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CHRISTOPH THIELE

15. Lecture: Convergence of Fourier series

Let L2(T) denote the space of Radon measures m on T which satisfy

∑
n∈Z

∣m̂(n)∣2 <∞,

where

m̂(n) =m(e−2πin.).

Recall that L2(T) is a Hilbert space with norm

∥m∥2 = (∑
n∈Z

∣m̂(n)∣2)1/2.

In particular, completeness of this space follows from completeness of
the space of square summable sequences, since every sequence an with
∑n∈Z ∣an∣2 <∞ is realized by a Radon measure in the sense an = m̂(n).
This measure is the limit measure of the harmonic function

∑
n

anr
∣n∣e2πinθ

in the unit disc. Recall also the alternative expressions for the norm,

∥m∥2 = lim
r→1

(∫

1

0
∣u(re2πiθ)∣2)1/2

= lim
k→−∞

(∑
I∈Dk

∣I ∣∣F (I))∣2)1/2

= (∣F ([0,1))∣2 +∑
I∈D

∣I ∣∣∆F (I))∣2)1/2.

For a Radon measure m define the partial sums

SNm(θ) =
N

∑
n=−N

m̂(n)e2πinθ.

We have the following trivial convergence result in the sense of the
norm in L2(T).

Theorem 65. For m ∈ L2(T) we have

lim
N→∞

∥SNf − f∥2 = 0.
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Proof. We have

∥SNm −m∥2
2 = ∑

∣n∣>N
∣m̂(n)∣2,

and by dominated convergence the right-hand-side tends to 0 as N
tends to ∞. �

The following theorem is a much stronger convergence result.

Theorem 66 (Carleson). Let m be a Radon measure in l2(T) with
martingale extension F . Then for almost every θ ∈ T, both limits in
the following equation exist and satisfy this equation.

lim
N→∞

SNf(θ) = lim
k→−∞

F (Ik,θ).

The existence of the martingale averages almost everywhere was shown
before. This shows the theroem in the special case when only finitely
many Fourier coefficients are non-zero.
A more general special case of the theorem is also relatively easy to
prove. Assume m is given by integration against a twice continuously
differentiable function f . Then the identity again holds for all θ ∈ [0,1).
The limit on the right hand side is then the value f(θ). Moreover, for
n ≠ 0

m̂(n) = ∫ f(x)e−2πinxdx =
1

2πin ∫
f ′(x)e−2πinxdx

=
−1

4π2n2 ∫ f ′′(x)e−2πinxdx,

which implies that

∣m̂(n)∣ ≤
C

1 + n2
.

Hence the Fourier series is absolutely summable on the closed unit disc
and the partial sum converge uniformly to the function f on T.
We define the truncated Carleson maximal operator.

CNm(x) = sup
0≤n≤N

∣Snm(x)∣.

As a supremum of a collection of continuous functions, CNf is a con-
tinuous function and as such determines an element in L2(T).
The proof of Theorem 68 will rely on the next theorem.

Theorem 67 (Carleson-Hunt). There is a constant C independent of
N such that, for all m ∈ L2(T) and all N > 0,

∥CNm∥2 ≤ C∥m∥2.

As N increases, so does CNm pointwise as well as its martingale ex-
tension. By monotone convergence,

C∞m(x) = sup
0≤n

∣Snm(x)∣.
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is also in L2(T), and we have with the same constant as in the last
theorem

∥C∞m∥2 ≤ C∥m∥2.

We now prove Theorem 68 using Theorem 69.

Proof. We need to show that for δ > 0 there is some collection I of
daydic intervals with ∑I ∣I ∣ ≤ δ that for θ /∈ ⋃ I

lim inf
N→∞

lim inf
k→−∞

∣SNm(θ) − F (Ik,θ)∣ = 0.

Adding and subtracting the Ik,θ martingale average of SN inside the
absolute value sign , and using that the martingale averages of the
continuous function SN converge to SNm, this follows from

lim inf
N→∞

lim inf
k→−∞

∣Ik,θ∣
−1∣∫

Ik,θ
SNm −m∣ = 0

It suffices to show that for ε > 0 there exists a collection Iε of dyadic
intervals with ∑Iε ∣I ∣ ≤ ε that for θ /∈ ⋃ I

lim inf
N→∞

lim inf
k→−∞

∣Ik,θ∣
−1∣∫

Ik,θ
SNm −m∣ < ε

Namely, then we may pick such Iε for ε rapidly going to zero such that
the sum of these ε is less than δ and use the union of all collections Iε
to establish the previous.
Given ε > 0, pick N0 large enough so that

∥SN0m −m∥2 < cε
2.

for some sufficiently small c to be determined momentarily.
Let I1 be the set of maximal dyadic intervals such that the martingale
average

∣I ∣−1
∫
I
∣m − SN0m∣ > ε/2

Let I2 be the set of maximal dyadic intervals such that the martingale
average

∣I ∣−1
∫
I
C∞(m − SN0m) > ε/2

Let I = I1 ∪ I2. We have by Chebysheff for sufficiently small c

∑
I∈I1

∣I ∣ ≤ ε−2∥m − SN0m∥2
2 ≤ ε/2

and by boundedness of the Carleson operator

∑
I∈I1

∣I ∣ ≤ ε−2∥C∞(m − SN0m)∥2
2 ≤ epsilon/2.

Let θ ∉ ⋃I. It suffices to show that for all N > N0 and all k we have

(1) ∣Ik,θ∣
−1∣∫

Ik,θ
SNm −m∣ < ε

By linearity, we have with SNSN0m = SN0m for N > N0

SNm −m = SN(m − SN0m) − (m − SN0m).
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Hence we have (1) by the triangle inequality definition of C∞ for N >

N0.
�

We write

S̃N = ∑
n<N

m̂(n)e2πinθ

and note that

SN = S̃N − S̃−N−1

Defining a maximal operator

C̃∞m(θ) = sup
N

∣S̃Nm(θ)∣,

boundedness of C∞ follows from boundedness of C̃∞.
Define modulation by n as

Mnm(f) =m(fe2πin.)

We have the following invariances

M̂nm(j) = (Mnm)(e−2πij.) =m(e−2πi(j−n).) = m̂(j − n)

S̃N(Mnm) = ∑
j<N

m̂(j − n)e2πij. = ∑
j<N−n

m̂(j)e2πi(j+n). =Mn(S̃N−nm).

Hence

C̃∞(Mnm) = C̃∞m

The invariance of C∞ under MN suggests that to the typical translation
and dilation parameter in our outer measure spaces, there should be
an additional modulation parameter when specifying embedding maps
and outer measure theory.
We shall first discuss a dyadic model of this outer emasure space. Un-
fortunately, this dyadic model will not directly be applicable to prove
the Carleson-Hunt theorem, but a discrete variant of it.One needs a
similar but different outer measure space to prove the Carleson-Hunt
theorem.
The dyadic model in this case is also called the Walsh model. We work
with the conditions (x, ξ) ∈ [0,1) ×N.

x

ξ

0

h[.5,1)

χ[.5,1)

h[0,.25)

χ[0,.25)
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We use the functions

1I = 1Il + 1Ir ,

hI = 1Il − 1Ir .

or

(
1I
hI

) = (
1 1
1 −1

)(
1Il
1Ir

) .

Let p be the set of tiles, that is dyadic rectangles I × ω (product of
dyadic intervals), such that I ⊂ [0,1) and ω ⊂ [0,∞) and ∣I ∣∣ω∣ = 1. We
define the Walsh wave packet map w∶p→ L2(R+) such that

● w(I × [0, ∣I ∣−1)) = 1I ;
● if ∣I ∣∣ω∣ = 2, then

(2) (
w(I × ωl)
w(I × ωr)

) = (
1 1
1 −1

)(
w(Il × ω)
w(Ir × ω)

) .

To see that this defines a unique wave packet for each tile I ×ω, we call
for ω = [2kn,2k(n + 1)) the parameter n the height of the interval. We
induct on the height of the second interval of a tile. Note that the height
of the intervals on the left of the recusrion is always larger or equal to
the heights of the tiles on the right, where equality holds precisely
for height 0. Tiles with height zero are associated with characteristic
functions, and the recursion is consistent for wava packets of height
zero on the left hand side. For any height other than zero, there is
a unique instance of the recursion involving this tile on the left hand
side, and we can use this instance to define the wave packet of the tile.

x

ξ

2k

2−k
x

ξ

2k−1

2−k+1

x

ξ

2−k+2

x

ξ

1

1

2

3

4
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We write
Wn(x) = w([0,1) × [n,n + 1))

It turns out (exercise) that for every n ∈ N there is a unique Wn′ with
this number of zero crossings. In this sense the Wn resemble real part
of e2πinx.
The functions Wn are the characters of the gorup (Z/2Z)∞, but we will
not further elaborate on this now.
We define the Walsh partial sums

SWN m(x) =
N−1

∑
n=0

m(Wn)Wn(x).

Theorem 68 (Billard-Carleson). Let m be a Radon measure in l2(T)

with martingale extension F . Then for almost every θ ∈ T, both limits
in the following equation exist and satisfy this equation.

lim
N→∞

SWN f(θ) = lim
k→−∞

F (Ik,θ).

We define the truncated Walsh-Carleson maximal operator.

CW
N m(x) = sup

0≤n≤N
∣SWn m(x)∣.

As a supremum of a collection of functions in S∆, CW
N m is a function

in S∆ and as such determines an element in L2(T).

Theorem 69 (Billard-Carleson-Hunt). There is a constant C indepen-
dent of N such that, for all m ∈ L2(T) and all N > 0,

∥CW
N m∥2 ≤ C∥m∥2.

As in the continuous setting, this theorem implies the Billard-Carleson
theorem.
We will prove these theorems in the next few lectures.
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16. Walsh analysis

Fix a large K and consider the fine Walsh phase plane

ΩK = [0,1) × [0,2−K).

A tile is a dyadic rectangle of area one in the Walsh phase plane,

p = I × ω = [2kn,2k(n + 1)) × [2−kl,2−k(l + 1)) ⊂ ΩK

with integers k,n, l.

Theorem 70. Let p1 be a collection of pairwise disjoint tiles in ΩK.
Then there is a collection of pairwise disjoint tiles p2 contained in ΩK

such that ΩK is the disjoint union of ⋃p1 and ⋃p2.

Proof. Call average spatial sizeA the average of the quantities ∣I ∣ for the
tiles I ×ω in p1. As we have only finitely many possible collections p1,
this average can only take finitely many values. The maximal possible
average is 1, as we have ∣I ∣ ≤ 1 for all tiles contained in ΩK . If indeed
A = 1, then p1 consists only of tiles of the form [0,1) × [j, j + 1) for
0 ≤ j < 2−K . We let p2 be the collection of tiles of this form that are
not in p1. Then the properties claimed in the theorem are true.
Now assume the theorem is false, and let p1 be a counterexample.
Assume p1 is a maximal counterexample with respect to number of
tiles in p1. We may also assume that the average A is maximal among
all counterexamples with this number of tiles. By the above, A < 1.
Let p we a tile in p1 with minimal ∣I ∣. Then ∣I ∣ < 1. Let J be the parent
of I. As ∣I ∣ < 1 the interval J is also contained in [0,1).
Assume first that both Jl × ω and Jr × ω are in p3 We consider a new
collection p3, which consists of the tiles of p1 except that Jl × ω and
Jr × ω are replaced by J × ωl and J × ωr. The collection p3 then also
consists of pairwise disjoint tiles and has the same union as p1 and
therefore is also a counterexample. The spatial size average of p3 is
however larger than that of p1, a contradiction to maximality of A.
It remains to consider the case that only one of Jl × ω and Jr × ω is in
p1. Assume first that J × ω is disjoint from all tiles in p1 other than
I × ω. Then we may consider the collection of pairiwise disjoint tiles

p4 = {Jl × ω,Jr × ω} ∪ p1.

It has one more tile than p1 and can by maximality not be a coun-
terexample. We can find a collection p5 which complements p4 in the
sense of the theorem. But then p5 together with the horizontal sibling
of I ×ω complements p1 in the sense of the theorem, a contradiction to
p1 being a counterexample.
Finally we assume that there is a tile I ′ × ω′ in p1 other that Jl × ω or
Jr × ω that intersects J × ω. We have ∣I ∣ ≥ ∣I ′∣ by minimality of I. As
I ′ ×ω′ is not Jl ×ω or Jr ×ω, we have ∣I ∣ < ∣I ′∣ and hence J ⊂ I ′. Hecne
I ′×ω′ also intersects I ×ω, a contradcition to disjointness of tiles in p1.
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Having brought all cases to a contradiction, we see that a counterex-
ample to the statement of the theorem cannot exist. �

p1 p2

p3
p4

Recall the functions w(I × ω) from the previous lecture.
Recall that S∆

K is the space of functions which are constant on all dyadic
intervals of length 2K .

Theorem 71. Assume p1 is a collection of pairwise disjoint tiles whose
union is ΩK. Then the functions w(I ×ω) are pairwise orthogonal and
span S∆

K

Proof. We again consider the average spatial size A of p1 as in the proof
of the previous theorem. The minimal possible value of ∣I ∣ is 2−K . It
is attained as average if p1 consists only tiles of the form I × [0,2−K).
Since the union of p1 is ΩK , p1 then contains all tiles of this form with
I ⊂ [0,1). The wave packet of such a tile is the characteristic function
on I. The span of all these functions clearly is S∆

K .
Assume p1 is a counterexample to the statement of the theorem, and
assume among all counterexamples it has minimal average A. Consider
a tile I in p1 such that ∣I ∣ is maximal. We may assume ∣I ∣ > 2K . Con-
sider the sibling ω′ of ω. Since ∣ω∣ < 2K , the sibling ω′ is also contained
in [0,2−K) and thus I × ω′ is in ΩK . By similar arguments as in the
proof of the previous theorem, I × ω′ has to be in p1. Now consider
a collection p2 which arises from p1 by replacing I × ω and I × ω′ by
Il×ω′′ and Ir×ω′′, where ω′′ is the parent of ω. Then this new collection
also is a partition of ΩK . Since it has smaller spatial size average than
the collection p1, it is not a counterexample and its wave packets are
pairwise orthogonal functions whose span is S∆

K . However, since the
functions w(I ×ω) and w(I ×ω) arise by an orthogonal transformation
from the functions w(Il × ω′′) and w(Ir × ω′′), the collection of wave
packets of p1 has the same span as that of p2 and also consists of pair-
wise orthogonal functions. Hence a counterexample to the statement
of the theorem cannot exist. �
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Recall that the wave packets w(I×ω) have constant modulus 1 on their
support and thus satisfy

∥w(I × ω)∥L2 = ∣I ∣

Hence the orthogonal bases of the above theorem are not orthonor-
mal. To obtain an orthonormal basis, one needs to consider the L2

normalized wave packets

w(I × ω)∣I ∣−1/2.

Combining the previous theorems, we obtain the following consequences.

Theorem 72 (Orthogonality). Let p, p′ ∈ p, p ∩ p′ = ∅. Then

(1) w(p) ⊥ w(p′).

Proof. Consider the collection p1 consisting of the two tiles p and p′.
By the first theorem above we may complete this collection to a tiling
of ΩK with an additonal collection p2. The wave packets to tiles of the
collection p1 ∪ p1 by the second theorem are pairwise orthogonal. In
particular w(p) and w(p′) are pairwise orthogonal. �

x

ξ

p′

p

Theorem 73. Let p1 be a collection of pairwise disjoint tiles and let p
be a tile with

p ⊂⋃p1.

Then w(p) is in the span of the wave packets of tiles in p1.

Proof. First consider a collection p2 so that p1 ∪p2 is a partition of ΩK

as in the first theorem above. Then consider the collection p2 ∪ {p}
of pairwise disjoint tiles and a collection p3 so that p2 ∪ {p} ∪ p3 is a
partition of ΩK . By the second theorem above, the wave packets of
tiles in p1 span the orthogonal complement of those of p3, and w(p) is
in the orthogonal complement of the span of wave packets of tiles of
p3. Hence w(p) is in the span of the wave packets in p1. �

Recall the Walsh functions

Wj = w([0,1) × [j, j + 1))
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and the Walsh partial sum

SNm(x) = ∑
0≤j<N

m(Wj)Wj(x)

Theorem 74. We have for every 0 ≤ N ≤ 2−K

SNm(x) = ∑
∣I ∣∣ω∣=2

∣I ∣−1m(w(I × ωl))w(I × ωl)1N∈ωr .

Proof. Define pN to be the set of tiles I × ωl ⊂ ΩK such that N ∈ ωr.

x

ξ

N

We observe that the elements of pN are pairwise disjoint: suppose
(x, ξ) ∈ p ∩ p′ for some p ≠ p′ in pN . Since x ∈ I ∩ I ′, we may assume
without loss of generality I ⊊ I ′. As the tiles are different, we obtain
∣ωl∣ > ∣ω′l ∣. But ξ ∈ ωl ∩ ω′l ≠ ∅ yields ωr ∩ ω′r = ∅, giving a contradiction
with N ∈ ωr ∩ ω′r.
We next observe that the elements of pN cover [0,1) × [0,N). Namely
if (x, ξ) ∈ ⋃pN , then ξ < N and since ⋃pN ⊂ ΩK we obtain (x, ξ) ∈

[0,1) × [0,N). Assume conversely that (x, ξ) ∈ [0,1) × [0,N). Then
there is a smallest dyadic interval ω such that ξ,N ∈ ω. Since ξ < N ,
we obtain ξ ∈ ωl and N ∈ ωr. As N is an integer, ω has size at least 2.
Moreover, ωl is contained in [0,2−K). There is a dyadic interval I of
length ∣ω∣−1 containing x, this interval needs to be contained in [0,1).
Then (x, ξ) ∈ I × ωl and I × ωl ∈ pN .
We have seen that pN consists of pairwise disjoint tiles covering the
same set as the tiles [0,1)× [j, j +1) with j < N . Hecne the orthogonal
projections onto these spans of wave packets are equal. This proves the
theorem.

�

For every measure m we can find a function n constant on dyadic
intervals of length 2K such that

sup
0≤N≤2−K

SNm(x) = Sn(x)m(x)
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17. Walsh embedding theorems

Let P be the set of all 2L-multi-tiles in ΩK , that is all dyadic rectangles
I × ω of area ∣I ∣∣ω∣ = 2L and I × ω ⊂ ΩK .
Given a dyadic interval I ⊂ [0,1) and a number ξ ∈ [0,2−K], we define
the tree T with top interval IT = I and top frequency ξT = ξ to be the
set of all multi-tiles I ′ ×ω′ = P ′ ∈ P such that I ′ ⊂ IT and ξT ∈ ω. Let E
be the set of all trees.
For a tree T define σ(T ) = ∣IT ∣. Then we may define the corresponding
outer measure for any subset A of P

µ(A) = inf
E ′⊂E ∶A⊂⋃E ′

∑
T ∈E ′

σ(T ).

Consider functions F ∶ P → R. For a given tree T , we define the local
norms

`∞F (T ) = sup
P ∈T

∣F (P )∣

and for 1 ≤ q <∞

`qF (T ) = (
1

σ(T )
∑
P ∈T

∣F (P )∣q)

1/q

.

Further we define the outer quasi norms for 1 ≤ q ≤∞

L∞`qF = sup
T ∈E

`qF (T )

and for 1 ≤ p <∞

Lp`qF = (∫

∞

0
inf{µ(A) ∶ L∞`q(F1Ac) ≤ λ

1/p}dλ)
1/p
.

These definitions are analoguous to the previously discussed outer mea-
sure theory on the set of dyadic intervals. We do have a number of
analoguous results, such as for example

Theorem 75. There is a constant C (independent of K), such that

∑
P ∈P

∣I ∣∣F (P )∣ ≤ C∥F ∥L1(`1).

Similarly, we have quasi-subadditivity, Hölder’s inequality, and so on.
However, the spaces Lp`q other than p = q = 1 are not the center of our
interest, instead we will introduce some hybrid spaces.
For each multi-tile I ×ω ∈ P we enumerate the tiles I ×ωi contained in
I × ω from bottom to top with indices 0 ≤ i < 2L. Then we define for
each such i the hybrid sizes:

Si(F )(T ) = sup
P ∈T

∣F (I × ω)∣ +∑
j≠i

⎛

⎝

1

∣IT ∣
∑

I×ω∈T,ξT ∈ωj
∣I ∣∣F (P )∣2

⎞

⎠

1/2

.

We then have the following variant of a local Hölder inequality.
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Theorem 76. Consider a collection I of at least three different indices
0 ≤ i < 2L and functions FiP → R for each i ∈ I. Then we have

`1(∏
i∈I
Fi)(T ) ≤ C∏

i∈I
Si(Fi).

Proof. We split the tree T into the subtrees

Tj = {P ∈ T ∶ ξT ∈ ωj}

for each 0 ≤ j < 2L For each such j we choose two indices j1 and j2 in I
not equal to i. We estimate all Fj(P ) for j not equal to j1 or j2 by the
supremum over all P ∈ T , and we do Cauchy Schwarz in the indices j1

and j2 to obtain

`1(∏
i∈I
Fi)(T ) = ∣IT ∣

−1
∑
P ∈T

∏
i∈I
Fi(P )

= ∑
0≤j<2L

∣IT ∣
−1
∑
P ∈Tj

∏
i∈I
Fi(P )

≤ ∑
0≤j<2L

∣IT ∣
−1 ( ∏

i∈I,i≠j1,j2
SiFi(T )) ∑

P ∈Tj
Fj1Fj2(P )

≤ ∑
0≤j<2L

∏
i∈I
SiFi ≤ 2L∏

i∈I
SiFi

This proves the theorem with the constant C = 2L. �

We obtain an analogue to Hölder’s inequality

Theorem 77. Consider a collection I of at least three different indices
0 ≤ i < 2L. Consider a collection of indices 1 ≤ pi ≤∞ such that

∑
i∈I

1

pi
= 1.

Then

L1`1(∏
i∈I
Fi) ≤ C∏

i∈I
LpiSi(Fi).

Proof. The proof is similar to Hölder’s inequality in the dyadic setting,
using the previous theorem. �

The usefulness of the hybrid sizes lies in the following embedding the-
orem.

Theorem 78. Let 0 ≤ i < 2L. For 2 < p ≤ ∞ there exists a constant
C such that the following holds. Let m be a measure and define for
P = I × ω the embedded function

F (P ) = ∣I ∣−1m(w(I × ωi)).

Then

LpSiF ≤ C∥m∥p.
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Proof. By Marcinkiewicz interpolation, it suffices to show this estimate
for p =∞ and a weak endpoint estimate at p = 2. We begin with p =∞.
We need to show that, for all T ∈ E

SiF (T ) ≤ C∥m∥∞.

For the first summand in the definition of Si, we estimate

sup
I×ω∈T

∣F (P )∣ ≤ sup
P ∈P

∣I ∣−1∥w(I × ωi)∥1∥m∥∞ = ∥m∥∞.

For the second sum in the definition of Si we fix j ≠ i and compute

1

∣IT ∣
∑

I×ω∈T,ξT ∈ωj
∣I ∣−1∣m(wI×ωI×ωi)∣

2

=
1

∣IT ∣
∑

I×ω∈T,ξT ∈ωj
∣I ∣−1∣m(1ITwI×ωI×ωi)∣

2 =
1

∣IT ∣
∥m1IT ∥

2
2 ≤ C∥m∥2

∞,

where we have used orthonormality of the wave packets ∣I ∣−1/2w(I×ωI).
This follows from the pairwise disjointness of the tiles I ×ωi, which can
be seen as follows. Let P,P ′ ∈ T be P = I × ω and P ′ = I ′ × ω′, and
suppose to get a contradiction that P ≠ P ′ and I × ωi ∩ I ′ × ω′i ≠ ∅.
Without loss of generality, we might suppose that I ⊂ I ′. As P ≠ P ′,
we quickly see I ≠ I ′. Hence ∣I ∣ < ∣I ′∣ and by area consideration ∣ω′i∣ < ∣ωi∣
and ω′i ⊂ ωi. As both P and P ′ are in Tj, we also have that ω′j ⊂ ωj
Hence the distance between ωi and ωj is at most the distance between
ω′i and ω′j. But the ratio of these distances is ∣ωi∣/∣ωj ∣ as all multi-tiles
are affine images of each other. Hence this distance has to be zero. Let
η then be the common point of the boundary of ωi and ωj and ω′i and
ω′j. If i < j, this point is the left endpoint of ωj and ω′j and thus of the

form (l + j/2L)∣ω∣ for some integer l and of the form (l′ + j/2L)∣ω′∣ for
some possibly different integer l′. Dividing by ∣ω′∣ and multiplying by
2L gives for some positive M

2L+M l + 2Mj = 2Ll′ + j

This is however impossible because the left hand side is divisibly by
a larger power of 2 than the right hand side. A similar argument
holds of j < i. This is the desired contradiction which proves pairwise
orthogonality of the tiles I × ωi.
We turn to the weak type endpoint at p = 2. We need to prove for all
λ > 0

inf{µ(A) ∶ L∞Si(m1Ac) > λ} ≤ Cλ
−2∥m∥2

2

This will complete the proof of the theorem by Marcinkiewicz interpo-
lation.
Thus we need to construct a collection E ′ ⊂ E such that

∑
T ∈E ′

∣IT ∣ ≤ C
∥m∥2

2

λ2
,
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and for every T ∈ E

Si(F1(∪E′)c)(T ) ≤ Cλ.

We construct E ′ as union of Ei and ⋃j≠i Ej. First construct Ei. We
select a finite sequence of multi-tiles Pn, n = 0,1, . . . . Assume we have
selected Pl for l < n, this includes the possibility n = 0 and we have
not selected any trees yet. If it exists, pick Pn = In × ωn such that
∣F (Pn)∣ ≥

λ
2L10

and Pn is disjoint from Pl with l < n. If no such Pn
exists, we stop the selction. If such Pn exists, we pick one such that
In is maximal. Because of finiteness of P, the process will eventually
ends for some n.
The rectangles Pl with l ≤ n are pairwise disjoint. We have by orthog-
onality

n

∑
l=0

∣Il∣ ≤ 22L100λ−2
n

∑
l=0

∣Il∣∣F (Pl)∣
2 ≤ 22L100λ−2∥m∥2

2.

Not that this is a much stronger use of orthogonality relation than
within a single tree as in the case p = ∞, because we have a quite
arbitrary collection of disjoint tiles here. For l ≤ n define Tl by letting
ITl be equal Il and letting ξTl be any integer in ωl. In particular, Pl ∈ Tl.
Let Ei be the collection of trees Tl with l ≤ n. Let A be the union of Ei.
We claim that for P ∉ A we have

F (P ) ≤
λ

2L10
.

Assume to get a contradiction that F (P ) > λ
2L10

. As P was not selected
after Pn, it has to intersect some Pl with l ≤ n. Let l be the smallest
such index. As P was not selected in place of Pl, we have ∣I ∣ ≤ ∣Il∣.
Hence I ⊂ Il, ωl ⊂ ω, therefore P ∈ Tl. This gives a contradiction to
P ∉ A.
The collection Ei takes care of the L∞ part in Si. Now we want to take
care of the L2 part for j ≠ i by selecting a collection Ej. First assume
j < i. We choose anew collection of trees Tl. Assume we have already
picked Tl for l < n .
If exists, pick Tn such that

1

∣ITn ∣
∑

P ∈Tn∖A,P ∉⋃l<n Tl
∣I ∣∣F (P )∣2 ≥ λ2.

If no such tree exists, we stop the selcetion. If several such trees exists,
pick one such that ξTn is an integer and maximal possible. (We can pick
an integer as integer intervals are the finest resolution on the vertical
axis of the phase plane).
As the collection P is finite, the selection procedure will terminate. Let
Ej be the colelction of selected trees and let Aj be the union of these
trees. As the selection porcess stopped, we have for every tree T

∣IT ∣
−1

∑
P ∈T∖(A∪Aj)

∣I ∣∣F (P )∣2 ≤ λ2.
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This will give the desired bound on the second part of the size Si for
given j. It remains to see that the sum of ITl of the selected trees in Ej
satisfies a suitable bound.
Define the reduced tree

Rn = Tn ∖ (A ∪⋃
l<n
Tl)

and the set M of minimal layers in Rn in the sense that for P ∈Mn

and all P ′ ∈ Rn we have that I ′ ∩ I = ∅ implies 2L∣I ′∣ ≥ ∣I ∣. Then
the intervals I for all P ∈ Mn have at most 2L fold overlap and are
contained in ITn , and we have since Mn is disjoint from A,

∣ITn ∣
−1

∑
P ∈Mn

∣I ∣∣F (P )∣2 ≤
λ

22L100
∣ITn ∣

−1
∑

P ∈Mn

∣I ∣ ≤ 2L
λ2

22L100

As a consequence, by choice of Tn,

∣ITn ∣
−1

∑
P ∈Rn∖Mn

∣I ∣∣F (P )∣2 ≥
99λ2

100

We claim that if
P ∈Rn ∖Mn

P ′ ∈Rn′ ∖Mn′ ,

with P ≠ P ′, then
I × ωi ∩ I

′ × ω′i = ∅.

In fact, suppose not. Since I ×ωi ≠ I ′×ω′i, without loss of generality we
can assume ∣I ∣ < ∣I ′∣ and I ⊂ I ′, hence ω′i ⊂ ωi, yielding by arguments as
above ω′j ∩ ωj = ∅. We observe that ωj is below ω′j since j < i and the
distance between ωi and ωj is larger than the distance between ω′i and
ω′j. Hence n′ is smaller than n by maximality of the top frequency in the

selection process. There is P ′′ ∈Mn such that I ′′ ⊂ I and 2L∣I ′′∣ ≤ ∣I ∣.
Hence ξTn ∈ ωj ⊂ ω

′′
j and thus ωi ⊂ ω′′j , implying ω′i ⊂ ω

′′
j , and ω′j ⊂ ω

′′
j ,

and finally ξTn′ ∈ ω
′′
j . But we also have I ′′ ⊂ I ⊂ I ′. Hence P ′′ ∈ Tn′ ,

which yields a contradiction to P ′′ ∈ Rn. This proves the above claim,
and we have by orthogonality

99

100
λ2
∑
n

∣ITn ∣ ≤∑
n

∑
Rn∖Mn

∣I ∣F (P )2 ≤ ∥m∥2
2,

therefore

∑
n

∣ITn ∣ ≤ C
∥m∥2

2

λ2
.

This is the desired estimate. In case j > i, we use an analogous argu-
ment, but we choose ξTn to be a minimal integer. This completes the
proof of the weak type estimate and thus the proof of the theorem. �
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18. The maximal Walsh embedding

We continue to look at the set P of 2L-multitiles. Each sich tile is
decomposed int 2L tiles of the form I ×ωi counted from bottom to top.
For each such 0 ≤ i ≤ 2L−1 assume we are given a real Radon measure
mi on [0,1). Define Fi ∶ P → R by

Fi(P ) = ∣I ∣−1mi(w(I × ωi)).

For a subset I of cardinality at least 3 of these indices, define the
quartile form

∑
P ∈P

∣I ∣∏
i∈I
Fi(P ).

By observations from the last lecture we have the estimate

(3) ∣ ∑
P ∈P

∣I ∣∏
i∈I
Fi(P )∣

≤ CL1`1
∏
i∈I
Fi ≤ C∏

i∈I
LpiSiFi ≤ C∏

i∈I
∥mi∥pi

Here 1 < pi ≤∞ and ∑i∈I 1/pi = 1, and

Si(F )(T ) = sup
P ∈T

∣F (P )∣ +∑
j≠i

⎛

⎝

1

∣IT ∣
∑
P ∈Tj

∣I ∣∣F (P )∣2
⎞

⎠

1/2

.

with Tj the set of all tiles in T with ξT ∈ ωj. The crucial estimate in the
line of estimates beginning with (3) is the last inequality, which uses
the Walsh embedding theorem of last lecture.
Now recall the Walsh Carleson operator for any functionN ∈ S∆

K defined
by

SWN (x)m(x) =
N(x)−1

∑
n=0

m(Wn)Wn(x)

= ∑
P ∈¶

∣I ∣−1m(w(I × ω0))w(I × ω0)(x)1N(x)∈ω1

where P is the set of bitiles, that is L = 1. Pairing with another measure
m′ gives

m′(SWN m) = ∑
P ∈P

∣I ∣F0(m)G(m′)

with
G(P ) = ∣I ∣−1m′(w(I × ω0)1N(.)∈ω1

)

To estimaet this expression, the previous sizes Si and embedding theo-
rems are only useful for the first factor. To approahc the second factor,
define the size

S∗0 (G)(T ) =
1

∣IT ∣
∑
P ∈T0

∣G(P )∣ + (
1

∣IT ∣
∑
P ∈T1

∣I ∣∣G(P )∣2)

1/2

.

It is somewhat dual to the size S0, in the sense that we have for every
tree T

∣ ∑
P ∈T

∣I ∣F0(P )G(P )∣ ≤ ∣IT ∣S0F0(T )S∗0G(T )
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EWith this local duality, one can proceed to prove an outer Hölder
type inequality and obtain for 2 < p <∞

∑
P ∈P

∣I ∣F0(m)G(m′) ≤ C(LpS0F0)(L
p′S∗0G)

To estimate this furtshr, we use both the embedding theorem below
and the embedding theorem form the last lecture to obtain

∣m′(SWN m)∣ ≤ C∥m∥p∥m
′∥p′ .

By previosu discussions, this bound for the Walsh Carleson opera-
tor will give almost everywhere convergence of Walsh Fourier series
of Radon measures in Lp.
The crucial maximal Walsh embedding theorem of this lecture is

Theorem 79. For 1 < p ≤ ∞ there exists a constant C such that the
following holds. Let m be a measure and let N ∈ S∆

K and define for
P = I × ω

G(P ) = ∣I ∣−1m(1N(.)∈ω1
w(I × ω0)).

Then
LpS∗0G ≤ C∥m∥p.

Proof. By Marcinkiewicz interpolation, it suffices to show this estimate
for p =∞ and a weak endpoint estimate at p = 1. We begin with p =∞.
We need to show that, for all T ∈ E

S∗0G(T ) ≤ C∥m∥∞.

For the first summand in the definition of S∗0 , we recall from the proof
of the previous embedding theorem that all the rectangles I × ω1 with
P ∈ T0 are pairwise disjoint. For a bitile P define

EP = {x ∈ I ∶ n(x) ∈ ω1}.

Then clearly the sets EP are pairwise disjoint as P ∈ T0 and contained
in IT . Hence

∑
P ∈T0

∣EP ∣ ≤ ∣IT ∣.

On the other hand
1

∣IT ∣
∑
P ∈T0

∣G(P )∣ ≤
1

∣IT ∣
∑
P ∈T0

∣EP ∣∥m∥∞ ≤ ∥m∥∞.

This proves the desired estimate for the first summand in the definition
of S∗0 .
To estimate the second summand in the definition of S∗0 , we compute

∑
P ∈T1

∣I ∣G(P )2

= ∑
P ∈T1

G(P )m(1N(.)∈ω1
w(I × ω0))

=m(∑
P ∈T1

G(P )1N(.)∈ω1
w(I × ω0))
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≤ ∥m1IT ∥2∥ ∑
P ∈T1

G(P )1N(x)∈ω1
w(I × ω0)∥2

Fix x ∈ IT and let Ω be the nested collection of dyadic intervals ω1

which contain ξT . Let ωx1 be the largest dyadic interval in Ω which
does not contain N(x) and let ωx be its parent. Then ω0 ⊂ ωx whenever
N(x) ∉ ω1 and ω0 ∩ ωx = ∅ whenever N(x) ∈ ω1. Hence

∑
P ∈T1

G(P )1N(x)∈ω1
w(I × ω0)(x)

= (1 − Px) ∑
P ∈T1

G(P )w(I × ω0)(x)

with the projection operator

Pxm = ∑
∣I ∣∣ωx1 ∣=1

∣I ∣−1m(w(I × ωx1))ω
x
1

This is a projection operator since the tiles of the form I × ωx1 are all
pairwise disjoint. The projection operator acts like the identity on all
wave packets associated with tiles I × ω0 with ξT ∈ ω1 and N(x) /∈ ω1

because the union of tiles defining the projection operator convers such
tiles, and it acts liek the zero operator on tiles associated with tiles
I × ω0 with ξT ∈ ω1 and N(x) /∈ ω1, because the union of tiles of the
projection operator is disjoint form such tiles.
However, Pxf(x) is bounded by the martingale average at size ∣ωx1 ∣

−1 of
∣f ∣ and thus it is bounded by the Hardy Littlewood maximal operator
M of ∣f ∣. By the L2 bound on the Hardy Littlewood maximal operator
we have

∥ ∑
P ∈T1

G(P )1N(.)∈ω1
w(I × ω0)∥2

≤ 2∥M(∑
P ∈T1

G(P )w(I × ω0))∥2

≤ C∥ ∑
P ∈T1

G(P )w(I × ω0)∥2 ≤ C (∑
P ∈T1

∣I ∣G(P )2)

1/2

In the last inequality we have used that the tiles I × ω0 are pairwise
disjoint for P ∈ T1. Hence

1

∣IT ∣
∑
P ∈T1

∣I ∣G(P )2 ≤ C∥m1IT ∥2 (∑
P ∈T1

∣I ∣G(P )2)

1/2

and hence

(∑ ∑
P ∈T1

∣I ∣G(P )2)

1/2

≤ C ∣IT ∣
1/2∥m∥∞

This proves the desired bound on the second summand in the definition
of S∗0 and completes the proof of the case p =∞.
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We turn to the weak type bound at p = 1. For given λ > 0 we need to
construct a collection E ′ of trees such that

(4) ∑
T ∈E ′

∣IT ∣ ≤ Cλ
−1∥m∥1

and for all T ∈ E ′

(5) S∗0 (G1(⋃E ′)c)(T ) ≤ Cλ.

Define the auxiliary function

G′(P ) = ∣I ∣−1∥m1I1n(.)∈ω∥1

We collect a sequence of bitiles similarly to the previous embedding
theorem. Assume we have already collected Pl for l < n. If it exists, we
pick a bitile Pn disjoint from all previously selected Pl such that

G′(Pn) ≥ λ.

If no such bitile exists, we stop the collection of tiles. If several such
bitiles exists, we choose Pn so that ∣In∣ is maximal. The construction
stops, since there are only finitely many tiles in ΩK .
Observe that

∑
l

∣Il∣ ≤ λ
−1

n

∑
l=1

∥m1I1n(.)∈ωn∥1 ≤ λ
−1∥

n

∑
l=1

m1I1N(.)∈ωn∥1 ≤ λ
−1∥m∥1.

Here we use in the last inequality that the slected tiles Pl are disjoint
and thus for every x, the point (x,N(x)) can only be in one of these
bitiles.
Define Tn to be the tree with top interval In and any integer as top
frequency ξn so that Pn is in the tree. Let E ′ be the collection of selected
trees. Then the sum of top intervals of trees in E ′ satisfies the desired
estimate (4).
To prove (5), we estimate the two summands in the definition of the
size S∗0 separately. Let A = ⋃E ′. Then for every tree T ∈ E we have

∑
P ∈T0∖A

∣I ∣∣G(P )∣ ≤ ∑
P ∈T0∖A

∣m∣(1I1N(.)∈ω1
)

≤ ∣m∣( ∑
P ∈T0∖A

1I1N(.)∈ω1
)

Now let J be the collection of maximal dyadic intervals contained in
IT such that there exits P ∈ T ∩A with P = J × ω for some ω or such
that ∣J ∣ = 2K for the finest scale 2K in our universe. The collection J
partitions IT and we estimate the last display as

≤ ∑
J∈J

∣m∣(1J1N(.)∈ωJ ∑
P ∈T0∖A

1I1N(.)∈ω1
) ≤ ∑

J∈J
∣m∣(1J1N(.)∈ωJ )

Here we used that the tiles I×ωi ∈ T0∖A are pairwise disjoint for P ∈ T0

and ωi ⊂ ωJ if x ∈ J and N(x) ∈ ωi. Now consider the parent J ′ of J ,
and consider the bitile P = J ′ × ωJ so that ξT ∈ ωJ By definition of J ,
the bitile P is not in A, and by construction of A we have G(P ′) ≤ λ.
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Namely, assume G(P ′) ≥ λ, then by the greedy choice, P ′ intersects
a selected Pl with J ⊂ Il. But then J ∈ A, a contradiction. hence we
estimate the previous display by

≤ ∑
J∈J

∣m∣(1J ′1N(.)∈ωJ ) ≤ ∑
J∈J

λ∣J ′∣ ≤ 2 ∑
J∈J

λ∣J ∣ ≤ 2λ∣IT ∣

This proves the desired bound for the first summand in the definition
of S∗0 .
To estimate the second summand, we compute similarly to before,

∑
P ∈T1

∣I ∣G(P )2 =m(∑
P ∈T1

G(P )1N(.)∈ω1
w(I × ω0))

= ∑
J∈J

m(1J1N(.)∈ωJ ∑
P ∈T1

G(P )1N(.)∈ω1
w(I × ω0))

≤ ∑
J∈J

∣m∣(1J1N(.)∈ωJ ∣(1 − P.)(∑
P ∈T1

G(P )w(I × ω0))∣)

Now we use that (1−P.)(∑P ∈T1 G(P )w(I ×ω0)) has constant modulus
on every interval J to estimate the above by

≤ ∑
J∈J

λ∣J ∣ inf
x∈J

∣(1 − Px)(∑
P ∈T1

G(P )w(I × ω0)(x))∣)

≤ λ∥(1 − P.)(∑
P ∈T1

G(P )w(I × ω0))∥1

≤ 2λ∣IT ∣
1/2∥M(∑

P ∈T1
G(P )w(I × ω0))∥2

≤ 2λ∣IT ∣
1/2∥ ∑

P ∈T1
G(P )w(I × ω0)∥2

≤ 2λ∣IT ∣
1/2(∑

P ∈T1
∣I ∣G(P )2)2

From here we obtain the desired bound on the second summand in the
definition of S∗0 as before. This completes the proof of the theorem. �
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19. The bilinear Hilbert transform

We introduce the bilinear Hilbert transform. For f, g ∈ S(R), we define

B(f, g)(x) ∶=pv∫
R
f(x − t)g(x − 2t)

dt

t

= lim
ε→0
∫

[−ε,ε]c
f(x − t)g(x − 2t)

dt

t

where in the last passage we gained integrability of the argument by
boundedness property of Schwartz functions.
To the transform we associate a trilinear form

Λ(f, g, h) ∶=∫
R
B(f, g)(x)h(x)dx =

=pv∬ h(x)f(x − t)g(x − 2t)
dt

t
dx.

A related integral is given by

∫
R
∫

1

0
f(x)f(x − t)f(x − 2t)dt dx.

If f = 1E for a set E ⊂ R it counts arithmetic progression of length 3
inside E of width at most 1.
More generally, for β(β1, β2, β3) ∈ R3, we define

Λβ(f1, f2, f3) = pv∬ f1(x − β1t)f2(x − β2t)f3(x − β3t)
dt

t
dx.

The change of variables x↦ x − γt yields

Λβ(f1, f2, f3) = pv∬
3

∏
j=1

fj(x − βjt)
dt

t
dx =

= pv∬
3

∏
j=1

fj(x − γt − βjt)
dt

t
dx.

Thus we may add γ to βj and, without loss of generality, assume β1 +

β2 + β3 = 0.
The change of variables t↦ λt yields

Λβ(f1, f2, f3) = pv∬
3

∏
j=1

fj(x − βjt)
dt

t
dx =

= pv∬
3

∏
j=1

fj(x − βjλt)
dt

t
dx.

Thus we may replace βj by λβj and, without loss of generality, assume
β2

1 + β
2
2 + β

2
3 = 1 (unless β1 = β2 = β3 = 0, but then Λ = pv ∫R

dt
t = 0).

Therefore β = (β1, β2, β3) is a unit vector perpendicular to the vector
(1,1,1). We are down to a 1-parameter family. Moreover,

Λβ(f1, f2, f3) = Λ−β(f1, f2, f3),

so the parameter belongs to a projective line.
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We can’t get rid of this parameter dependence. In fact, consider the
degenerate cases, i.e. when βi = βj for some i ≠ j, e.g. β1 = β2. The
changes of variables described above allow us to assume β1 = β2 = 0,
β3 = 1. Therefore we get

Λ(0,0,1)(f1, f2, f3) = pv∬ f1(x)f2(x)f3(x − t)
dt

t
dx = ∫ f1f2Hf3,

where Hf3 is the Hilbert transform of f3. In particular we have the
bound

Λ(0,0,1)(f1, f2, f3) ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 ,

where 1 < p1, p2, p3 < ∞, 1
p1
+ 1
p2
+ 1
p3

= 1. The same bound in the non
degenerate case can’t be proven through a similar simple argument.
This should tell us that we can’t recover the non degenerate case from
the degenerate one.
We look at the symmetries of the trilinear form:

● Translations. For y ∈ R, Tyf(x) = f(x − y). Then

Λβ(Tyf1, Tyf2, Tyf3) = Λβ(f1, f2, f3);

● Dilations. For λ > 0, Dλf(x) = f (x
λ
). Then

Λβ(Dλf1,Dλf2,Dλf3) = λΛβ(f1, f2, f3);

● Modulations. For η ∈ R, Mηf(x) = e2πiηxf(x). Then, for
α ∈ R3,

Λβ(Mα1ηf1,Mα2ηf2,Mα3ηf3) =

= pv∬ f1(x − β1t)f2(x − β2t)f3(x − β3t)

e2πiα1η(x−β1t)+2πiα2η(x−β2t)+2πiα3η(x−β3t) dt

t
dx = Λβ(f1, f2, f3).

Here the last identity holds provided the vector α is perpenidular to β
and (1,1,1). We can define the Hilbert transform of the function f in

terms of an integral of f̂ in the following way

pv∫ f(x − t)
dt

t
= c∫ f̂(η)sgn(η)dη.

What is the analogous for the Bilinear Hilbert Transform? If ϕ∶R→ R
is an odd Schwartz function such that ∫

∞
0 ϕ(s)ds = 1, then

∫

∞

0
ϕ(ts)ds =

1

t ∫
∞

0
ϕ(u)du =

1

t
.

By substituting this equality inside the trilinear form we obtain

Λβ(f, g, h) = ∫
∞

0
[∬ f(x − β1t)g(x − β2t)h(x − β3t)ϕ(st)dt dx] ds.

We want to express the integral in terms of an integral of the Fourier
transform of

F (y1, y2, y3, y4) = f(y1)g(y2)h(y3)ϕ(y4),
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Let

Γ = span{(1,1,1,0), (−β1,−β2,−β3, s)},

where the vectors are orthogonal and have length
√

3 and
√

1 + s2. We
can continue the chain of equality above

= c∫
∞

0

1
√

1 + s2
(∬

Γ
f g h ϕ) ds = c∫

∞

0

1
√

1 + s2
(∬

Γ⊥
f̂ ĝ ĥ ϕ̂) ds.

In the last equality we used the following result

Claim 80. Integrating in F ∶Rn → R over a subspace Γ is equivalent to
integrating F̂ ∶Rn → R over Γ⊥.

Proof.

F̂ (ξ) = ∫
Rn
F (x)e−2πix⋅ξ dx F̂ (0) = ∫

Rn
F (x)dx

F (x) = ∫
Rn
F̂ (ξ)e2πix⋅ξ dξ F (0) = ∫

Rn
F̂ (ξ)dξ.

These are already a first instance of the claim with Γ = Rn and Γ = {0}.
For a general subspace Γ, we can assume without loss of generality that
Γ is spanned by x1, . . . , xk, and therefore Γ⊥ is spanned by xk+1, . . . , xn.
Then

∫ F (x1, . . . , xk,0, . . . ,0)dx1 . . . dxn = F̂
1,...,k(0, . . . ,0) =

= ∫ F̂ (0, . . . ,0, ξk+1, . . . , ξn)dξk+1 . . . dξn,

where F̂ 1,...,k is the Fourier transform only with respect to the first k
coordinates. �

In our case, we have

Γ⊥ = span{(α1, α2, α3,0),(β1, β2, β3,
1

s
)} ,

where α ⊥ β, α ⊥ (1,1,1), ∥α∥ = 1. The two vectors are orthogonal to

each other and of length 1 and
√

1 + 1
s2 . We can continue the chain of

equality above

= c∫
∞

0

√

1 + 1
s2

√
1 + s2

∬ f̂(α1ξ+β1η)ĝ(α2ξ+β2η)ĥ(α3ξ+β3η)ϕ̂(
1

s
η) dξ dη ds.

But

∫

∞

0

1

s
ϕ̂(

1

s
η) ds = sgn(η)∫

∞

0
ϕ̂(s∣η∣)

ds

s
=

= sgn(η)∫
∞

0
ϕ̂(s)

ds

s
= sgn(η)const.
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Therefore we continue the chain of equalities above

= const.∬ f̂(α1ξ + β1η)ĝ(α2ξ + β2η)ĥ(α3ξ + β3η)sgn(η)dξ dη =

= const.∬
η1+η2+η3=0

f̂(η1)ĝ(η2)ĥ(η3)sgn(η ⋅ β)dσ.

In order to prove the wanted bound for the trilinear form we would
like to use the Carleson embedding theorem we proved last time. We
consider the embedding map into the upper 3-space defined, for f ∶R→
R, ϕ Schwartz function, by

F (y, η, λ) = ∫ f(x)λ−1ϕ(λ−1(y − x))e2πiη(y−x) dx.

In particular, we pick ϕ such that ϕ̂ has compact support contained in
[−10−1,10−1] and it is nonnegative, and we consider

ϕ̂(η1)ϕ̂(η2)ϕ̂(η3).

To recover the sgn(η ⋅β) we shift the support of the functions ϕ̂(ηi) so
that the centre is in β. In particular, for η ∈ R3 such that

ϕ̂(η1 − β1)ϕ̂(η2 − β2)ϕ̂(η3 − β3) > 0,

we have sgn(η ⋅ β). To make value independent on the vector α we
integrate the product with variables ηi translated by sαi, obtaining

∫

3

∏
j=1

ϕ̂(ηj − βj − sαj)ds.

To make value independent on the dilations by factor λ we integrate
the product with variables ηi dilated by a factor λ, obtaining

∫

3

∏
j=1

ϕ̂(ληj − βj − sαj)ds
dλ

λ
= csgn(η ⋅ β),

where c is a constant.
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As a consequence we can rewrite

Λ̃β(f1, f2, f3) = ∬
η1+η2+η3=0

sgn(η⋅β)

3

∏
j=1

f̂j(ηj)sgn(η ⋅ β)dσ =

= ∫

∞

0
∫
R

∬
η1+η2+η3=0

3

∏
j=1

f̂j(ηj)ϕ̂(ληj − βj − sαj)dσ ds
dλ

λ
=

FT trick
= ∫

∞

0
∫
R
∫
R

⎡
⎢
⎢
⎢
⎢
⎣
∫
R3

3

∏
j=1

fj(ηj)e
−2πiyηj

ϕ̂(ληj − βj − sαj)dη1 dη2 dη3

⎤
⎥
⎥
⎥
⎥
⎦

dy ds
dλ

λ
=

= ⋅ ⋅ ⋅ = ∫

∞

0
∫
R2

3

∏
j=1

Fj(y,αjs + βjλ
−1, λ)dsdy dλ.

Here in the last few steps we have taken anouthe Foruier transform.
The last expression resembles the quartile operator, there is a product
of three embedded functions Fi related to wavepackets that have a
mutual shift similra to the different tiles within a multi-tile
The following theorem is a continuousanalogue of boudnedness of the
quartile operator.

Theorem 81. For 2 < pi <∞, ∑ 1
pi
= 1, there exists Cβ,p such that

Λβ(f1, f2, f3) ≤ Cβ,p
3

∏
j=1

∥fj∥pj .

Note that a priori the constant depends on β, and the dependence make
it blow up in a nonintegrable way near the degenerate cases. However,
the bound is known to holds also in the degenerate case with a finite
constant. This suggests that the estimate given by the theorem above
is not optimal, in particular that an uniform bound with a constant
independent on β can be proven. This has been done with the same
conditions of the statement of the theorem.
The problem in the degenerate case is that, as in the proof of the
boundedness of the Carleson operator, we need the translations of a
tile to be disjoint. In the degenerate case this fails, with two translated
copies overlapping. By taking a tile smaller inverse proportionally to
the distance of these translations we can recover the necessary disjoint-
ness property. However, in this way the constant blows up morally like
the inverse of the distance between these pieces, thus in a nonintegrable
way near the degenerate cases.
We conclude the lecture describing an example of an application for
the BHT bound, which is historically one of the starting point of the
study of the bilinear Hilbert transform.
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Consider the Cauchy integral over a Lipschitz curve y ↦ y+iA(y) given
by

∫ f(x)
1

y − x + i(A(y) −A(x))
dx = ∫ f(x)

1

y − x

⎛

⎝

1

1 + iA(y)−A(x)
y−x

⎞

⎠
dx =

Taylor
= c∫ f(x)

1

y − x

A(y) −A(x)

y − x
dx.

This is the so called Calderon commutator [∗ 1
t2 ,A] f . By expanding

the last fraction to an integral we obtain

A(y) −A(x)

y − x
= ∫

1

0
A′(x + (y − x)α)dα.

By substituting it in the integral above we get

∫

1

0
[∫ f(x)

1

y − x
A′(x + (y − x)α)dx] dα,

where we recognize the bilinear Hilbert transform (in this case we arti-
ficially introduced the parameter α). Therefore the inner integral can
be bounded by Cα,p∥f∥p. In order to conclude that the Cauchy integral
over the Lipschitz curve is bounded by a norm of f , we need Cα,p to
be integrable near α = 0, which corresponds to the degenerate case for
the trilinear form. A uniform bound for the bilinear Hilbert transform,
i.e. if Cα,p = Cp was independent of α, would do the work, but even a
weaker result is enough.
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