
CHAPTER 6

Hardy and BMO

1. More general maximal functions and the Hardy space Hp

We fix a measurable function φ for which there is a radial and radially
decreasing majorant φ∗, |φ| ≤ φ∗. Then we have seen that

|φ ∗ f(x)| ≤ cMf(x).

We define φt(x) = t−nφ(x/t).
For N ∈ N we define the norm

�f�N = sup
|α|+|β|≤N

sup
x

|xα∂βf |

and the set of functions

FN = {φ : �Φ�N ≤ 1}.
Definition 6.1. We define

(6.1) Mφf(x) = sup
t

|f ∗ φt(x)|,

the nontangential version

(6.2) M∗
φf(x) = sup

t
sup
|y|≤t

|f ∗ φt(x+ y)|

and the ’grand’ maximal function

(6.3) MNf(x) = sup
φ:�φ�N≤1

sup
t

|f ∗ φt(x)|.

It is important in the following theorem that we allow p ≤ 1.

Theorem 6.2. Let f be a tempered distribution and 0 < p ≤ ∞. Then
the following conditions are equivalent

(1) There exists φ ∈ S(Rn) with
�
φ = 1 so that Mφf ∈ Lp.

(2) There exist seminorms N so that MNφ ∈ Lp

(3) M∗
e−π|x|2f ∈ Lp.

We define the real Hardy space Hp as the set of all functions for which
the equivalent conditions of the Theorem hold.

If p > 1 then any maximal function of f majorizes a multiple of f .
The second and the third are bounded by the standard Hardy-Littlewood
maximal function and hence Hp = Lp in that case.

For p = 1 the same argument shows that H1 ⊂ L1. The spaces Lp for
p < 1 are defined in the obvious fashion. They are not Banach spaces, and
they do not imbed into the space of distributions.

There are typical elements of Hp called atoms.
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86 6. HARDY AND BMO

Definition 6.3 (Atoms). Let 0 < p ≤ 1 A p atom is a bounded function
a for which there is a ball B = Br(x0) so that

supp a ⊂ B

|a| ≤ |B|−1/p

�
xαadx = 0

for all multiindices α with

|α| ≤ n(
1

p
− 1)

Lemma 6.4. Let φ ∈ S(Rn) and let a be a atom with the ball Br(x0).
Then there exist ε and c so that

Mφa ≤ C|Br(x0)|−1/p(1 +
|x− x0|

r
)
−n

p
−ε(n,p)

In particular �
|Mφa|pdx ≤ c(n, p).

Proof. Exercise �
We introduce a modified nontangential maximal function for a ≥ 1

Maf(x) = sup
t

sup
|y|≤at

|f ∗ φt(x− y)|

Lemma 6.5.
�Maf�Lp ≤ can/p�f�Lp

Proof. The claim follows from

(6.4) |{x : Maf > λ}| ≤ can|{x : M∗
φf > λ}|

by integration.
Let O = {x : M∗

φf > λ}. Suppose that Maf(x) > λ. Then there exist

(x̃, t̃) with f ∗ φt̃(x̃) > λ and |x− x̃| ≤ at. Then Bt(x̃) ⊂ O and hence

|O ∩Bat(x)|
|Bat(x)|

> a−n.

Let A = Rn\O and

A∗ = {x ∈ A :
|O ∩Br(x)|
|Br(x)|

< a−n for some r}

Then

(6.5) |Rn\A∗| ≤ (3a)n|Rn\A|
implies (6.4).

To prove (6.5) we turn to an argument in measure theory. Suppose that
A ⊂ Rn is a closed set and let 0 < γ < 1 (γ = 1− a−n) . Let A∗ ⊂ A be the
set of all points x so that

|A ∩B|
|B| ≤ γ

for some ball B containing x. Then

Rn\A∗ =
�
x : M(χRn\A) > 1− γ

�
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and by the estimate for the maximal function

|Rn\A∗| ≤ 3n

1− γ
|Rn\A|

�
For the proof of Theorem 6.2 we have to study the effect of changing the

function is the definition of the maximal function. This is the easier part of
the proof.

Lemma 6.6. Let φ,ψ ∈ S with
�
φ = 1. For all M > 0 There exists a

sequence η(k) ∈ S such that for all N

�η(k)�N ≤ cN,M2−kM

and
ψ =

�
η(k) ∗ Φ2−k

Proof. We fix ρ ∈ C∞
0 (B2(0)), identically 1 on B1 and define

ρk(ξ) = ρ(2−kξ)− ρ(21−kξ)

for k ≥ 1 and ρ0 = ρ. Then

ψ̂ =

∞�

k=0

ρkψ̂.

Now 1 =
�
φdx = φ̂(0). Without loss of generality we assume |φ̂(ξ)| ≥ 1

2 for
|ξ| ≤ 2. Then

ψ̂(ξ) =

∞�

k=0

ρk(ξ)

φ̂(2−kξ)
Ψ̂(ξ)φ̂(2−kξ) = η̂(k)φ̂(2−kξ)

Now Ψ̂ is a Schwartz function which leads to the claimed decay. �
The proof gives actually a stronger statement: Given M there exists N

so that the claim holds for �ψ�N < ∞.
We turn to the proof of the theorem.

Proof. Let Φ ∈ S with
�
Φ = 1. We claim that there is are constants

c and N so that

(6.6) �MNf�Lp ≤ c�M∗
Φf�Lp

and

(6.7) �M∗
Φf�Lp ≤ c�MΦf�Lp

These two estimates imply all assertions of the theorem.
To proof the first inequality we choose ψ ∈ S. The expansion gives

Mψf(x) = sup
t

|f ∗ ψt(X)| ≤ sup
t>0

∞�

k=0

|f ∗ Φ2−kt ∗ η(k)t (x)|

≤ sup
t

t−n
�

k

�
|f ∗ Φ2−kt(x− y)||η(k)(y/t)|dy

≤ sup
t

�

k

sup
y

|f ∗ Φ2−kt(x− y)|(1 + |y|
2−kt

)−N

�
t−n(1 +

|y|
2−kt

)N |η(k)(y/t)|dy
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with N > n/p and

t−n

�
(1 +

|y|
2−kt

)N |η(k)(y/t)|dy ≤ c2−k

if (which is ensured by Lemma 6.6 )

�η(k)�N+n ≤ c2−k(N+1).

We claim that

(6.8) � sup
t

sup
y

|f ∗ Φt(x− y)(1 +
|y|
t
)−N�Lp ≤ c�M∗

φf(x)�Lp .

Then

sup
t

sup
y

|f ∗ Φt(x− y)(1 +
|y|
t
)−N ≤ sup

j=0,1...
2−jNM2jf(x)

and the assertion follows Lemma 6.5.
This implies (6.6).

To complete the proof we will prove

(6.9) �M∗
φf�Lp ≤ c�f�Lp .

Let
Fλ = {x : MNf(x) ≤ λM∗

φf(x)}.
Since �

Rn\F
|M∗

Φf |pdx ≤ λ−p

�

Rn\F
|MNf |pdx ≤ cpλ−p

�
|M∗

Φf |pdx

we obtain �

Rn

|M∗
Φf |pdx ≤ 2

�

F
|M∗

Φf |pdx

provided we choose λp ≥ 2cp.
We claim that on F and any q > 0

(6.10) M∗
Φf(x) ≤ c[M |MΦf |q(x)]1/q.

This implies the desired estimate via�

Rn

|M∗
Φf |pdx ≤ 2

�

F
|M∗

Φf |pdx ≤ c1

�
[M |MΦf |q]p/qdx ≤ c2

�
|MΦf |pdx

by the estimate for the Hardy-Littlewood maximal function. It remains to
prove (6.10). Let

f(x, t) = f ∗ Φt(x), f∗(x) = M∗
Φf(x)

By definition, for any x there exists (y, t) with |x− y| ≤ t so that

|f(y, t)| ≥ f∗(x).

By the fundamental theorem of calculus

|f(x�, t)− f(y, t)| ≤ rt sup
|z−y|<rt

|Dxf(z, t)|

for |x� − y| ≤ rt. However

∂xif(z, t) =
1

t
f ∗ (∂iΦ)t(z)
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hence

|f(x�, t)− f(y, t)| ≤ cfMNf(x) ≤ crλM∗
Φf(x) = cλrf∗(x)

if x ∈ F . We take r so small that cλr ≤ 1
4 to achieve

(6.11) |f(x�, t)| ≥ 1

4
f∗(x)

for |x� − y| ≤ rt. Thus

|M∗
Φf(x)|q ≤

�
1 + r

r

�n 4q

|B(1+r)t(x)|

�

Bx,(1+r)t

|f(x�, t)|qdx�

≤cM [(MΦf)
q](x).

The second inequality follows from

|f(x�, t)| ≤ Mφ(x
�)

and the first from the lower bound (6.11).
There is a last tricky part: We severely used that �M∗

φf(x)�Lp < ∞. To
deal with that we repeat the arguments with

M ε,L
Φ f(x)) = sup

|x−y|<t<ε−1

|f ∗ Φt(y)|
tL

(�+ t+ �|y|)L

instead of M∗. If f is a tempered distribution we choose L large and ε small

so that �M ε,L
Φ f�Lp < ∞

Then we introduce the factor

tL(ε+ 2−kt+ ε|x− y|)L

ε+ t+ ε|x|)−L(2−kt)−L(1 + 2k|y|
t )N

≤ c2kL(1 +
|y|
t
)L(1 +

2k|y|
t

)N

as suitable points. We complete the proof as above.
�

2. The atomic decomposition

The key part of the proof is a refined Calderón-Zygmund decomposition.
We recall that we can write any nonempty set U ⊂ Rn, U �= Rn as the

union of dyadic cubes

Qkl = 2l([0, 1)n + k)

such that the length of the edge is at least the distance to the complement,
and at most n times the distance. We fix two numbers 1 < a < b < 1+1/(4n)

and denote Q̃ = aQ, Q∗ = bQ where aQ resp bQ denotes the cube Q scaled
by a with center the center of the cube.

Proposition 6.7. Let f ∈ L1
loc with M

e−2π|x|2f ∈ L1 and λ > 0. Then
there is a decomposition

f = g + b, b =
�

bk

and a collection of dyadic cubes Qk so that

(1) |g| ≤ c(n)λ
(2) supp bk ⊂ Q∗

k and
�
bkdx = 0
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(3) The Qk are disjoint and
�

Qk = {x : MNf > λ}

Proof. We fix ζ ∈ C∞
0 ((0, 1)n)∗), identically one on [0, 1]n. For k ∈ Zn

and l ∈ Z we define

ζkl = ζ(2−lx− k)

which is supported in Q∗
kl and identically 1 in Q̃kl.

Let O = {x : MNf(x) > λ}, let Qkj ,lj be a Whitney decomposition
(with disjoint cubes, and edge lengths comparable to the distance to the
complement), and

ηj =
ζkj ,lj�
i ζki,li

a partition of unity. Then, if lj is the edge length,

|∂αηj | ≤ c2−lj |α|.

We define

bj = (f − cj)ηj , cj =

�
fηjdx�
ηj

Then, by the definition of Qj there exist r and x ∈ Rn\O such that

Qj ⊂ Br(x0)

and r ≤ c(n)|Qj |1/n. But then

�ηj(
x− x0

r
)�N ≤ c(n)

and ����
�

ηjfdx

���� ≤ c(n)rnMNf(x0) ≤ c(n)rnλ.

Thus

|cj | ≤ c(n)λ.

Now

|g| ≤ cMNf(x) ≤ cλ

for X /∈ O. Together this gives the bound on g. �

Theorem 6.8. Suppose that 0 < p ≤ 1 and f ∈ Hp. Then there exists
a sequence of p atoms aj and a summable sequence λj so that

f =
�

λjaj

and �
|λj |p ≤ c(n, p)�M

e−π|x|2f�pLp .

Remark 6.9. Since

|Mφ

�

j

λjaj |p ≤
�

j

|λj |p|Mφaj |

=
�

j

|λj ||Mφaj |p
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any such sum is bounded in Hp. The sum
�

λj

aj

converges in the space of tempered distributions.

Proof. We only consider p = 1. We have seen that H1 ⊂ L1. Let
f ∈ H1. It is integrable. For each integer l we apply the Calderón-Zygmund
decomposition at level 2l and we write f = gl + bl, bl =

�
j b

l
j .

We claim that
gl → f

in H1 for l → ∞, or, equvalently, �bl�H1 → 0 as l → ∞. This follows from

�bl�H1 ∼
�

M
e−π|x|2 b

jdx

≤
�

j

�
M

e−π|x|2 b
j
kdx

≤
�
�

Ql
j

(MNf)dx

=

�

MNf>2l
MNfdx → 0

Since |gl| ≤ c2l we have gl → 0 as l → −∞ in the sense of distributions.
Hence

f =
�

l

gl+1 − gl =
�

l

bl − bl+1

in the sense of distributions. The difference gl+1 − gl is supported in

Ol = {x : Mnf > 2k}
and

gl+1 − gl = bl − bl+1 =
�

j

(f − clj)η
l
j −

�

j

(f − cl+1
j ηl+1

j ) =
�

j

Al
j

with
Al

j = (f − clj)η
l
j −

�

m

(f − cl+1
m )ηl+1

m ηlj +
�

m

cj,mηl+1
m

with

cj,m =

�
(f − cl+1

m ηlj)η
l+1
m dx

�
ηl+1
m dx

,

since ηlj is a partition of unity and hence
�

j

cj,m = 0.

Then �
Al

jdx = 0

suppAl
j ⊂ Q̃l,∗

j

|Al
j | ≤ c2l
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by construction. We set

alj = c−12−l|Ql
j |−1Al

j

and

λl
j = c2l|Ql

j |.
Then the alj are atoms, and

�
λl
j = c

�
2l|Ql

j | = c
�

l

2l|{MNf > 2l}| ≤ c

�
MNfdx.

�

It is not hard to see that H1 is a Banach space. We can use the atomic
decomposition to define a norm:

(6.12) �f�H1 = inf{
�

|λk| : there exists atoms with f =
�

λkak}.

It is a consequence that the span of atoms is dense in H1.

Corollary 6.10. Let T be a Calderón-Zygmund operator. Then T
defines a unique continuous operator from the Hardy space H1 to L1. If T is
a convolution operator satisfying the assumptions of the Mihlin-Hörmander
theorem then T defines a unique continuous operator on H1.

Proof. We only prove the first part. The second part is an exercise.
Let a be an atom. We want to prove that

�Ta�L1 ≤ c(n).

By translation invariance we may assume that the corresponding ball has
center 0, and be rescalling we may assume that the radius is 1. Then

�Ta�Lp0 ≤ c�a|Lp0 ≤ c(n)

where p0 is the exponent of the Calderón-Zygmund operator. We use this
bound on B2(0). Outside we argue as for the proof of the boundedness of
Calderón-Zygmund operators.

Now let f ∈ H1. By the atomic decomposition

f =
�

λjaj

We define

Tf =
�

λjTaj

where the right hand side converges in L1. There is no other choice for the
definition, but wellposedness has to be proven. Suppose

f =
�

λjaj =
�

µjbj

with atoms (aj), (bj) and summable sequences λj and µj . We have to show
that for ε > 0 there exists N0 so that for all t > 0 and N > N0

(6.13) |{x : |
N�

j=1

λjTaj −
N�

j=1

µjTbj | > t}| < ε/t.
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Then
∞�

j=1

λjTaj =
∞�

j=1

µjTbj

follows. Inequality (6.13) follows from two properties:

(1) The weak type inequality for Calderón Zygmund operators

|{x : |Tg(x)| > t}| ≤ c

t
�g�L1

(2) The convergence of the partial sums in L1.

By the convergence there exists for ε̃ > 0 and N0 so that

�
∞�

j=1

λjajdx−
N�

j=1

λjaj�L1 + �
∞�

j=1

µjbjdx−
N�

j=1

µjbj�L1 < ε̃

and then

|{x : |
N�

j=1

λjTaj −
N�

j=1

µjTbj | > t}| < cε�/t.

�

3. Duality and BMO

Definition 6.11. Let f ∈ L1
loc(Rn). The sharp maximal function is

defined by

f �(x) = sup
Br(y)�x

|Br(y)|−n

�

Br(y)

�����f(w)− |Br(y)|−1

�

Br(y)
f(z)dz

����� dw ∈ [0,∞]

Properties

(1) (f + g)�(x) ≤ f �(x) + g�(x)
(2) f �(x) ≤ 2Mf(x). Hence �f ��Lp ≤ cn

p
p−1�f�Lp

Definition 6.12. We define BMO as the space of all function for which
the (semi) norm

�f�BMO = �f ��sup
is finite.

Certainly L∞ ⊂ BMO. Moreover ln(|x|) ∈ BMO.

Theorem 6.13. Let L : H1 → R be a continous linear map. Then there
exists f ∈ BMO such that for every atom

(6.14) L(a) =

�
afdx,

�f�BMO = �L�(H1)∗ .

Vice versa: let f ∈ BMO. Then (6.14) defines a continuous linear func-
tional on H1.
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Proof. We prove the second part first. If a is an atom with ball B then�
fadx =

�

B
(f − fB)adx ≤ �f − fB�L1(B9)�a�L∞ ≤ f �(x0).

thus for f ∈ L∞ and g ∈ H1 or f ∈ BMO and g ∈ H1
a�

fgdx ≤ �f�BMO�g�1H
This implies the second statement.

Now let L be a linear function on H1 of norm at most 1. let B be a ball.
Then

L2(B) � f → L(f − fB)

defines a linear functional on L2 which is represented by a function gB so
that

L(f − fB) =

�
gBfdx

and in particular
�
B gb = 0. We search for a function g so that

g − gB = gB

for all balls B. Let B ⊂ B� be two balls and gB resp. gB
�
the functions

constructed above. For f ∈ L2(B) with
�
fdx = 0 we have

L(f) =

�

B
fgBdx =

�

B�
fgB

�
dx

thus for such f �

B
(gB − gB

�
)fdx = 0.

Thus gB − gB
�
is constant on B. We define

g = gB1(0)

if |x| < 1. Choose

cR = gBR(0) − g

for x ∈ B1(0) and define

g(x) = gBR(0)(x)− cR

for |x| < R and R ≥ 1. This gives a consistent choice, and by the consider-
ations of the first part g ∈ BMO. �


