CHAPTER 6

Hardy and BMO

1. More general maximal functions and the Hardy space H?

We fix a measurable function ¢ for which there is a radial and radially
decreasing majorant ¢*, |¢| < ¢*. Then we have seen that

¢ f2)] < eMf(z).

We define ¢r(z) = t7"¢(z/t).
For N € N we define the norm

Iflv=sup sup|z®d7f|
ol +BI<N =

and the set of functions
Fn={¢:|®|n <1}

DEFINITION 6.1. We define

(61) My f(2) = sup|f +61(@)].

the nontangential version

(6.2) Mg f(w) = sup sup |f o de(x + )|
y|<t

and the ’grand’ mazimal function

(6.3) Mpyf(x)= sup sup|f *¢i(x)|.
Prllgln<l ¢

It is important in the following theorem that we allow p < 1.

THEOREM 6.2. Let f be a tempered distribution and 0 < p < oo. Then
the following conditions are equivalent
(1) There exists ¢ € S(R™) with [ ¢ =1 so that Myf € LP.
(2) There exist seminorms N so that My¢ € LP
(3) M::fﬂ"fL“Qf S Lp'

We define the real Hardy space HP as the set of all functions for which
the equivalent conditions of the Theorem hold.

If p > 1 then any maximal function of f majorizes a multiple of f.
The second and the third are bounded by the standard Hardy-Littlewood
maximal function and hence HP = LP in that case.

For p = 1 the same argument shows that H' C L'. The spaces LP for
p < 1 are defined in the obvious fashion. They are not Banach spaces, and
they do not imbed into the space of distributions.

There are typical elements of HP called atoms.
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86 6. HARDY AND BMO

DEFINITION 6.3 (Atoms). Let 0 < p <1 A p atom is a bounded function
a for which there is a ball B = B,(x) so that
suppa C B

la| < |B|7'/P
/xaad:c =0

1
ol <n(=—1)
b

for all multiindices o with

LEMMA 6.4. Let ¢ € S(R™) and let a be a atom with the ball By (x).
Then there exist € and c so that
Mya < C|B,(a)|7(1 + L= 0l o)

In particular
[ 1Maapds < cln.p).
PrOOF. Exercise U

We introduce a modified nontangential maximal function for a > 1
M?f(z) = sup sup |fx¢i(x —y)|

t |yl<at

LEMMA 6.5.
IMfllLr < ca™?|| f]|Le

PRrOOF. The claim follows from
(6.4) Ho: Mf > A} < ca™{z: Myf > A}

by integration.
Let O = {x : Mjf > A}. Suppose that M?f(z) > A. Then there exist

(z,t) with f*¢;(2) > X and |z — Z| < at. Then B;(Z) C O and hence

0N Bar(x)| . _p
| Bat(2))|

Let A =R"\O and

. 0N By(z)]  _

A*={zc A: ————— < a " for some r
t B,(2)] }

Then
(6.5) IR™M\ A% < (3a)"|R™\A4|

implies (6.4).
To prove (6.5) we turn to an argument in measure theory. Suppose that
ACR"isaclosed set andlet 0 <y <1 (y=1—a""). Let A* C A be the

set of all points = so that
|AN B <
>
|B|
for some ball B containing x. Then

R™MA" = {z: M(xgma) >1—-7}
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and by the estimate for the maximal function

[R™\A%| < [R™\ Al

n
L=y
O

For the proof of Theorem 6.2 we have to study the effect of changing the
function is the definition of the maximal function. This is the easier part of
the proof.

LEMMA 6.6. Let ¢,¢ € S with [ ¢ = 1. For all M > 0 There exists a
sequence n*) € S such that for all N

In® v < enjp2™ M

T LI
ProOF. We fix p € C5°(B2(0)), identically 1 on B; and define

p() = p(277¢) — p(2'7%¢)
for £ > 1 and pg = p. Then

and

b= i
k=0

Now 1 = [ ¢dz = $(0). Without loss of generality we assume |¢(¢)| > 3 for
|€| < 2. Then

. > & o, . o

3O =3 2 642k = (2

o P(27%¢)

Now W is a Schwartz function which leads to the claimed decay. O

The proof gives actually a stronger statement: Given M there exists N
so that the claim holds for ||| n < oco.
We turn to the proof of the theorem.

PROOF. Let ® € § with f ® = 1. We claim that there is are constants
c and N so that

(6.6) [IMnNflloe < || Mg fllLe
and
(6.7) Mg fllLe < cl|[Mo fl|Lr

These two estimates imply all assertions of the theorem.
To proof the first inequality we choose 1) € §S. The expansion gives

My f(x) =sup | £+ ve(X)| < sup D | f 5 Byry x (2)]
t t>0 125

<supt ™ Y [ 175 @piylo = )In P w/0)ldy
t k

Yl - -n Y
< sup sl Byl 1+ 350 [0+ LY 0lay
k Y
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with N > n/p and

o [ N oty < 2t

if (which is ensured by Lemma 6.6 )
1™ | v+n < 7M.

We claim that

©8)  lsmpsupf = @ua~ )1+ U)o < M)
y
Then
supsup | f * $y(x — y)(1 + |ty|)_N < sup 2_jNM2jf(a:)
t oy §=0,1...

and the assertion follows Lemma 6.5.
This implies (6.6).

To complete the proof we will prove

(6.9) Mg fllee < cl[ e
Let
F)\ = {$ : MNf(ac) < )\M:;f(l‘)}
Since

/ M fPda < Ap/ My fPdz < cpAp/M$f|pda:
R\ F R\ F

we obtain
| asrds <2 [ pgg s
Rn F

provided we choose AP > 2¢P.
We claim that on F' and any ¢ > 0

(6.10) My f(x) < c[M| Mg f|*(x)]"/1.

This implies the desired estimate via
[ ispas <2 [ pagprae < [t fr/ias < e [ 1o pds
R” F

by the estimate for the Hardy-Littlewood maximal function. It remains to
prove (6.10). Let

f(@,t) = f=®u(z),  f(z)=Mgf(z)
By definition, for any x there exists (y,t) with |z — y| < ¢ so that
[f(y, )] = f*(2).

By the fundamental theorem of calculus

‘f(xlat) - f(yat)‘ <t sup ‘Dwf(z7t)|
|z—y|<rt

for |2/ — y| < rt. However

0uif(2,t) = - f * (0:)(2)
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hence

|f(a',t) = fly, t)] < ef My f(x) < erAMg f(x) = chr f*(x)
if z € F'. We take r so small that cAr < % to achieve

(6.11) £ 0] 2 1)

for |2/ — y| < rt. Thus

‘ol 1+ry1 P ' o
s < () o feors
<eM[(My 1))

The second inequality follows from
(2, )] < My(a')

and the first from the lower bound (6.11).

There is a last tricky part: We severely used that || M f(2)[|L»r < co. To
deal with that we repeat the arguments with
L

M"f(x)) = sup |f* ®yly)l 7
¢ lz—y|<t<e—! (€+t+ E‘yDL

instead of M*. If f is a tempered distribution we choose L large and € small
so that ||M§,’Lf||Lp < oo
Then we introduce the factor
th(e +27%t + el — y)* 2k
( )’ gy W 2
e+t +elz)) L2k "L (1 + 2N ¢ t

as suitable points. We complete the proof as above.

2. The atomic decomposition

The key part of the proof is a refined Calderén-Zygmund decomposition.
We recall that we can write any nonempty set U C R", U # R" as the
union of dyadic cubes

Qu =2'([0,1)" + k)
such that the length of the edge is at least the distance to the complement,
and at most n times the distance. We fix two numbers 1 < a < b < 14+1/(4n)

and denote Q = aQ, Q* = bQ where aQ resp bQ denotes the cube Q scaled
by a with center the center of the cube.

PROPOSITION 6.7. Let f € Lj,, with M__,.,2f € L' and A > 0. Then
there is a decomposition

f=g+bb=3 b
and a collection of dyadic cubes Qp so that

(1) lgl < e(n)A
(2) suppby C Q5 and [bydx =0
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(3) The Qy are disjoint and
U@k ={z: Myf> 2}

Proor. We fix ¢ € C§°((0,1)™)*), identically one on [0, 1]". For k € Z"
and [ € Z we define
Gt = ¢(27" — k)
which is supported in @Q7,; and identically 1 in Q.-
Let O = {z : Myf(z) > A}, let Qx;;;, be a Whitney decomposition
(with disjoint cubes, and edge lengths comparable to the distance to the
complement), and

= Ckj 1
! Zz Cki,li
a partition of unity. Then, if /; is the edge length,

|0%n;] < c27lilel,
We define [ fosd
n;ar
bj = (f = Cj)77ja Cj = W
Then, by the definition of (); there exist r and € R™\O such that
Qj C Br(wo)
and r < ¢(n)|Q;|*/™. But then

r — X

[I7;( )In < e(n)

and
'/njfdx < ce(n)r"Mny f(zo) < c(n)r™A.
Thus
lej] < e(n)A.
Now

gl < eMy f(z) < cA

for X ¢ O. Together this gives the bound on g. O

THEOREM 6.8. Suppose that 0 < p <1 and f € HP. Then there exists
a sequence of p atoms a; and a summable sequence \; so that

f = Z)\jaj

Z |>\J|p < c(nvp)HMe—w\xIQinP‘
REMARK 6.9. Since
My > Ajag P <Y I[P Myayl

J J

and

=D Il Mpay P
j
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any such sum is bounded in HP. The sum
>4
Aj
converges in the space of tempered distributions.

ProOOF. We only consider p = 1. We have seen that H! c L'. Let
f € H'. It is integrable. For each integer We apply the Calderon—Zygmund
decomposition at level 2/ and we write f = ¢' + ', b = Z

We claim that

9=
in H! for I — oo, or, equvalently, ||b||z;1 — 0 as I — oo. This follows from

”blHHl N/Mew|z|2bjdf[f

<> / M, o2 byde
j

< /U o (M)t

- / My fdz — 0
MNf>2l

Since |¢'| < 2! we have ¢! — 0 as [ — —o0 in the sense of distributions.
Hence
f:Zgl+1_gl:Zbl_bl+l
l l

in the sense of distributions. The difference ¢'*! — ¢! is supported in
O = {z: M,f > 2~}

and
gl+1 _ gl =pl —pt = Z(f _ Cé)né _ Z(f l+1 l+1 ZAI
J J
with
Al = (f =l = > (f = hnltnl + Z Cjmot !
with

I(f - l+177§)77[+1d33
fni,'fldx ’

since 775- is a partition of unity and hence

Z Cj’m =0.
J

l _

supp Aé - Qg*
]Aé] < 2!

C-]?m -

Then
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by construction. We set
! —lo—l|l|—1 4l
and
l L1l

Then the az» are atoms, and

S A=cd 2l =) 2 Myf>21} < c/MNfda:.
l

O

It is not hard to see that H! is a Banach space. We can use the atomic
decomposition to define a norm:

(6.12) || fllzr = inf{> | Ae|: there exists atoms with f = > Apax}.

It is a consequence that the span of atoms is dense in H!.

COROLLARY 6.10. Let T' be a Calderdon-Zygmund operator. Then T
defines a unique continuous operator from the Hardy space H' to L'. If T is
a convolution operator satisfying the assumptions of the Mihlin-Hormander
theorem then T defines a unique continuous operator on H'.

PROOF. We only prove the first part. The second part is an exercise.
Let a be an atom. We want to prove that

[Tallpr < c(n).
By translation invariance we may assume that the corresponding ball has
center 0, and be rescalling we may assume that the radius is 1. Then

ITall < cllalzr < c(n)

where pg is the exponent of the Calderén-Zygmund operator. We use this
bound on Bs(0). Outside we argue as for the proof of the boundedness of
Calderén-Zygmund operators.

Now let f € H'. By the atomic decomposition

f=> Aa

Tf = Z /\jTaj

where the right hand side converges in L'. There is no other choice for the
definition, but wellposedness has to be proven. Suppose

F= Naj =) ub;
with atoms (a;), (b;) and summable sequences \; and pj. We have to show
that for € > 0 there exists Ny so that for all t > 0 and N > Ny

We define

N N
(6.13) {a o 1) ANTa; = > pThi| >t} < £/t.
=1 j=1
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Then
oo o0
Z )\jTaj = Z ,Uijj
j=1 j=1

follows. Inequality (6.13) follows from two properties:

(1) The weak type inequality for Calderén Zygmund operators
c
{z : [Tg()| >t} < < llg]l s

(2) The convergence of the partial sums in L'.

By the convergence there exists for € > 0 and Ny so that

oo N o0 N
1D Ajajde = > Njagllr + 11> mibjde = bl < &
j=1 j=1 j=1 j=1
and then

N N
{a | Y ANTa; = > piThj| > t}] < ce'/t.
j=1 i=1

3. Duality and BMO

DEFINITION 6.11. Let f € L. _(R™). The sharp mazimal function is
defined by

dw € [0, 0]

fa)= sup |B,()™" /B .
r\Y

By (y)3x

f(w) — 1By()] ! / f(2)dz

Br(y)

Properties

(1) (f +9)Hz) < fi(z) + gH(z)
(2) fH(w) < 2M f(). Hence ||f*]Lr < cnpZ5 1 fllLr

DEFINITION 6.12. We define BMO as the space of all function for which
the (semi) norm

1 IBat0 = 1l sup

1s finite.
Certainly L> C BMO. Moreover In(|z|) € BMO.

THEOREM 6.13. Let L : H' — R be a continous linear map. Then there
exists f € BMO such that for every atom

(6.14) L(a) = /afdx,

[ fllBrao = (I L | ¢z

Vice versa: let f € BMO. Then (6.14) defines a continuous linear func-
tional on H!.
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PROOF. We prove the second part first. If a is an atom with ball B then
[ fada = [ (£~ foyade <17 = Faluscoo ol < Flao)
thus for f € L and g € H! or f € BMO and g € H]

/ fadz < ||l saollglly

This implies the second statement.
Now let L be a linear function on ' of norm at most 1. let B be a ball.
Then
L*(B) > f = L(f ~ fB)
defines a linear functional on L? which is represented by a function g? so
that

Lf = 1) = [ g% fs
and in particular [ B g = 0. We search for a function g so that
9—98=9"

for all balls B. Let B C B’ be two balls and ¢Z resp. ¢? the functions
constructed above. For f € L?(B) with [ fdz = 0 we have

= By = Bq
L(f) /Bfg x /B/fg @
thus for such f

/B(gB—gB/)fdx=0-

Thus g% — g% is constant on B. We define

g =g

if |z| < 1. Choose

Br(0)

CR=4¢ -9

for x € B1(0) and define
9(x) = gpgp0)(®) — cr

for || < R and R > 1. This gives a consistent choice, and by the consider-
ations of the first part ¢ € BMO. (]



