6.16. The inequality∫
fgdx ≤ c

∫
f ]MNgdx

holds whenever g ∈ H1 and f is bounded.

Proof. We apply the atomic decomposition, together with its proof.
We have

g =
∑

λj,la
l
j

Then ∫
fgdx =

∑
λj,l

∫
Q̃lj

fajkdx

=
∑
j,l

∫
Q̃lj

(f − fBlj )a
j
kdx

≤
∑
j,l

λj,l

|Qlj |

∫
Qlj

f ](x)dx

=c
∑
l

2k
∫
MNG>2l

f ](x)dx

≤c
∫
f ]Mngdx

�

Corollary 6.17. Suppose that 1 < p <∞. Then

‖f‖Lp ≤ cp‖f ]‖Lp

Proof. Suppose that f ∈ Lp ∩ L∞. Then

‖f‖Lp = sup
‖g‖

Lp
′≤1

∫
fgdx

= sup
g∈H1,‖g‖

Lp
′≤1

∫
fgdx

≤cn sup
g∈H1,‖g‖

Lp
′≤1

∫
f ]Mgdx

≤cn sup
g∈H1,‖g‖

Lp
′≤1

‖f ]‖Lp‖Mg‖Lp′

≤cnp‖f ]‖Lp .
�

4. Relation to harmonic functions

We consider harmonic functions u on the upper halfplane {xn+1 > 0} in
Rn+1. We denote the coornate xn+1 = t.

If u is such a function we define

u∗(x) = sup
t>0
|u(x, t)|

with x ∈ Rn.
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Theorem 6.18. The following is equivalent.

(1) u∗ ∈ Lp
(2) There exists f ∈ Hp so that

u(t, x) = Pt ∗ f
where

Pt(x) = cn
t

(|x|2 + t2)
n+1
2

is the Poisson kernel.

Proof. We restrict the proof to p > n
n+1 . We observe that

Pt(x) = t−n
1

(1 + (|x|/t)2)
n+1
2

=: t−nφ(x/t)

satisfies
|xα∂βxφ| ≤ cαβ

and hence, with u(t, x) = Pt ∗ f
‖u∗‖Lp ≤ c‖Me−π|x|2

f‖Lp
A closer check shows that the condition p > n

n+1 is not needed.

Now suppose that u∗ ∈ Lp. We claim that with fε = u(ε, x)

Pt ∗ fε = u(ε+ t, x)

Both functions are bounded and harmonic and they coincide on Rn. By
Liouville’s theorem they are equal. Thus the family fε is uniformly bounded
in Hp. Hence there is a sequence fεj converging to some f in the sense of
distributions. But then

u(t, x) = Pt ∗ f
and f ∈ Hp. �

Proposition 6.19 (Analog of Cauchy-Riemann). Suppose that

F = (u0, u1, . . . un)

are harmonic functions which satisfy the Cauchy-Riemann type equations

∂tu
ε
0 +

n∑
j=1

∂uεj
∂xj

= 0,
∂uj
∂xi

=
∂ui
∂xj

.

Then
‖ sup
t>0
|u0(x, t)|‖L1 ≤ c sup

t
‖F (., t)‖L1 .

Proof. The key fact is that

|F |q

is subharmonic for q > n−1
n as in Chapter 3 for n = 2. The claim follows as

in Theorem 3.16 based on Proposition (3.14). �

Theorem 6.20. Let f ∈ L1. Then f ∈ H1 iff Rjf ∈ L1 for all Riesz
transforms.

Remark 6.21. The Riesz transforms define a distribution, which we
assume to be in L1.
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Proof. We define

Fε = (uε0, u
ε
1, . . . u

ε
n)

where

uε0(t, x) = f ε ∗ Pt
uεj(t, x) = f ε ∗Qjt

with

Qj1 =
cnxj

(1 + |x|2)
n+1
2

.

Then

∂tu
ε
0 +

n∑
j=1

∂uεj
∂xj

= 0,
∂uj
∂xi

=
∂ui
∂xj

and

|Fε(x, t)| ≤ |Fε(., 0)| ∗ Pt(x)

Since

Fε(x, 0) = (f ∗ φε, Rjf ∗ φε)
we get

‖|Fε|‖L1 ≤ c
By Fatou

sup
t>0

∫
Rn
|F (x, t)|dx ≤ c

�

5. Div-curl type results

Here we follow Coifman, Lions, Meyer and Semmes [3, 4].

Corollary 6.22 (div-curl lemma 1). Let n ≥ 2, 1
p + 1

q = 1, 1 < p, q <

∞, f, g ∈ Lp(Rn;Rn)

div f ∈ Lp, curl g ∈ Lq.
Then

〈f, g〉 ∈ H1

Proof. We fix φ ∈ C∞0 (Rn) supported in B2(0), idntically 1 on B1/2(0)

with
∫
φdx = 1. Then g = ∇G for some function g and

〈f, g〉〈f,∇G〉 = ∇ · (Gf)

and

∇ · (Gf)φt(x) =− t−1

∫
Gf(x− y)(∇φ)t(y)dy

≤t−1−n‖G‖Lr(B2t(x))‖f‖Lr′ (B2t(x))

≤t−1−n‖g‖Lr̃(B2t(x))‖f‖Lr(B2t(x))

≤2n(M |g|r̃(x))1/r̃(M |f |r′(x))1/r′

hence

Mφ〈f, g〉(x) ≤ 2n‖M |g|r̃‖1/r̃
Lp/r̃
‖M |f |r′‖1/r

′

Lq/r
′ ≤ c‖g‖Lp‖f‖Lq
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provided

1 < r̃ < p, 1 < r′ < q,
1

r̃
+

1

r′
= 1 +

1

n
�

Corollary 6.23. Let f and g as above, n = 2 and

∆u = 〈f, g〉.
Then u is continuous.

Corollary 6.24. Let u : R→ Rn satisfy ∂ju
i ∈ Ln. Then

det(Du) ∈ H1

Proof. We expand the determinant with respect to the first row. Then

detDu = 〈∇u, F 〉
where F is given by subdeterminants. For smooth function

∂iF
i = 0

(see Evans, Partial Differential Equations, Theorem 2 in Section 8.1) and
hence this is true for the functions at hand. The statement follows now from
the previous assertion. �

Remark 6.25. If f ∈ H1 is nonnegative on B1(0) then∫
B1/2(0)

f | ln f |dx ≤ c

Hence the determinant has some higher integrability if it is nonnegative.

Let (u, p) be a solution to the Navier-Stokes equations. Then

∆p = −
n∑

i,j=1

(∂ju
i)(∂iu

j)

and
∑n

i=1 ∂iu
i = 0. We fix i. Then

curl∇ui = 0 and ∇ · ∂iu = 0

and hence
∆p ∈ H1

Then, if n = 2
‖p‖sup ≤ c‖∇u‖2L2

6. Application to elliptic PDEs

Let U ⊂ Rn be open. We denote by H1(U) the set of all functions in
L2(U) with distributional derivatives in L2, with norm

‖u‖2H1 = ‖u‖2L2 + ‖|Du|‖2L2 .

It is a closed subspace of the Hilbert space (L2)n+1 and hence a Hilbert
space with inner product

〈u, v〉 =

∫
uv̄ +

∑
j

∂ju∂jvdx
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We denote by H1
0 (U) the closure of C∞0 (U). It encodes the boundary value

0. We assume n ≥ 3 and we will rely on two properties for balls B = Br(x0),
the Sobolev inequality

(6.15) ‖u‖
L

2n
n−2 (B)

≤ c‖|Du|‖L2(B) for u ∈ H1
0 (B1)

and the composition with Lipschitz functions g with g(0) = 0,

(6.16) ‖g ◦ u‖H1 ≤ ‖g‖Lipschitz‖u‖H1 .

Let (aij)1≤i,j≤n be real functions in L∞(U) such that there exists κ > 0
with ∑

i,j

aijξiξj ≥ κ|ξ|2

for almost every x and every ξ ∈ Rn.
Let f, F j ∈ L2(U). We call u a weak solution to∑

i,j

∂ia
ij∂ju =

∑
i

∂if
i + g

if this equation holds in the sense of distributions. In that case it holds
in (H1

0 )∗ - i.e. we may test it with functions in H1
0 instead of C∞0 . If U

is bounded then the Lemma of Lax-Milgram and the Poincaré inequality
imply existence of a unique weak solution u ∈ H1

0 (U).

Theorem 6.26. There exists C such that the following is true. Let
u ∈ H1(B1(0)) be a nonnegative weak solution to

n∑
i,j=1

∂ia
ij∂ju = 0

in a ball B. Then the Harnack inequality

sup
x∈ 1

2
B

u ≤ C inf
x∈ 1

2
B
u.

holds.

This has been proven by different methods by De Giorgi [5] and Nash
[12, 11]. We follow the proof of Moser [9].

Proof. We begin with the preliminary L∞ estimate with a technique
known as Moser iteration.

Lemma 6.27. There exists c depending only on n, ‖aij‖∞/κ such that
the following is true. Suppose that u is a solution on B1(0). Then

‖u‖L∞(B1/2(0)) ≤ c‖u‖L2(B1(0))

Proof. Given 1
2 ≤ r < R ≤ 1 let

η(x) =


1 if |x| ≤ r
0 if |x| ≥ R
R−|x|
R−r if r ≤ |x| ≤ R
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Then, neglecting that f(u) = |u|2(p−1)u is not Lipschitz (this can be fixed
by truncating at height H, and letting H →∞,

0 =

∫
B1(0)

aij∂iu∂j(η
2|u|2(p−1)u)dx

=
2p− 1

p2

∫
B1(0)

aij∂i(η|u|p−1u)∂j(η|u|p−1u)dx

− (2
2p− 1

p2
− 2

p
)

∫
aij(∂iη)∂j(η|u|p−1u)|u|p−1udx

− (
2

p
− 2p− 1

p2
)

∫
(aij∂iη∂jη)|u|2pdx

=
2p− 1

p2

∫
aij∂iv∂jvdx

− 2(p− 1)

p2

∫
aij∂iv(∂jη)|u|p−1udx

− 1

p2

∫
aij(∂iη)(∂jη)|u|2pdx

and hence, with v = η|u|p−1u,

(6.17) ‖u‖2p
L

2pn
n−2 (Br(0))

≤ c‖v‖2H1 ≤
c

(R− r)2
‖u‖2p

L2p(BR(0))

For k ∈ N we write pk =
(

n
n−2

)k
, and for 1 ≤ j ≤ k we set rj = 1 − 1

2j .

Then

‖u‖L2pk (Brk ) ≤
(
c(k − 1)2

)1/pk ‖u|L2pk−1 (Brk−1
)

≤
k∏
j=1

(cj2)(n−2
n

)j‖u‖L2(B1).

Since
k∏
j=1

(cj2)(n−2
n

)j = exp

(
j∑
i=1

(ln c+ 2 ln i)(
1
n
n−2

)i

)
is uniformly bounded we obtain the statement of the Lemma. �

Now let u be a positive solution. The we obtain (6.17) for p > 0 as long
as we avoid p = 1/2. In this case, if 1 > p0 > 0

(6.18) ‖u‖L∞(B1/4(0)) ≤ c‖u‖Lp0 (B1/2(0))

and, with negative exponents (how we have to add ε to get a Lipschitz
function)

(6.19) ‖u−1‖L∞(B1/4(0)) ≤ c‖u−1‖Lp0 (B1/2(0)).

Suppose we knew that there exists p0 so that

(6.20) ‖u‖Lp0 (B1/2(0))‖u−1‖Lp0 (B1/2(0)) ≤ C
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Then

sup
x∈B1/4

u(x)dx ≤c1

∫
B1/2

up0dx)1/p0dx

≤c2(

∫
B1/2

u−p0dx)
− 1
p0

≤c3 inf
x∈B1/4

u(x)

which implies the claim by a covering argument.
We claim that v = η(lnu− lnuB) ∈ BMO and

‖v‖BMO ≤ c(n)

Then, by the inequality of John-Nirenberg, Theorem 6.14,∫
B
eδ|v−vB |dx ≤ c(n)

and hence,∫
B
uδdx

∫
u−δdx =

∫
B
eδ(v−vB)dx

∫
B
e−δ(v−vB)dx ≤ c(n)2.

and this implies the previous statement.
We repeat the calculation above for p = 0, and η̃ as above, but related

to a ball Br(x0) ⊂ B1(0),

0 =

∫
B1(0)

aij∂iu∂j(η̃u
−1)dx

=

∫
B1(0)

aij∂iu(∂j η̃)udx−
∫
aij η̃∂iu∂juu

−2dx

=

∫
B1(0)

aij∂i(lnu)∂j η̃dx−
∫
η̃aij∂i(lnu)∂j(lnu)dx

‖∇ ln(u)‖H1(B5/6(0)) ≤ c
and hence, by Poincaré’s inequality∫

B3/4

| ln(u)− ln(u)B3/4
|dx ≤ c.

We obtain for all balls contained in B3/4

‖∇ lnu‖L2(Br(x)) ≤ cr−2

hence (with Lemma 6.31 and more arguments, sorry, I’ll complete that later)

‖η(lnu− (lnu)B)‖BMO ≤ c
�

Theorem 6.28. p > n and q > n/2. Then there exists s > 0 so that the
following is true. Suppose that F i ∈ Lp(B), f ∈ Lq(B), u ∈ H1,

1− n

p
= 2− n

q
= s

n∑
i,j=1

∂ia
ij∂ju = ∂iF

i + g in B
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Then

sup
x,y∈ 1

2
B,x 6=y

|u(x)− u(y)|
|x− y|s

≤ c
[
R−

n
2
−s‖u‖L2(B) +R

1−n
p
−s‖F‖Lp+R

2−n
q
−s‖f‖Lq

]
Proof. We prove this statement first for F = g = 0 and B = B1(0).

Let

ωk = sup
B

2−k

u− inf
B

2−k
u.

We claim that there exists γ < 1 depending only on the quantities of the
Harnack inequality so that

(6.21) ωk+1 < γωk.

Indeed, by the Harnack inequality applied to

vk = u− inf
B

2−k
u,wk = sup

B
2−k

u− u

sup
B

2−k−1

u ≤ inf
B

2−k
u+ C( inf

B
2−k−1

u− inf
B

2−k
u)

and

inf
B

2−k−1

u ≥ sup
B

2−k

u− C( sup
B

2−k−1

u− sup
B

2−k

u)

hence

(1 + C)ωk+1 ≤ (C − 1)ωk,

which implies (6.21) with γ = C−1
C+1 < 1. Then, if 2−k−1|x| ≤ 2−k

|u(0)− u(x)| ≤ ωk ≤ γkω0 ≤ γ− ln |x|‖u‖L2(B10)

and

γ− ln |x| = e− ln γ ln |x| = |x|− ln |γ|.

�

Now we consider U = Rn.

Theorem 6.29. Let n ≥ 3 There is a Green’s function on Rn which
satisfies

|g(x, y)| ≤ c|x− y|2−n, |g(x, y)− g(x̃, y)| ≤ |x− x̃|s

(|x− y|+ |x̃− y|)2+s−n

Proof. Let F and f be supported in B1(0). By Lax Milgram (with

H the space of functions in L
2n
n−2 with derivatives in L2, equipped with the

norm
∫
|Du|2dx) there is a unique solution u ∈ H1

loc with Du ∈ L2 and

u ∈ L
2n
n−2 and

‖u‖
L

2n
n−2

+ ‖Du‖L2 ≤ c
[
‖F‖L2(B1(0)) + ‖g‖

L
2n
n+2 (B1(0))

]
.

By the previous Hölder estimate, if |x0| = 3,

‖u‖Cs(B1(x0)) ≤ c
[
‖F‖L2(B1(0)) + ‖g‖

L
2n
n+2 (B1(0))

]
We fix x and consider

L
2n
n+2 (B1(0)) 3 f → ux.
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By duality there exists a unique gx(y) with

sup
x
‖gx(y)‖

L
2n
n−2
≤ C

and

u(x) =

∫
gx(y)f(y)dy.

Clearly

〈∂iaij∂ju, v〉 = 〈∂iaji∂jv, u〉
Let T : f → u. Then

〈Tf, h〉 = 〈f, Th〉
This operator is self adjoint. Hence gx(y) = gy(x) and, repeating the previ-
ous argument we obtain the assertion.

�

Now we complete the prove of Theorem 6.28 by using the kernel esti-
mates. Let gx(y) be the Green’s function. We claim that

|
∫
B1

(gx(y)− gx̃(y))f(y)dy| ≤ c|x− x̃|s‖f‖Lp(Rn)

By rescaling and translating we may assume that x̃ = 0 and |x| = 1. We
decompose f = f1 + f2 with f1 = χB2(0)f . Then∣∣∣∣∣

∫
B2(0)

g0(y)f(y)dy

∣∣∣∣∣ ≤ ‖f‖Lp‖g0(.)‖Lp′ (B2(0))

and the same holds for x and∣∣∣∣∣
∫
B2(0)

(gx(y)− g0(y))f(y)dy

∣∣∣∣∣ ≤ ‖f‖Lp‖gx − g0‖Lp′ (Rn\B2(0)).

Since p′ < n
n−2 and by Theorem 6.29 g(x, .) ∈ L

n
n−2
w

‖g0(.)‖Lp′ (B2(0)) ≤ c(n).

Similarly, again by Theorem 6.29

‖g0 − gx‖Lrw(Rn\B2(0)) ≤ c(n)

for
1

r
=
n− 2

n
− s

n
.

This allows to bound the second term, provided we choose s in the theorem
smaller than for the estimate of the solution to the homogeneous problem.

We proceed similarly with the term ∇F , for which we need

‖∇g0‖Lq′ (B2(0)) ≤ c

and

‖∇(g0 − gx)‖Lq′ (Rn\B2(0)) ≤ c.
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This follows by Cacciopoli’s inequality

‖∇g0‖Lq′ (B2R\BR) ≤R
n
q′−

n
2 ‖∇g0‖L2(B2R\BR)

≤cR
n
q′−

n
2
−1‖g0‖L2(B4R\BR/2)

≤cR
n
q′−(n−1)

≤cR1−n
q

which is summable over dyadic radii provided q > n. Similarly, if R > 3,

‖∇(g0 − gx)‖Lq′ (B2R\BR) ≤ cR
1−s−n

q

which is clearly summable provided q is sufficiently large.

7. Pointwise estimates and perturbations of elliptic equations

We obtain an alternative argument for the boundedness of Calderón
zygmund operators with kernels satisfying

|K(x, y)| ≤ c|x− y|−n, |Dx,yK(x, y)| ≤ c|x− y|−n−1

Theorem 6.30. Let r > 1. Then

Tf ](x) ≤ c(M |f |r)1/r(x).

Proof. We fix a ball B1(0) and decompose f = f1 + f2 with f1 =
χB3(0)f . Then

‖Tf1‖Lr ≤ c‖f1‖Lr ≤ c(M |f |r(x))1/r

and, for x, x̃ ∈ B1(0),

|Tf2(x)− Tf2(x̃)| ≤ cMf2(x).

�

Thus for p > r

‖Tf‖Lp ≤ ‖(Tf)]‖Lp ≤ c‖(M |f |r)1/r‖Lp ≤ c‖f‖Lp .

This proof uses the Calderón-Zygmund estimate. Instead we could set r =
p0, get bounded for p > p0, and apply duality.

Lemma 6.31. Let f ∈ BMO. Then

|fBr1 (x1) − fBr2 (x2)| ≤ c(| ln r1/r2|+ ln
|x1 − x2|+ r1 + r2

r1 + r2
)‖f‖BMO

Proof. We prove this statement in several steps. We have

|fBR(y) − fBr(x)| ≤

∣∣∣∣∣|Br(x)|−1

∫
Br(x)

f − fBR(y)dx

∣∣∣∣∣
≤(R/r)n|BR(y)|−1

∫
|f − fBR(y)|dx ≤ (R/r)nf ](y)

if Br(x) ⊂ BR(x). If max{|x1 − x2|, r1} < r2 < 2r1 then we obtain immedi-
ately the assertion. Moreover, by applying the argument k times

|fB
2kr

(x) − fBr(x)| ≤ 2nkf ](x)
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We choose

k = max{| ln r2/r1|, ln |x1 − x2|/(r1 + r2)}+ 2

and R = 2k min{r1, r2}. Then

|fBr1 (x1) − fBr2 (x2)| ≤|fBr1 (x1) − fBR(x1)|+ |fBr2 (x2) − fBR(x2)|
+ |fBR(x1) − fBR(x2)|

≤(2k + 1)2nf ](x1)

�

Let aij ∈ L∞(Rn) and

aijξiξj ≥ κ|ξ|2

for all ξ ∈ Rn and almost every x. We consider u with second derivatives in
Lp and and

n∑
i,j=1

aij∂2
iju = f.

Theorem 6.32. Let p ∈ (1,∞), aij ∈ L∞ and κ > 0. There exists ε > 0
such that if

‖aij‖BMO < ε

then

‖D2u‖Lp ≤ c‖f‖Lp .

Remark 6.33. This theorem provides an important and strong theme
in linear and nonlinear partial differential equations: Often not pointwise
conditions on coefficients are important, but uniform conditions on every
scale. This type of result goes back to Caffarelli and Xabre [1] in 1995 by
different techniques.

Proof. We claim that with r > 1

(6.22) D2u] ≤ c(M |f |r)1/r + c‖a‖BMO(M |D2u|r)1/r.

Then

‖D2u‖Lp ≤ c‖f‖Lp + c‖aij‖BMO‖D2u‖Lp .
The claim follows if c‖aij‖BMO <

1
2 .

As for the proof of Theorem 6.30 we fix a ball B = B1(0). To simplify

the notation we assume that aijB = δij .
We rewrite the equation as

∆u = f + (δij − aij)∂iju

and, redoing the argument above

‖∂iju− ∂ijuB‖L1(B) ≤c‖f‖Lr(2B) +Mf(x)

+ c‖(δij − aij)∂iju‖
L

1+r
2 (2B)

+ c

∫
|y|>2

|y|−n−1|(δij − aij)∂iju|dy.
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Then,by Hölder inequality, with 1
q = 2

1+r −
1
r and the triangle inequality

‖(δij − aij)∂iju‖
L

1+r
2 (2B)

≤
[
‖aij2B − a

ij)‖Lq + |aij2B − a
ij
B|
]
(M |D2u|r(0))1/r

≤c‖a‖BMO(M |D2u|r(0))1/r

where we also used Lemma 6.31 and the proof of Theorem 6.14.
Similarly∣∣∣∣∣
∫
B

2k
(0)\B

2k−1(0)

|y|−n−1|aij − δij ||D2u|dy

∣∣∣∣∣
≤2−k

(
2−

nk
r′ ‖aij − aijB

2k
‖Lr′ (B

2k
(0)) + |aijB

2k
(0) − a

ij
B|
)

×
(

2−
nk
r ‖D2u‖Lr(B

2k
)

)
≤2−k(1 + k)‖a‖BMO(M |D2u|r(0))1/r.

This implies (6.22). �





CHAPTER 7

Littlewood-Paley theory and square functions

1. The range 1 < p <∞

We fix a function φ ∈ S with
∫
φdx = 0. This conditions can be relaxed

in the sequel. For f ∈ Lp we define

(Tf)(t, x) = f ∗ φt(x) =: F (t, x) ∈ L2(Rn × R+, dxdt/t)

Then the formal adjoint operator is

T ∗F (x) =

∫
φt(y − x)F (t, y)

dt

t
dy.

Then T ∗T is the Fourier multiplier given by

m(ξ) =

∫ ∞
0

φ(tξ)φ(tξ)
dt

t

which is homogeneous of degree 0 and smooth.
We consider T as an operator from L2(Rn) to L2(Rn, L2(dt/t)). Its

kernel is given by the convolution kernel

K(x− y) = (t→ t−nφ((x− y)/t)) ∈ L2(dt/t)

and

|K(z)| =
(∫ ∞

0
t−1−2n|φ(z/t)|2dt

)1/2

=|z|−nω(
z

|z|
)

where

ω(ν) =

(∫ ∞
0

t−1−2n|φ(ν/t)|2dt
)1/2

is bounded since

|φ(ν/t)| ≤ cmin{tn+ε, 1}
Similarly

|∂xiK(z)| =
(∫ ∞

0
t−3−2n|(∂iφ)(z/t)|2dt

)1/2

=|z|−n−1ωi(
z

|z|
)

The same type of estimate holds for T ∗.
The Calderón-Zygmund Theorem 5.4 applies to vector valued functions,

see the Remark 5.7 and we obtain

111
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Proposition 7.1. Let 1 < p < ∞,A > 0 and ε > 0. We assume that
φ ∈ C(Rn) satisfies
(7.1)

|φ(x)| ≤ A(1 + |x|)−n−ε, |Dφ(x)| ≤ A(1 + |x|−n−1−ε,

∫
φdx = 0.

Then there exists c depending on p, n and ε so that

‖Tf‖Lp(Rn,L2( dt
t

)) ≤ c
p2

p− 1
(A+ ‖ω‖L∞)‖f‖Lp(Rn)

and

‖T ∗F‖Lp(Rn ≤ c
p2

p− 1
(A+ ‖ω‖L∞)‖F‖Lp(Rn;L2( dt

t
))

Proof. We have seen that the operator satisfies the L2 bound under
the assumption. The kernel estimates also hold. Hence the assertion follows
for 1 < p ≤ 2 for T and T ∗. Duality gives the full statement. �

Examples are

(1) The derivatives of the heat kernel, evaluated at t = 1:

π−n/2(|x|2 − n

2
)e−

|x|2
2 , π−n/2xje

− |x|
2

2

(2) The derivatives of the Poisson kernel

cn
|x|2 − (n+ 1)

(1 + |x|2)
n+3
2

, cn
xj

(1 + |x|2)
n+2
2

Given φ we search ψ so that

T ∗ψTφf = f

where use the index φ and ψ with the obvious meaning. For that we need
more angular regularity. Let i = (i1, i2) be a pair of (nonequal) indices
between 1 and n, and we define the angular derivatives

Di = xi1∂i2 − xi2∂i1 .

Let α be the analogue of the multiindices for pairs of indices, and we denote
- by an abuse of notation

Dα

for the obvious product of angular derivatives. The angular derivative of
the Fourier transform is the Fourier transform of angular derivatives.

Lemma 7.2. Suppose that φ satisfies the conditions (7.1) and

(7.2) |Dαφ| ≤ cα|x|−n−ε

for all such multiindices and assume and φ̂ does not vanish identically on
any set {λν : λ > 0} with |ν| = 1. Then there exists ψ ∈ S satisfying∫
ψ = 0 and hence (7.1) and∫ ∞

0
φ̂(tξ)ψ̂(tξ)

dt

t
= 1

for all ξ 6= 0.
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Remark 7.3. In particular

T ∗ψTφf = T ∗ψTφf = f

for all f ∈ L2 and hence for all f in Lp.

Proof. Let |ν| = 1. Then there exist ε > 0, r and R so that∫ R

r
|φ̂(ν/t)| > ε

by continuity and compactness we can choose ε, r and R independent of ν.
Given ν we fix a smooth compactely supported function ψν on [r/2, 2R] with∫

φ̂(tν)ψν(t)
dt

t
= 1

Then

ξ →
∫
φ̂(tξ/|ξ|)ψν(t)

dt

t
= ρν(ξ)

is smooth due to condition (7.2). Locally we can divide by ρν . We use a
homogeneous partition ηk of unity on Sn−1 to construct ψ by

ψ̂(ξ) =
∑ ηk(ξ)

ρνk(ξ)
ψνk(|ξ|) ∈ S.

supported in B2R\Br/2. �

Definition 7.4 (Square function). Let φ satisfy (7.1) . We define

sf (x) =

(∫
|f ∗ φt(x)|2dt

t

)1/2

s∗f (x) =

(∫
t
t−n−1

∫
|y|<t
|f ∗ φt(x+ y)|2dydt

)1/2

and

gf (x) =

(∑
k

|f ∗ φ2k |2(x)

)1/2

.

Theorem 7.5. Suppose that 1 < p <∞. Then

‖sf‖Lp ≤ c‖f‖Lp ,
‖s∗f‖Lp ≤ c‖f‖Lp

and
‖gf‖Lp ≤ c‖f‖Lp .

If φ satisfies the assumption of Lemma 7.2 then

‖f‖Lp ≤ c‖sf‖Lp ,
‖f∗‖Lp ≤ c‖s∗f‖Lp .

If φ satisfies the assumptions of Lemma 7.2 with:

For all ξ 6= 0 there exists k so that

φ̂(2kξ) 6= 0.

replacing the integral condition then
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‖f‖Lp ≤ c‖gf‖Lp .

Proof. The claims on sf follow from Proposition 7.1 and Lemma 7.2.
For s∗(f) we observe that

‖s∗f‖2L2 =

∫
Rn

∫ ∞
0

t−n−1

∫
|y|≤t
|f ∗ φt(x− y)|2dydtdx

=

∫
|y|≤1

∫
Rn

∫ t

0
|f ∗ (φ(.+ y))t)(x)|2dt

t
dxdy

=|B1|
∫
Rn
|f̂ |2

∫ ∞
0
|φ̂(tξ)|2dt

t
dξ

and we obtain the L2 bound. It also follows that with ψ as in Lemma 7.2 -
assuming that the assumptions are satisfies - ψ defines a left inverse to the
vector values operator.

Similarly we obtain the kernel bound for Tφ(.+y) for all |y| ≤ 1, and
hence also when we integrate y with respect to the unit balls.

Replacing the t integration by a summation for gf does not require sub-
stantial changes. Only the analogue of Lemma 7.2 needs some consideration.
We want to find ψ so that

∞∑
k=−∞

φ̂(2kξ)ψ̂(2kξ) = 1

for ξ 6= 0. This is done as in Lemma 7.2. �

2. Square functions, tents and Carleson measures

Theorem 6.10 applies here and gives

‖
∫ t

0
|φt ∗ f |2

dt

t
‖L1(Rn) ≤ c‖f‖H1 .

We also have

Lemma 7.6. Let φ satisfy (7.1). Then

sup
x,R
|BR|−1

∫
BR(x)

∫ R

0
|f ∗ φt|2

dt

t
dy ≤ c‖u‖2BMO

Proof. As usual is suffices to prove the bound for B = B1(0). We may
assume that f2B = 0, since we may add a constant. We write

f = f1 + f2

with f1 = fχ2B. Then f1 ∈ L2 and Tφf1 ∈ L2(Rn×(0,∞), dxdtt ). It remains
to consider f2. We claim that

|Tφf2(t, x)| = |f2 ∗ φt(x)| ≤ ct‖f‖BMO

if |x|+ t ≤ 1. This follows from Lemma 6.31,∫
|y|≥1

|y|1|φ(y)|dy ≤ cT

and scaling. The inequality is a consequence of the bounds on φ. �
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It will be useful to consider more general functions F . We define

s∗(F )(x) =

(∫
|y|≤t

t−n−1|F (t, x+ y)|2dydt

)1/2

and the analogues construction based on tends instead of cones

C(F )(x) = sup
R

(∫
|y|+t<R

t−1|F (t, x+ y)|2dydt

)2

.

We call |F |2 a Carleson measure if CF is bounded.
The following duality statement holds.

Proposition 7.7.∣∣∣∣∫
Rn

∫ ∞
0

F (t, x)G(t, x)
dt

t
dx

∣∣∣∣ ≤ c∫ s∗FCGdx.

Proof. We define τ(x) for a large constant A by

τ(x) = sup
{
τ > 0 :

∫ τ

0

∫
|y|<t

t−n−1G2(t, x− y)dtdy ≤ ACG(x)
}
.

We claim that there exists A0 and c > 0 so that if A ≥ A0 then for all balls
B = Br(x)

(7.3) |{x ∈ B : τ(x) ≥ r}| ≥ c|Br(x)|.

Then, for any nonnegative function H∫
Rn

∫ ∞
0

H(y, t)tndydt ≤ c−1

∫
Rn

∫ τ(x)

0

∫
|y|≤t

H(y, t)dydtdx.

We take H = FGt−n−1 and get∫
Rn

∫ ∞
0

F (t, x)G(t, x)
dt

t
dx ≤c−1

∫
s∗(F )(x)×∫ τ(x)

0

∫
|y|≤τ

t−n−1G2(t, x− y)dydt

≤A
c

∫
Rn
s∗FCGdx

by the definition of τ(x).
It remains to prove (7.3). Let B = Br(x0) be a ball, y ∈ B, and

T = {(t, x) : |x − y| + t < 3r} the tent over the ball of 3 times the radius
around y. Thus, by an application of Fubini, similar to the treatment of s∗,∫

B

∫ r

0

∫
|y|<t

G2(t, x− y)dydt ≤ |B1(0)|
∫
T
|G(t, y)|2dydt

t

Hence∫
B

∫ r

0

∫
|y|<t

G2(t, x− y)dydt ≤ cn inf
y∈B

∫
T
|G|2dydt

t
≤ cn inf

y∈B
CG(y).

This implies (7.3) if we choose A0 > cn. �
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Theorem 7.8. Suppose that φ satisfies the assumptions of Lemma 7.2.
Then

‖f‖BMO ≤ c‖CTf‖L∞
and

‖f‖H1 ≤ c‖s∗Tf‖L1

Proof. Let ψ be as in Lemma (7.2). Then∫
fgdx =

∫
TφfTψg

dt

t
dx

By duality and Proposition 7.7

‖f‖BMO ≤C sup

{∫
fgdx : ‖g‖H1 ≤ 1

}
=C sup

{∫
TfTg

dt

t
dx : ‖g‖H1 ≤ 1

}
=C sup

{∫
CTfs

∗
Tgdx : ‖g‖H1 ≤ 1

}
≤C‖CTf‖L∞ sup{‖s∗Tg‖L1 : ‖g‖H1 ≤ 1}
‖f‖BMO ≤ c‖CTf‖L∞

and similarly
‖g‖H1 ≤ c‖STg‖L1 .

�
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