Mathematisches Institut

Prof. Dr. Matthias Kreck Clemens Kienzler Wintersemester 13/14

Analysis in mehreren Veränderlichen

Übungsblatt 4

Abgabe vor Beginn der Vorlesung am 14. November 2013

Aufgabe 13 (10 Punkte)

Seien
$$x_0 = 0$$
, $x_1 = 2$, $x_2 = 5$, $x_3 = 6$, sowie $y_0 = 0$, $y_1 = 3$, $y_2 = -2$, $y_3 = 1$. Bestimmen Sie das Polynom f vom Grad 3 mit $f(x_i) = y_i$.

Aufgabe 14 (10 Punkte)

Bestimmen Sie bei dem Polynom f aus Aufgabe 13 die lokalen Minima, Maxima und Wendepunkte.

Hinweis: Sie dürfen den noch in der Vorlesung zu beweisenden Satz benutzen, dass eine differenzierbare Funktion f genau dann einem Wendepunkt bei x hat, wenn f' bei x ein lokales Extremum hat.

Aufgabe 15 (10 Punkte)

Es seien $a, b \in \mathbb{R}$ und dadurch gegeben die Funktion

$$f: \mathbb{R} \to \mathbb{R},$$

$$f(x) = x^3 + ax^2 + bx.$$

Untersuchen Sie, für welche Werte von a und b

- a) f mindestens ein lokales Maximum und ein lokales Minimum besitzt, und bestimmen Sie diese Extremwerte.
- b) f keine Extrema besitzt.

Bestimmen Sie in allen Fällen die Wendepunkte.

Aufgabe 16 (10 Punkte)

Berechnen Sie das Taylorpolynom bis zum Grad 3 um $x_0 = 1$ von

$$f:(0,\infty)\to\mathbb{R},$$

$$f(x) := x^{7/2},$$

und schätzen Sie mit Hilfe des Restgliedes den Wert $f\left(\frac{101}{100}\right)$ ab.