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8. Lecture: Martingale differences and paraproducts

A product of martingales F (I)G(I) is typically not a martingale, as it
does not satisfy the martingale identity. In particular, if the limit

(1) lim
k→−∞

∑
k∈Dk

∣I ∣F (I)G(I)f(c(I))

exists and defines a Radon measure, the martingale extension of that
measure is not F (I)G(I). If F and G are martingale extensions of
integration against functions f, g in S∆, then for sufficiently small I we
have that F (I) = F (Il) = F (Ir) and similarly for G, so that the product
F (I)G(I) satisfies the martingale identity and equals the martingale
extension H of integration against h = fg at least for sufficiently small
I.
To better understand products of Radon measures and related issues,
we develop the theory of martingale differences and paraproducts.
We begin with the modulus square of a martingale.

Theorem 36. Let F ∶ D → C satisfy the martingale identity. If

(2) sup
k
∑
k∈Dk

∣I ∣F (I)F (I) < ∞,

Then the limit

(3) m(f) ∶= lim
k→−∞

∑
k∈Dk

F (I)F (I)f(c(I))

exists for all f ∈ S∆ and defines a nonnegative Radon measure.

Proof. Define the martingale difference ∆F (I) by

∣I ∣∆F (I) = ∣Il∣F (Il) − ∣Ir∣F (Ir).

Then we have the parallelogram law

∣I ∣F (I)F (I) + ∣I ∣∆F (I)∆F (I) = ∣Il∣F (Il)F (Il) + ∣Ir∣F (Ir)F (Ir).

Summing over I ∈ Dk we obtain

∑
I∈Dk

∣I ∣∣F (I)∣2 + ∑
I∈Dk

∣I ∣∣∆F (I)∣2 = ∑
I∈Dk−1

∣I ∣∣F (I)∣2.
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Telescoping in the scale gives for k < k′

∑
I∈Dk′

∣I ∣∣F (I)∣2 + ∑
k<j≤k′

∑
I∈Dj

∣I ∣∣∆F (I)∣2 = ∑
I∈Dk

∣I ∣∣F (I)∣2.

In particular, the sequence ∑I∈Dk ∣I ∣∣F (I)∣2 increases as k → −∞. It also
remains bounded by the assumption in the theorem, and we obtain

∣F (∣0,1))∣2 + ∑
I∈D

∣I ∣∣∆F (I)∣2 < ∞.

For k smaller than the scale of f , we have

∣ ∑
I∈Dk

∣I ∣∣F (I)∣2f(c(I) − ∑
I∈Dk−1

∣I ∣∣F (I)∣2f(c(I)∣ ≤ ∥f∥∞ ∑
I∈Dk

∣I ∣∣∆F (I)∣2

It follows that the sequence inside the limit in (3) is Cauchy and there-
fore the limit exists. The limit defines a linear functional on S∆ that
is bounded with the constant (2). �

Note the importance in this proof of telescoping the limits into sums
over the collection of D to use the theory of absolutely summable series.
The following theorem provides the algebraic procedure for more gen-
eral products.

Theorem 37 (Telescoping identity). Let n ≥ 2. Let Fj for 1 ≤ j ≤ n
be martingales. Let N = {1, . . . , n} and let E be the set of nonempty
subsets of N with even cardinality. Then

−∏
j∈N

Fj([0,1)) + ∑
I∈Dk

∣I ∣ ∏
j∈N

Fj(I) = ∑
A∈E

∑
∣I ∣>2k

∣I ∣∏
j∈A

∆Fj(I) ∏
j∈N∖A

Fj(I).

Proof. We compute with the distributive law
n

∏
j=1

Fj(Il) =
n

∏
j=1

(Fj(I) +∆Fj(I)) = ∑
A⊂N

∏
j∈A

∆Fj(I) ∏
j∈N∖A

Fj(I).

n

∏
j=1

Fj(Ir) =
n

∏
j=1

(Fj(I) −∆Fj(I)) = ∑
A⊂N

(−1)∣A∣
∏
j∈A

∆Fj(I) ∏
j∈N∖A

Fj(I).

Adding the two identities and bringing the term corresponding to the
empty set A to the left hand side and multiplying by ∣I ∣ or ∣Il∣, ∣Ir∣
having factors of 2 in mind, gives

−∣I ∣
n

∏
j=1

Fj(I)+∣Il∣
n

∏
j=1

Fj(Il)+∣Ir∣
n

∏
j=1

Fj(Ir) = ∑
A∈E

∣I ∣∏
j∈A

∆Fj(I) ∏
j∈N∖A

Fj(I).

Summing over all I ∈ Dk′ and then summing over all k < k′ ≤ 0 proves
the theorem. �

We call

ΛA(F1, . . . , Fn) ∶= ∑
I∈D

∣I ∣∏
i∈A

∆Fj(I) ∏
j∈N∖A

Fj(I)
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the para-product of type A. It is well defined if the infinite sum is
absolutely summable over all D,

∑
I∈D

∣I ∣∏
i∈A

∣∆Fj(I)∣ ∏
j∈N∖A

∣Fj(I)∣ < ∞.

If all relevant dyadic paraproducts in the last theorem are absolutely
summable, we obtain the product formula

−∏
j∈N

Fj([0,1))+ lim
k→−∞

∑
I∈Dk

∣I ∣ ∏
j∈N

Fj(I) = ∑
A∈E

∑
I∈D

∣I ∣∏
j∈A

∆Fj(I) ∏
j∈N∖A

Fj(I).

As products of general Radon measures are not defined, we introduce
some smaller subspaces of Radon measures.

Definition 38. Let m be a Radon measure with martingale extension
F . Define

∥m∥∞ ∶= sup
I∈D

∣F (I)∣,

∥m∥2 ∶= (∣F ([0,1))∣2 + ∑
I∈D

∣I ∣∣∆F (I)∣2)1/2 = lim
k→−∞

( ∑
I∈Dk

∣I ∣∣F (I)∣2)1/2.

If the respective quantity is finite, we say that m is in L∞ or L2.

The space of Radon measures in L2 is the Hilbert space identified earlier
in terms of Fourier series. The quantity ∥m∥2

2 satisfies the parallelogram
law and is equal to ∑n∈Z ∣m̂n∣

2 (Exercise). Any bounded linear map is
thus represented by taking the inner product

⟨m,m′⟩ = ∑
I∈D

∣I ∣∆F∆F ′

with a certain element in the space.
The space L∞ is contained in L2 as we have for each k

( ∑
I∈Dk

∣I ∣∣F (I)∣2)1/2 ≤ ∥m∥∞( ∑
I∈Dk

∣I ∣)1/2 = ∥m∥∞.

Theorem 39. Consider notation as in the previous theorem and let
mj for j ∈ N be Radon measures. Assume m1 and m2 are in L2 and
all remaining mj are in L∞. Then there is a constant depending only
on n such that for each A we have

∑
I∈D

∣I ∣∏
i∈A

∣∆Fj(I)∣ ∏
j∈N∖A

∣Fj(I)∣ ≤ C∥m1∥2∥m2∥2 ∏
j∈N,j>2

∥mj∥∞.

We postpone the proof of this theorem. Here we just note the trivial
case {1,2} ⊂ A, which follows from the observation

sup
I∈D

∣∆Fj(I)∣ ≤ sup
I∈D

∣Fj(I)∣

and Cauchy-Schwarz,

∑
I∈D

∣I ∣∏
i∈A

∣∆Fj(I)∣ ∏
j∈N∖A

∣Fj(I)∣

≤ (∑
I∈D

∣I ∣∣∆F1(I)∣
2)1/2(∑

I∈D
∣I ∣∣∆F2(I)∣

2)1/2
∏

j∈N,j>2

(sup
I∈D

∣Fj(I)∣
2)1/2.
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As a corollary of the last theorem, we obtain the next theorem.

Theorem 40. Let m1 be in L2 and m2 be in L∞. Then the limit

m(g) = lim
k→−∞

∑
I∈Dk

∣I ∣F1(I)F2(I)g(c(I))

exists and defines a Radon measure with ∣m(g)∣ ≤ ∥m1∥2∥m2∥∞∥g∥2

where g is identified with the measure of integration against g.

The conclusion implies that the limit defines a Radon measure in L2.

Proof. Existence of the limit follows by L∞ ⊂ L2 and by polarization
from Theorem 36. Let G be the martingale extension of integration
against g. We have by the observation at the beginning of this section

m(g) = lim
k→−∞

∑
k∈Dk

F1(I)F2(I)G(I).

Decomposing into paraproducts and applying the paraproduct bounds
gives

∣m(f)∣ ≤ C∥g∥2∥m1∥2∥m2∥∞.

�

We note there is an elementary proof of the above corollary without
paraproduct decomposition.
We give an example of a further natural and less trivial occurrence of
paraproducts. It arises from harmonic analysis on a perturbation of
the unit circle as we will elaborate further below.
Let H be a complex valued martingale that is bounded above and
below,

0 < c ≤ ∣H(I)∣ ≤ C < ∞

for all I. Assume H([0,1)) = 1. Assume for simplicity that H is the
martingale extension of integration against a function h in S∆. This is
a mild assumption, as the estimates below will only depend on h via
the constants c and C and in particular not on the minimal scale of
the function f .
Define for I ∈ D the adapted Haar functions

βI(x) =
H(Ir)1Il −H(Il)1Ir

(∣I ∣H(Il)H(Ir)H(I))
1
2

.

Note the denominator does not vanish due to the lower bound on H.
The square root requires a choice of a sign. We choose a sign, but this
choice will be irrelevant for the calculations that follow.
Define for f, g in S∆ the bilinear form

⟨f, g⟩h = ∫
1

0
f(x)g(x)h(x)dx.

The form is not sesquilinear and not necessarily non-negative for f = g.
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Theorem 41. With the definitions as above, we have ⟨1,1⟩h = 1. For
any dyadic interval I ∈ D we have ⟨βI ,1⟩h = 0 and ⟨βI , βI⟩h = 1. For
any further dyadic interval J ∈ D with J ≠ I we have ⟨βI , βJ⟩h = 0.

Proof. We have

⟨1,1⟩h = ∫
1

0
h(x)dx =H([0,1)) = 1.

Now let I ∈ D. We have

⟨H(Ir)1Il −H(Il)1Ir ,1⟩h = ∣Il∣H(Ir)H(Il) − ∣Ir∣H(Ir)H(1r) = 0.

and therefore ⟨βI ,1⟩h = 0. We have with the martingale identity

⟨βI , βI⟩h =
∣Il∣H(Ir)2H(Il) + ∣Ir∣H(Il)2H(Ir)

∣I ∣H(Il)H(Ir)H(I)
= 1

Assume further J ∈ D with J ≠ I. If I∩J = ∅, then the integrand of the
defining integral for ⟨βI , βJ⟩h vanishes, which gives the desired identity.
If I ∩ J ≠ ∅, we may without loss of generality assume that I ⊂ J and
I is strictly contained in J . Then βJ is constant on the support of I
and we have for some constant c

⟨βI , βJ⟩h = c⟨βI ,1⟩h = 0.

�

Theorem 42. If f ∈ S∆, then

f = ⟨f,1⟩1 + ∑
I∈D

⟨f, βI⟩hβI ,

where the sum on the right hand side has finitely many nonzero terms.
Moreover, there is a constant C independent of f such that

1

C
∥f∥2

2 ≤ ∣⟨f,1⟩∣2 + ∑
I∈D

∣⟨f, βI⟩h∣
2 ≤ C∥f∥2

2.

Proof. We may assume f ∈ S∆
k . The identity follows from the previous

theorem, if f is in the span of the function 1 and the functions βI with
∣I ∣ > 2k. These are 2k functions, and they are all in S∆

k . The space
S∆
k has dimension 2k, so 1 and the βI span the entire space S∆

k . This
proves the first identity.
For the string of inequalities claimed in the theorem, we first prove that
the second inequality proves the first. Note that h is bounded above
and below because H is bounded below. Hence we may define g = h−1f.
By Theorem 40, we have that ∥g∥2 ≤ C∥f∥2 because ∥h∥∞ is bounded
by a constant. Then we have with the assumed second inequality for
g,

∥f∥2
2 = ⟨f, g⟩h = ∑

I∈D
⟨f, βI⟩h⟨βI , g⟩h

≤ (∑
I∈D

∣⟨f, βI⟩h∣
2)

1/2

(∑
I∈D

∣⟨g, βI⟩h∣
2)

1/2

≤ C∥g∥2 (∑
I∈D

∣⟨f, βI⟩h∣
2)

1/2

.
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Estimating ∥g∥2 by C∥f∥2 and dividing by ∥f∥2 gives the desired first
inequality.
To prove the second inequality, we note that by the bounds on ∣H(I)∣
it suffices to prove

∑
I∈D

∣I ∣∣H(Il)G(Ir) −H(Ir)G(Il)∣
2 ≤ C∥f∥2

2

where G is the martingale extension of g = fh. The left hand side
equals

∑
I∈D

∣I ∣∣(H(Il)−H(Ir))(G(Il)+G(Ir))−(H(Il)−H(Ir))(G(Il)+G(Ir))∣
2

= ∑
I∈D

∣I ∣∣∆H(I)G(I) −∆H(I)G(I)∣2.

By the triangle inequality and expanding the square it suffices to prove

∑
I∈D

∣I ∣∆H(I)∆H(I)G(I)G(I) ≤ C∥f∥2
2,

∑
I∈D

∣I ∣H(I)H(I)∆G(I)∆G(I) ≤ C∥f∥2
2.

But we conclude from Theorem 39 that the left-hand-sides are bounded
by

∥h∥2
∞∥hf∥2

2 ≤ C∥f∥2
2,

the latter by Theorem 40. �

The above setup can be interpreted as perturbation of the unit circle.
Consider the map

Γ ∶ T→ C ∖ {0}

defined by

Γ(θ) = e2πi ∫ θ0 h(σ)dσ.

The above assumptions on h are a consequence of the following condi-
tions on Γ (for any θ,θ2 ∈ [0,1)), with different constants c,C, ε different
but related to the constants in the assumptions on h:

(1) Rectifiability: ∣Γ(θ1) − Γ(θ2)∣ ≤ C ∣e2πiθ1 − e2πiθ2 ∣.
(2) Chord-arc: ∣Γ(θ1) − Γ(θ2)∣ ≥ c∣e2πiθ1 − e2πiθ2 ∣

(3) Winding number one: ∫
1

0
Γ′(θ)

2πiΓ(θ) = 1

(4) Distance from zero: ∣Γ(θ1)∣ ≥ ε

8.1. Exercise. Let F ∶ D → C satisfy the martingale identity.
a)Prove that if supI ∣F (I)∣ < ∞, then F is the martingale extension of
an absolutely continuous Radon measure.
b) Prove that if ∑I ∣I ∣∣∆F (I)∣2 < ∞, then m is the martingale extension
of an absolutely continuous Radon measure.
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8.2. Exercise. Let m be a Radon measure on [0,1) and F its martin-
gale extension. Then we have

∑
n∈Z

∣m̂(n)∣2 = ∑
I∈D

∣F (I)∣2

in the sense that if one of the two sides is finite, then so is the other
and both sides are equal.
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9. Outer measures and their Lp theory

Our goal is to obtain upper bounds on absolute sums such as those
associated with paraproducts,

∑
I∈D

∣I ∣∏
i∈A

∣∆Fj(I)∣ ∏
j∈N∖A

∣Fj(I)∣.

For convenience, we will consider finite subsums. Define

D′ = {I ∈ D ∶ ∣I ∣ ≥ 2−N}

for some large N . Of interest will be estimates for analoguous sums
as above over D′ with constants not depending on N . Then a limiting
process will yield the same upper bounds for the full inifinite sum.
We seek norms on functions F ∶ D′ → C. Our approach will be utilizing
an outer measure on D′. For each I ∈ D′ define the tree TI to be the
set of all intervals J ∈ D′ with J ⊂ I. Let E be the set of all trees and
define σ ∶ E → (0,∞) by σ(TI) = ∣I ∣.
For a subset A ⊂ D′, define the outer measure of A to be

µ(A) ∶= inf
E ′⊂E∶A⊂⋃E ′

∑
T ∈E ′

σ(T ).

We call a collection E ′ as in the infimum of this definition a cover of
A. As we are working on a finite set D′, the infimum will be attained
by some cover. We have µ(∅) = 0, because the empty collection covers
the empty set. Moreover, we have the sub additivity property that for
two subsets A,B ⊂ D′

(4) µ(A ∪B) ≤ µ(A) + µ(B),

because for any two covers E ′ and E ′′ of respectively A and B, the union
E ′ ∪ E ′′ covers A ∪B.
For each tree TI we have σ(TI) = µ(TI). The inequality σ(T ) ≥ µ(T )

holds, because the set E ′ = {TI} covers TI . The inequality σ(T ) ≤ µ(T )

holds, because any cover E ′ of TI needs to satisfy I ∈ ⋃E ′ and thus
there needs to be a member TJ ∈ E ′ with I ⊂ J .
The inequality in (4) may be strict, even if A and B are disjoint. The
disjoint sets A = {I} and B = {Il} for example satisfy similarly to the
previous arguments µ(A) = ∣I ∣ and µ(B) = ∣I ∣/2 and µ(A ∪B) = ∣I ∣.
For a function F ∶ D′ → C we consider ”local” norms

`∞F (T ) = sup
J∈T

∣F (J)∣

and for 1 ≤ q < ∞

(5) `qF (T ) = (
1

σ(T )
∑
J∈T

∣J ∣∣F (J)∣q)

1/q

,

which can alternatively be expressed as

σ(T )(`qF (T ))q = ∑
J∈T

∣J ∣∣F (J)∣q = ∑
J∈T
∫

∣F (J)∣q

0
∣J ∣dλ
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= ∫

∞

0
∑

J∈T ∶∣F (J)∣q>λ
∣J ∣dλ = ∫

∞

0
inf{∑

J∈A
∣J ∣ ∶ A ⊂ T, `∞(F1cA) ≤ λ

1/q}dλ.

This is the socalled layer cake representation.
We recall the classical subadditivity and submultiplicativity (Hölder)
of these norms. For any 1 ≤ q ≤ ∞

`q(
n

∑
i=1

Fi)(T ) ≤
n

∑
i=1

`qFi(T ).

Let 1 ≤ q, qi ≤ ∞ such that 1
q = ∑

n
i=1

1
qi

. Then

`q(
n

∏
i=1

Fi)(T ) ≤
n

∏
i=1

`qiFi(T ).

The submultiplicativity underlines the importance to work with a fam-
ily of norms parameterized by q.
The norms (5) are used to define a ”global” L∞ norm, that is for all
1 ≤ q ≤ ∞

L∞`qF = sup
T ∈E

`qF (T ).

and for 1 ≤ p < ∞ in analogy to the above layer cake representation

Lp`qF = (∫

∞

0
inf{µ(A) ∶ L∞`q(F1Ac) ≤ λ

1/p}dλ)1/p.

We do not call this quantity a norm, as it merely satisfies a quasi
triangle inequality.

Theorem 43. For any 1 ≤ p, q ≤ ∞

Lp`q(F +G) ≤ 2(Lp`qF +Lp`qG).

If p = ∞, the constant 2 may be replaced by 1.

Proof. If p = ∞, this follows by the norm property of `q for fixed T ∈ E .
Assume p < ∞. Consider λ > 0 and let B and C be of minimal outer
measure such that

L∞`q(F1Bc) ≤ λ
1/p,

L∞`q(G1Cc) ≤ λ
1/p.

Then by monotonicity of the norm L∞`q

L∞`q((F +G)1(B∪C)c) ≤ L
∞`q(F1(B∪C)c) +L

∞`q(G1(B∪C)c)

≤ L∞`q(F1Bc) +L
∞`q(G1Cc) ≤ 2λ1/p.

Letting λ vary, we write Bλ and Cλ for the above sets.

Lp`q(F +G)p ≤ ∫

∞

0
inf{µ(A) ∶ L∞`q((F +G)1Ac) ≤ λ

1/p}dλ.

≤ 2p∫
∞

0
inf{µ(A) ∶ L∞`q((F +G)1Ac) ≤ 2λ1/p}dλ.

≤ 2p∫
∞

0
µ(Bλ ∪Cλ)dλ

≤ 2p((Lp`qF )p + (Lp`qG)p) ≤ 2p(Lp`qF +Lp`qG)p.
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The desired inequality follows by taking p-th roots. �

Theorem 44 (Hölder’s inequality with constant). Let 1 ≤ p, p1, . . . , pn ≤
∞ such that 1

p = ∑
n
i=1

1
pi

. Let 1 ≤ q, q1, . . . , qn ≤ ∞ such that 1
q = ∑

n
i=1

1
qi

.
Then we have

Lp`q(
n

∏
i=1

Fi) ≤ n
1/p

n

∏
i=1

Lpi`qiFi.

Proof. Assume first that p = ∞ and thus pi = ∞ for all i and thus also
p = ∞. Set F = ∏

n
i=1Fi. Then

L∞`qF = sup
T ∈E

`qF (T ) ≤ sup
T ∈E

n

∏
i=1

`qiFi(T ) ≤
n

∏
i=1

sup
T ∈E

`qiFi(T ) ≤
n

∏
i=1

L∞`qiFi.

Consider now general p < ∞. By dividing each Fi by its norm, we may
assume that for each i

Lpi`qiFi = 1.

Fix λ > 0 and pick covers Ai such that Ai = ∅ if pi = ∞ and otherwise

L∞`qi(Fi1Aci ) ≤ λ
1/pi

and
µ(Ai) = inf{µ(A) ∶ L∞`qi(Fi1Ac) ≤ λ

1/pi}.

Define A = ⋃
n
i=1Ai. We obtain with the proven case of L∞`q

L∞`q(F1Ac) ≤ L
∞`q(

n

∏
i=1

Fi1Aci ) ≤
n

∏
i=1

L∞`qi(Fi1Aci ) ≤
n

∏
i=1

λ1/pi = λ1/p.

Letting λ vary and denoting the sets above by Aλ and Ai,λ we obtain

(Lp`qF )p ≤ ∫

∞

0
µ(Aλ)dλ ≤

n

∑
i=1
∫

∞

0
µ(Ai,λ) ≤ n.

�

Let F ∶ D′ → C and 1 ≤ q ≤ ∞ be given. We choose a sequence of trees
Ti, i = 1,2, . . . by the following greedy procedure. Assume we have
already chosen Tj for j < i and let

Ai = ⋃
j<i
Tj.

If L∞`q(F1Aci ) = 0, we stop the selection. Otherwise, we pick a tree Ti
so that

`q(F1Aci )(Ti)

is maximal. Thanks to finiteness of D′, such a tree exists, though it
may not be unique.
In what follows, we shall not write the index i. If T is a selected tree,
we write AT for the union of trees selected prior to the considered tree
T . Let Eκ be the set of selected trees T such that

2κ < `q(F1AcT )(T ) ≤ 2κ+1.

Let Aκ be the union of all trees chosen prior to all trees in Eκ.
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Theorem 45. Let 1 ≤ q < ∞. With a greedy choice of trees as above,
we have for all κ

∑
T ∈Eκ

σ(T ) ≤ C inf{µ(A) ∶ L∞`q(F1Ac) > 2κ−1}

with some constant C depending only on q.

Proof. Fix κ and let A be a set attaining the infimum on the right
hand side of the desired inequality. Let EA be a cover of A attaining
the outer measure, that is

µ(A) = ∑
T ∈EA

σ(T ).

We have for each T ∈ Eκ by definition of Ek

∑
J∈T∖AT

∣J ∣∣F (J)∣q ≥ 2qκσ(T )

and by definition of A

∑
J∈T∖(A∪AT )

∣J ∣∣F (J)∣q ≤ 2q(κ−1)σ(T ).

Hence

∑
J∈(A∩T )∖AT

∣J ∣∣F (J)∣q ≥ 2qκ(1 − 2−q)σ(T ).

Now we estimate with the greedy information about Aκ,

∑
T ∈EA

2q(κ+1)σ(T ) ≥ ∑
T ∈EA

∑
J∈T∖Aκ

∣J ∣∣F (J)∣q

≥ ∑
J∈A∖Aκ

∣J ∣∣F (J)∣q ≥ ∑
T ∈Eκ

∑
J∈(A∩T )∖AT

∣J ∣∣F (J)∣q ≥ ∑
T ∈Eκ

2qk(1 − 2−q)σ(T ).

This completes the proof of the Theorem.
�

Theorem 46. For 1 ≤ p < ∞ there is a constant C such that for all
FD′ → C

1

C
∑
D

∣I ∣∣F (I)∣p ≤ (Lp`pF )p ≤ C∑
D

∣I ∣∣F (I)∣p

Note that an analoguous statement for p = ∞ is trivial,

sup
J∈D

∣F (J)∣ = L∞`∞F.

Proof. Constants C depend on p and may change from step to step.
Bounding a monotone integrand by a step function gives

(Lp`pF )p ≤ C∑
κ∈Z

2pκ inf{µ(A) ∶ L∞`p(F1Ac) ≤ 2κ}.

By the greedy procedure and then by Fubini and a geometric series:

≤ C∑
κ∈Z

2pκ∑
µ≥κ

∑
T ∈Eµ

σ(T ) ≤ C∑
µ∈Z

∑
T ∈Eµ

σ(T ) ≤ C∑
µ∈Z

∑
T ∈Eµ

∑
J∈T∖AT

∣J ∣∣F (J)∣p
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The last expression is equal to

C ∑
J∈D′

∣J ∣∣F (J)∣p

proving one of the claimed inequalities. Conversely, we have with the
previous theorem and the same expansion for the last display

∑
µ∈Z

∑
T ∈Eµ

∑
J∈T∖A

∣J ∣∣F (J)∣p ≤ ∑
µ∈Z

2p(µ+1)
∑
T ∈Eµ

σ(T ).

≤ C∑
µ∈Z

2p(µ+1) inf{µ(A) ∶ L∞`q(F1Ac) > 2µ−1} ≤ C(Lp`pF )p.

�

For 1 ≤ p ≤ ∞ denote with p′ the dual exponent, 1
p+

1
p′ = 1 or equivalently

p′ = p
p−1 .

Theorem 47. Let 1 ≤ p < ∞ and 1 ≤ q < ∞. For each F with Lp`qF = 1
there is a G with Lp

′
`q

′
G ≤ C and L1`1(FG) ≥ 1/C.

Proof. Consider again the greedy selection of trees. Define

G = ∑
κ∈Z

2(p−q)κ1Aκ−1∖AκF ∣F ∣q−2

If F vanishes at some point I, we set F ∣F ∣p−2 = 0 at this point. We
claim that for every κ

L∞`q
′
(G1Acκ) ≤ C2κ(p−1).

For q = 1, this follows form pointwise estimation of G. To see the claim
for q > 1, let T be any tree. Then

σ(T )`q
′
(G1Acκ)(T )q

′
= ∑
J∈T∖Aκ

∣J ∣∣G(J)∣q
′

≤ ∑
µ≤κ

∑
J∈(T∩Aµ−1)∖Aµ

∣J ∣2µ(q
′(p−1)−q)∣F (J)∣q

≤ C∑
µ≤κ

2µq
′(p−1)σ(T ) ≤ C2κq

′(p−1)σ(T ).

This proves the claim. For p = 1 it shows immediately Lp
′
`q

′
G ≤ C by

choosing κ small enough. For p > 1 we have

(Lp
′
`q

′
)Gp′ ≤ C∑

κ

2p
′κ(p−1) inf{µ(A) ∶ L∞`q

′
G ≥ C2κ(p−1)}

≤ C∑
κ

2pκ∑
µ>κ

∑
T ∈Eµ

σ(T )

≤ C∑
κ

2pκ∑
µ>κ

inf{µ(A) ∶ L∞`qF ≥ 2µ−1}

≤ C∑
µ

2pµ inf{µ(A) ∶ L∞`qF ≥ 2µ−1} ≤ C(Lp`qF )p ≤ C

On the other hand, we have

1 ≤ (Lp`qF )p ≤ C∑
κ∈Z

2pκ inf{µ(A) ∶ L∞`q(F1Ac) ≥ C2κ}
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≤ C∑
κ∈Z

2pκ∑
µ>κ

∑
T ∈Eµ

σ(T ) ≤ C∑
µ∈Z

∑
T ∈Eµ

2pµσ(T )

≤ C∑
µ∈Z

∑
T ∈Eµ

∑
J∈T∖AT

2(p−q)µ∣J ∣∣F (J)∣q

C∑
J

∣J ∣∣F (J)G(J)∣ ≤ CL1`1(FG).

This proves the other claimed inequality and completes the proof of
the theorem. �

We notice that the quantity Lp`qF is up to constants equivalent to

∣ sup
G∶Lp′`q′G≤1

∑
J∈D′

F (J)G(J)∣

This quantity however is a norm and in particular satisfies subadditiv-
ity.
We comment on variants of Theorem 47 in the instance that p or q are
infinite. If both are infinite, Theorem 46 serves as good replacement of
Theorem (47).
If only q is infinite, we define Amax

κ the set of maximal dyadic intervals
in Aκ−1 ∖Aκ such that ∣F (I)∣ ≥ 2κ. Then we define

G = ∑
κ∈Z

2(p−1)κ
∑

I∈Amax
κ

1{I}F ∣F ∣−1

We see similarly to above for every tree T :

σ(T )`1(G1Acκ)(T ) = ∑
J∈T∖Aκ

∣J ∣∣G(J)∣

≤ ∑
µ≤κ

∑
J∈T∩Amax

µ

∣J ∣2µ(p−1) ≤ C∑
µ≤κ

2µ(p−1)σ(T ) ≤ C2κ(p−1)σ(T ).

where we have used that the intervals in T ∩ Amax
µ are disjoint and

contained in the top interval of T of length σ(T ). With this we proceed
as in the proof of Theorem 47.
If only p is infinite, we identify a tree T such that

1 = L∞`qF = `qF (T )

and define

G = σ(T )−11TF ∣F ∣q−2.

We note

`q
′
G(T ) = σ(T )−1.

Then we note

L1`q
′
G ≤ ∫

σ(T )−1

0
σ(T )dλ = 1.

And

∑
J

∣J ∣F (J)G(J) = σ(T )−1σ(T )`qF (T ) = 1.
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10. Lecture: Embedding theorem, dyadic BMO and H1

(Tuesday May 26. 2020)
Consider a paraproduct of type A ⊂ N . The set A contains at least
two elements, by symmetry we assume without loss of generality that
{1,2} ⊂ A. We obtain with Hölder’s inequality for outer Lp norms

∑
I∈D

∣I ∣∏
i∈A

∣∆Fj(I)∣ ∏
j∈N∖A

∣Fj(I)∣

≤ (Lpi`2∆F1)(L
p2`2∆F1)∏

j>2

(Lpj`∞F1),

where we use the estimate

Lp`∞∆F ≤ Lp`∞F,

which follows from

`∞∆F (T ) ≤ `∞F (T )

for arbitrary tree T . Assuming Fj is the martingale extension of mj ,
the next theorem will control the outer Lp norms by the norms

∥m∥p ∶= sup
k≤0

( ∑
I∈Dk

∣I ∣∣F (I)∣p)1/p = lim
k→−∞

( ∑
I∈Dk

∣I ∣∣F (I)∣p)1/p

for 1 ≤ p < ∞ and

∥m∥∞ = sup
I∈D

∣F (I)∣.

Theorem 48. [Embedding theorem] For 1 < p ≤ ∞ and F the martin-
gale extension of m we have for some constant C depending only on
p:

(6) Lp`∞F ≤ C∥m∥p,

(7) Lp`2∆F ≤ C∥m∥p.

Proof. We prove the theorem in three steps. The first step consists of
verifying the theorem in case p = ∞. We have

L∞`∞F = sup
T ∈E

sup
J∈T

∣F (J)∣ = sup
J∈D

∣F (J)∣ = ∥m∥∞

and

(L∞`2∆F )2 = sup
T ∈E

σ(T )−1
∑
J∈T

∣J ∣∣∆F (J)∣2

≤ sup
T ∈E

σ(T )−1 sup
k

∑
J∈Dk ∶J∈T

∣J ∣∣F (J)∣2

≤ ∥m∥2
∞ sup

T ∈E
sup
k
σ(T )−1

∑
J∈Dk ∶J∈T

∣J ∣ ≤ ∥m∥2
∞.

Here we have from the first to the second line used the telescoping
identity. namely for every tree TI

∑
J∈TI

∣J ∣∣∆F (J)∣2 = −∣I ∣∣F (I)∣2 + lim
k→−∞

∑
J∈Dk ∶J∈TI

∣J ∣∣F (J)∣2.
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The second step of the proof establishes weak endpoint bounds at p = 1,
namely for all λ > 0

(8) λ inf{µ(A) ∶ L∞`∞(F1Ac) ≤ λ} ≤ ∥m∥1,

(9) λ inf{µ(A) ∶ L∞`2(∆F1Ac) ≤ λ} ≤ 2∥m∥1.

To see (8), let λ > 0 and let E ′ be the set of all trees TI such that I is
a maximal dyadic interval with respect to set inclusion with ∣F (I)∣ >
λ. Since every J with ∣F (J)∣ > λ is contained in a maximal J ′ with
∣F (J ′)∣ > λ and thus J ∈ ⋃E ′, we have

L∞`∞F1(⋃E ′)c ≤ λ.

Hence the left hand side of (8) is bounded by

λ ∑
T ∈E ′

σ(T ) ≤ ∑
TI∈E ′

∣I ∣∣F (I)∣.

To estimate the last sum, it suffices to estimate sums over arbitrary
finite E ′′ ⊂ E. By the martingale identity and the triangle inequality
we have for each TI and each 2k < ∣I ∣,

∣I ∣∣F (I)∣ ≤ ∑
J∈TI∩Dk

∣J ∣∣F (J)∣.

Picking 2k smaller than the minimum of ∣I ∣ with TI ∈ E ′′ we obtain with
disjointness of these I

λ ∑
T ∈E ′

σ(T ) ≤ ∑
J∈Dk

∣J ∣∣F (J)∣ ≤ ∥m∥1.

This completes the proof of (8).
To see (9), let E∗ be the set of all trees TI such that I is maximal with
respect to set inclusion among the dyadic intervals satisfying

max(∣F (Il)∣, ∣F (Ir)∣) > λ.

As each I ∈ E∗ is associated with a corresponding child in E ′ of half the
length, we obtain

λ ∑
T ∈E∗

σ(T ) ≤ 2λ ∑
T ∈E ′

σ(T ) ≤ 2∥m∥1.

For J ∈ D define G(J) = F (I) if J ∈ TI for some TI ∈ E∗ and G(J) =
F (J) otherwise. Set A = ⋃E∗. If J ∈ A, then

G(J) = G(Jl) = G(Jr),

while if J ∉ A then

G(J) = F (J),G(Jl) = F (Jl),G(Jr) = F (Jr),

because if J /∈ A and say Jl ∈ A then Jl = I for some TI ∈ E∗ and
similarly for Jr. In particular, G is a martingale. Moreover, if J ∈ A,
then ∆F (J) = 0 and if J ∉ A, then ∆G(J) = ∆F (J). We obtain

L∞`2(∆F1Ac) = L
∞`2(∆G) ≤ λ,
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the last inequality by the first step of the proof and the fact that G is
bounded by λ. Hence

λ inf{µ(A) ∶ L∞`2(∆F1Ac) ≤ λ} ≤ λ ∑
T ∈E∗

σ(T ) ≤ 2∥m∥1.

This completes the second step of the proof. The decomposition

F = G + (F −G)

in the above argument is called the dyadic Calderón Zygmund decom-
position of F at level λ.
The third step interpolates between the first two steps, this is called
Marcinkiewicz interpolation.
We show (7). It suffices to prove the estimate for m being integration
against a function f ∈ S∆

k for arbitrary k. For λ > 0 and split

f = gλ + hλ

with
gλ = ∑

I∈Dk ∶∣F (I)∣≤λ
F (I)1I .

Let Gλ and Hλ be the corresponding martingales. By the L∞ bound
of the first step, we have for any A,

L∞`2(∆Gλ1Ac) ≤ λ

because g and hence ∆Gλ is bounded by λ. Hence

inf{µ(A) ∶ L∞`2(∆F1Ac) > 2λ}

≤ inf{µ(A) ∶ L∞`2(∆Hλ1Ac) > λ} ≤ 2λ−1∥h∥1,

the last inequality by the weak bound at p = 1 from the second step.
We have

∥h∥1 = ∑
I∈Dk ∶∣F (I))∣>λ

∣I ∣∣F (I)∣ ≤ 2k+1
∑
I∈Dk

∫

∣F (I)∣

λ/2
dν

≤ 2k+1
∫

∞

λ/2
∣{I ∈ Dk ∶ ∣F (I)∣ ≥ ν}∣dν,

where the integrand in the last integral is the cardinality of the set of
intrvals I with the described property. Hence we have

(Lp`2∆F )p ≤ C ∫
∞

0
λp−1 inf{µ(A) ∶ L∞`2(∆F1Ac) > 2λ}dλ

≤ C ∫
∞

0
λp−2

∫

∞

λ/2
∣{I ∈ Dk ∶ ∣F (I)∣ ≥ ν}∣dν dλ

≤ C ∫
∞

0
∣{I ∈ Dk ∶ ∣F (I)∣ ≥ ν}∣∫

2ν

0
λp−2 dλdν

≤ C ∫
∞

0
νp−1∣{I ∈ Dk ∶ ∣F (I)∣ ≥ ν}∣dν ≤ C ∑

I∈Dk
∣I ∣∣F (I)∣p.

The proof for the inequality using martingale averages is done analogu-
ously. This completes the proof of the third step and the theorem. �
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The next theorem shows that for 1 < p < ∞ the quantities ∥m∥p and
Lp`2∆F are equivalent for F the martingale extension of m and thus
define the same space, with small care to be taken for the measure
given by integration against a constant function. In particular, while
Lp`2∆F may not irself be a norm, it is equivalent to a norm.

Theorem 49. For 1 < p < ∞ we have the reverse embedding inequality:
for every measure m such that m(1) = 0

∥m∥p ≤ CL
p`2∆F.

Proof. It suffices to prove this for m being integration against f ∈ S∆

with ∫
1

0 f(x)dx = 0 and ∥f∥p = 1. With g = f ∣f ∣p−2 we obtain with the
paraproduct decomposition and Hölder

1 = ∥f∥pp = ∫
1

0
f(x)g(x)dx = ∑

J∈D
∣J ∣∆F (J)∆G(J)

≤ (Lp`2∆F )(Lp
′
`2∆G) ≤ C∥g∥p′L

p`2∆F = CLp`2F

�

For p = ∞, it turns out that the embedding inequality cannot be re-
versed and the space of bounded martingales is not the same as the
space of martingales F with finite L∞`2∆F .

Definition 50. We call a measure m if dyadic bounded mean oscilla-
tion , in short dyadic BMO, if its martingale extension F satisfies

L∞`2∆F < ∞.

We note that the dyadic BMO is not tranlastion invariant under trans-
lation of the periodic measure. Genuine BMO is the space of measures
such that all its translates are in dyadic BMO. For the time being we
work with dyadic BMO only.

Theorem 51. There is a measure in dyadic BMO that is not in L∞.

Proof. We consider a martingale F with F ([0,1)) = 0 such that ∆F (J) =
1 if the left endpoint of J is zero and ∆F (J) = 0 otherwise. Then

∑
J

∣J ∣∣∆F (J)∣2 = ∑
k≤0

∑
J∈Dk

∣J ∣∣∆F (J)∣2 ≤ ∑
k≤0

2−k = 2.

In particular, F comes from a Radon measure in L2. Moreover, for
every interval I of length 2l

`2∆F (TI) = ∣I ∣−1
∑
J∈TI

∣J ∣∣∆F (J)∣2

= ∣I ∣−1
∑
k≤0

∑
J∈Dk∩TI

∣J ∣∣∆F (J)∣2 ≤ 2−l∑
k≤l

2k = 2.

Hence L∞`2∆F ≤ 2. On the other hand, we have

F ([0,1)) = 0

F ([0,2k−1)) = F ([0,2k)) + 1.
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By induction,
F ([0,2k)) = −k.

Hence F is not bounded.
�

The logarithmic blowup in the previous theorem is typical for BMO.
Note that every measure in BMO is in Lp for all p < ∞, not allowing
for any polynomial blow-up.
The situation at the other endpoint p = 1 is similar but reverse.

Definition 52. We say a Radon measure with m(1) = 0 is in the dyadic
Hardy space H1, if its martingale satisfies

L1`2∆F < ∞.

Theorem 53. There is a Radon measures m with m(1) = 0 which is
not in the dyadic Hardy space H1

Proof. We take the Radon measure m(f) = f(0). We have for its
martingale extension

F ([0,2k)) = 2−k

and F (J) = 0 if J does not contain 0. Hence also

∆F ([0,2k)) = 2−k.

Hence every cover E ′ such that

L∞`2(∆F1(⋃E ′)c) ≤ 2−k

must cover the interval [0,2k−1) and hence

inf{µ(A) ∶ L∞`2(F1(⋃E ′)c) ≤ 2−k} ≥ 2k−1.

But then,

L1`2∆F ≥
∞
∑
k=0

2k inf{µ(A) ∶ L∞`2(∆F1(⋃E ′)c) ≤ 2k} ≥
∞
∑
k=0

2−1 = ∞.

�

The situation does not change in this theorem if we additionally require
m to be absolutely continuous. Pick an absolutely summable sequence
an and pick kn rapidly shrinking in dependence of an and consider

m(f) =
∞
∑
n=1

anmn(f), mn(f) = ∫
2kn

0
f(x)dx

Thanks to summability of an we obtain an absolutely continuous mea-
sure, since absolute continuity is closed under convergence in total mass
(Exercise). The measures mn approximates the Dirac delta and thus
has Hardy space norm grows very rapidly for suitable sequence kn.
Hence m fails to be in the dyadic Hardy space.
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11. Lecture: Cauchy integral

(Thursday May 28. 2020)
Consider a closed curve Γ in the complex plane in the form of the image
of a parameterization

γ ∶ R→ C
which is one- periodic, γ(t) = γ(t + 1). We assume γ is Lipschitz, that
is

∣γ(t) − γ(s)∣ ≤ C ∣t − s∣

for all t, s ∈ R, and we assume it is chord-arc, that is

c∣t − t∣ ≤ ∣γ(t) − γ(s)∣

for all t, s ∈ R. In particular,

G(I) = γ(r(I)) − γ(l(I))

defines a martingale that is bounded in absolute value above by C and
below by c.
We assume for the moment that γ is is the primitive of a function
γ′ ∈ S∆, then G is the martingale extension of γ′. Consider a function
f on the curve so that f ○γ is continuous with martingale extension F .
The Cauchy integral of f at a point z not in the range of the curve is
then defined as

CΓf(z) =
1

2πi ∫
1

0

f(γ(t))

γ(t) − z
γ′(t)dt

=
1

2πi
lim
k→−∞

∑
I∈Dk

∣I ∣G(I)F (I)H(I),

where H is the martingale extension of the continuous function

1

γ(t) − z
.

Thanks to paraproduct estimates, the martingale expression continues
to make sense for example if F is in Lp`2 and G is in Lp

′
`2G for 1 <

p < ∞, and H is in L∞`∞H. The last two conditions follow from γ
Lipschitz.
A particular instance of the Cauchy integral is f = 1, when it is called
the winding number of the curve about the point z.

Theorem 54. The winding number CΓ1(z) for z not on the curve Γ
is a natural number.

Proof. By approximation, it suffices to consider the case of γ′ ∈ §d and
f ○ γ continuous. Consider the functions

g(t) = exp(∫
t

0

1

γ(s) − z
γ′(s)ds),

h(t) =
g(t)

γ(t) − z
.
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The function h is constant, since

g′(t) =
1

γ(t) − z
γ′(t)g(t),

h′(t) = −
g(t)γ′(t)

(γ(t) − z)2
+

g′(t)

γ(t) − z
= 0.

Equating the values at t = 1 and t = 0 gives exp(2πiCΓ1(z)) = 1 and
hence CΓ1(z) = n for some integer n. �

The winding number of the unit circle

γ(t) = exp(2πit)

about the point z = 0 is 1. Namely

CΓ1(0) =
1

2πi ∫
1

0

1

exp(2πit)
2πi exp(2πit)dt = 1

Its winding number about a point near ∞ is zero. Namely, for suffi-
icently large ∣z∣

CΓ1(0) =
1

2πi ∫
1

0

1

exp(2πit) − z
2πi exp(2πit)dt ≤ C

1

∣z∣ − 1
≤

1

2

More generally, the winding number of any curve at a point near infinity
is zero.

Theorem 55. [Jordan curve] If γ′ ∈ S∆, The winding number takes
exactly two values as z ranges over the complement of Γ.

Proof. Let γ′ ∈ S∆
k and consider I ∈ Dk. Let t = c(I) and consider

z = γ(t) + idγ′(t) for small real numbers d. As idγ′(t) is perpendicular
to γ′(t), z is not on the line segment γ(I). By the chord arc condition,
γ(s) for s /∈ I has distance at least c2k−1 from γ(t) and hence for d small
enough z has distance c2k−2 from Γ. For d small enough we obtain

∣CΓ1(γ(t) + idγ′(t)) −CΓ1(γ(t) + idγ′(t))∣

≥ ∣
1

2πi ∫
2k−1

−2k−1

1

(s − id)γ′(t)
−

1

(s + id)γ′(t)
γ′(t)ds∣ − ε

≥ ∣
1

2πi ∫
2k−1

−2k−1

2id

s2 + d2
ds∣ − ε

≥ ∣
1

2πi ∫R

2i

s2 + 1
ds∣ − 2ε = 1 − 2ε

Similarly one proves an upper bound, thus the winding number, which
is continuous and integer valued and thus constant for small positive d
and similarly it is constant for small negative d, and it jumps by 1 as
small d changes sign.
We define for ε < c2k with small constant c

α(ε, s) = −i∫
s+ε

s−ε

γ′(t)

∣γ′(t)∣
dt.
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The curves α(ε, ) for small ε stay at distance ε from the curve. (Exer-
cise). In particular, if t is the common boundary point of some adjacent
I, I ′ ∈ Dk, then

α(ε, s) = iε(
γ′(t)

∣γ′(t)∣
+
γ′(t′)

∣γ′(t′)∣
).

Thus α(ε, s) lies on the angular bisector of γ(I) and γ(I ′) and does
not intersect these line segments.
On both curves the winding number is constant by continuity, and by
the previous argument the values differ by 1.
As argued above in the case of the circle, the winding number is con-
stant equal to zero outside a large ball containing the curve. Given any
point z in the complement of the curve, consider a half line emanating
from the point. If it does not reach the curve, the winding number of z
equals that near infinity and is zero. If the ray does intersect the curve,
it first intersects one of the curves γ(t) ±α(ε, s) for sufficiently small ε
(Exercise). The winding number on z then coincides with the winding
number on that curve. Finally, consider any line segment from a point
near infinity to a point on the curve. Before reaching the curve, it must
reach one of the curves γ(t)±α(ε, s), and thus the winding number near
infinity coincides with the winding number on that curve. This proves
the theorem.

�

Theorem 56. Let γ be a curve with γ′ ∈ S∆
k . Consider a polynomial

P (z) =
N

∑
n=0

anz
n.

Then for every point z with winding number 1 we have

CΓP (z) = P (z),

While for every point z with winding number 0 we have

CΓP (z) = 0

Proof. By translation invariance, it suffices to consider z = 0. By sub-
tracting a constant from the polynomial and using the information
about the winding number at zero, it suffices to prove CΓP (0) = 0 as-

suming an = 0. But then the function P (z)
z is the complex derivative

of

Q(z) =
N

∑
n=1

n−1anz
n

The portion of the Cauchy integral over a line segment I ∈ Dk is then

1

2πi ∫I

P (γ(t))

γ(t)
γ′(t)dt = Q(γ(r(I))) −Q(γ(l(I)))

Summing over all line segments and telescoping gives CΓP (0) = 0. This
proves the theorem. �
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By approximation, the statement of the theorem continues to hold for
Taylor series

∞
∑
n=0

Anz
n

which converge uniformly on Γ.

Theorem 57. Let γ be a curve with γ′ ∈ S∆
k and assume 0 has winding

number 1. Consider a Laurent polynomial

P (z) =
−1

∑
n=−∞

anz
n.

that converges uniformly on Γ. Then for every point z with winding
number 1 we have

CΓP (z) = 0

While for every point z with winding number 0 we have

CΓP (z) = −P (z)

Proof. By linearity and approximation, it suffices to prove the theorem
for a monomial P (z) = z−n The claim CΓ(0) = 0 follows as in the
previous theorem by providing an explicit primitive of P /z.
Next we observe that a monomial (z − z0)

−n can be approximated by a
polynomial at Laurent series with negative monomials at the point 0,
uniformly on all points with distance greater than 2ε form 0
Namely,

(z − z0)
−n = z−n (1 −

z0

z
)
−n

= z−n (
∞
∑
j=0

(
z0

z
)
j

)

n

.

The geometric series converges uniformly an remains bounded for ∣z∣ >
2ε. hecne we may truncate it suitably, and then the product of the
truncations is uniformly close to the left hand side for ∣z∣ > 2ε.
Now we can prove the statement for z in a small neighborhood of 0. We
translate the situation so that z becomes zero and then approximate
the translated monomial by a Laurent series at zero.
More generally, let z0 be any point in the connected component of 0 and
draw a path from 0 to z. The compact path stays at positive distance
2ε form the curve, so we may dray a sequence all discs of radius ε
centered at the curve and iterate the above translation argument to
conclude that a Laurent monomial at z = 0 can be approximated by
a Laurent series at 0 that converges uniformly on Γ. The proves the
theorem on the connected component of 0, that is the points where the
winding number is 1.
To prove the theorem for the set where the winding number is 0, we
first consider a point z0 near infinity. We compute

z−n

z − z0

= −z−nz−1
0

1

1 − z/z0

= −z−nz−1
0

∞
∑
j=0

zjz−j0
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Approximating by finite subsums and using previous results, we find
that the integral gives −z−n0 . To argue for arbitrary points with winding
number zero, we may move the pole at z0 with a similar procedure as
above. This proves the theorem. �

For functions f that are continuous on the curve, we may apply the
following theorem. In particular, for f continuous on the curve, the
Cauchy integral is locally analytic in z on the complement of Γ.

Theorem 58 (Runge approximation). Given a curve γ with γ′ ∈ S∆

and with winding number 1 about 0, we may uniformly approximate
any continuous function on Γ by a Laurent series

N

∑
n=−N

anz
n.

Proof. We only scetch the proof, wich is similar to the above procedure.
We consider

1

γ(t) − α(εt)
−

1

γ(t) + α(εt)

for say t on a line segment γ(I) with I ∈ Dk represents for sufficiently
small ε a sharp real bumb on the line segment which is small outside
the line segment. Any continuous function vanishing on the endpoints
of all line segment γ(I) with I ∈ Dk can be approximated by such
bumps. To make the function vanish on the endpoints, we may first
subtract functions as above with t parameterizing the endpoints of the
corners. To approximate by Laurent series, we move the poles of the
above functions to zero and ∞ by a procedure as before. �

We consider the special case of the unit circle, γ(t) = exp(2πit). Then
the Cauchy integral is analytic and thus harmonic in the unit disc and
we may study whether it is the harmonic extension of a measure.
Assuming f ○γ is in S∆, we compute the Taylor series about the origin.

CΓf(z) =
1

2πi ∫
1

0

f(γ(t))

γ(t) − z
γ′(t)dt

=
1

2πi ∫
1

0

f(γ(t))

γ(t)
γ′(t)

∞
∑
n=0

zn

γ(t)n
dt

=
∞
∑
n=0

(∫

1

0
f(γ(t))e−2πintdt)zn =

∞
∑
n=0

f̂ ○ γnz
n

Recall the Poisson kernel

P (z) = 1 + ∑
n>0

zn + zn

and define the conjugate Poisson kernel

Q(z) = ∑
n>0

zn − zn
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And note that

CΓf(z) = ∫
1

0
f(γ(t))

1

2
(1 + P (ze−2πit) +Q(ze−2πit)dt

The conjugate Poisson kernel is purely imaginary, it is equal to

z

1 − z
−

z

1 − z
=

z − z

∣1 − z∣2

It has boundary values almost everywhere on the circle as

z

1 − z
−

z−1

1 − z−1
=

1 + z

1 − z
Note that for f in L2, CΓf is also the extension of a function in L2, as
one can see form the Fourier series.

11.1. Exercise. For real valued f in Lk with even integer k, the real
part of CΓf is the harmonic extension of 1

2(∫
1

0 f(x)dx + f) and the
imaginary part of CΓf is the harmonic extension of some measure 1

2Hf
in Lk respectively. Hint: apply the mean value theorem to the real part
of (f + iHf)k for even integers k.
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12. Lecture: Boundeness of the Cauchy integral

We consider a one-periodic map γ ∶ R → C which is chord-arc and
Lipschitz,

c∣t − s∣ ≤ ∣γ(t) − γ(s)∣ ≤ C ∣t − s∣

for some 0 < c < C < ∞ and all t, s ∈ R. In particular,

G(I) = γ(r(I)) − γ(l(I))

defines a martingale that is bounded in absolute value above by C
and below by c. For z outside the image Γ of the curve, the Cauchy
integral is defined under these assumptions and depends continuously
on γ′ ∈ L∞`∞ and f ∈ L2`2.
We now study the limit as z approaches the curve and thus put for
the time being more stringent assumptions. We assume that γ is the
primitive of a function γ′ ∈ S∆

k .
We define for ε < ε0

α(ε, s) = −i∫
s+ε

s−ε

γ′(t)

∣γ′(t)∣
dt

and note that for sufficiently small ε0 depending on k and the Lipschitz
and chord-arc constants of γ we have that ∣α(ε, s)∣ is comparable to ε
and γ(s) + α(ε, s) has distance comparable to ε from the entire curve
Γ (Exercise).
For f ∈ S∆

k′ with k′ ≥ k we consider the Cauchy integral near the curve

C±εf(s) =
1

2πi ∫
1

0

f(γ(t))

γ(t) − γ(s) ± α(ε, s)
γ′(t)dt.

We split C±εf(s) for s ∈ I, I ∈ Dk as

(10)
1

2πi ∫
r(I)−ε

l(I)+ε

f(γ(t))

γ(t) − γ(s) ± α(ε, s)
γ′(t)dt +R

where the reminder is the integral over the complement over the noted
interval and thanks to the uniform lower bound on ∣γ(t) − γ(s)∣ on the
complement it has a limit as ε tends to 0, which commutes with the
integral by dominated convergence, as it is dominated by

C∥f∥∞∫
[0,1)

1

max(∣s − t∣, ε)
dt ≤ C∥f∥∞(1 + ∣ log(dist(s, Ic))∣).

On the main part in (10) we note f(γ(t)) is a constant, α(ε, s) is
−2iεγ′(t)/∣γ′(t)∣ and γ(t) − γ(s) = (t − s)γ′(s). The main part is then
equal to

f(γ(s))

2πi ∫

r(I)−ε

l(I)+ε

1

t − s ∓ 2iε/∣γ′(s)∣
dt

=
f(γ(s))

2πi ∫

r(I)−ε

l(I)+ε
(

t − s

(t − s)2 + 4ε2/∣γ′(s)∣2
∓

2iε/∣γ′(s)∣

(t − s)2 + 4ε2/∣γ′(s)∣2
) dt
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The integral over the imaginary part of the integrand is bounded in
terms of the structural constants of γ and by dominated convergence
converges to

∓i∫
R

1

(t − s)2 + 1
dt = ∓πi.

The difference in the two contours may be interpreted in terms of
branches of the complex logarithm. Thanks to this difference, we see

lim
ε→0

(C−ε −C+ε)f(s) = f(s).

Similarly, limε→0C−ε + C+ε is given by the real part of the integrand
above. By changing the integrand on a small symmetric neighborhood
of s by an odd function whose integral vanishes, and using domianted
convergence away of the neighborhood, this limit exists as ε → 0 and
coincides with the limit

lim
ε→0

1

πi
f(γ(s))∫

r(I)−ε

l(I)+ε

1∣t−s∣>ε

(t − s)
dt.

Summing all intervals and using absolute integrability to pass to a limit
near the endpoints of the intervals we obtain

lim
ε→0

(C−ε +C+ε)f(s) = lim
ε→0

1

πi ∫ε≤∣t−s∣≤ 1
2

f(γ(t))

γ(t) − γ(s)
γ′(t)dt.

Define the Hilbert transform H along the curve γ by

Hf = i lim
ε→0

1

πi ∫ε≤∣t−s∣≤ 1
2

f(γ(t))

γ(t) − γ(s)
γ′(t)dt,

so we have Hf = i limε→0(C−ε +C+ε)f .
We now remove the assumption that γ′ ∈ S∆ and let γ be an arbitrary
curve with Lipschitz and chord arc assumptions. Assume we can make
sense of H in this setting, then we may define C− and C+ by C−−C+ = id
and i(C− + C+) = H. We consider two functions u, v ∈ S∆

k and study
the expression

(11)
1

π
lim
ε→0
∫

1

0
∫
ε<∣t−s∣< 1

2

1

γ(t) − γ(s)
u(γ(t))v(γ(s))γ′(t)γ′(s)dtds.

The integral can be defined for fixed ε by paraproducts for the bounded
martingale γ′. Note that by periodicity of the integrand the domain is
symmetric in t and s, so the whole expression is anti-symmetric in u
and v. Breaking up the domain of integration into squares I ′ × J ′ of
sidelength 2k and noting that by a symmetry the diagonal terms I ′ = J ′

vanish, and using absolute integrability outside the diagonal terms, we
see that the limit can be commuted with the first integral sign by
dominated convergence, hence the last display can be interpreted as a
pairing

⟨Hu, v⟩γ′ = − ⟨u,Hv⟩γ′
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with the pairing from Theorem 41

⟨u, v⟩γ′ = ∫
1

0
u(γ(s))v(γ(s))γ′(s)ds.

We shall use this symmetric expression to define H in general, and we
have by arguments as above for γ′ ∈ S∆

k

⟨Hf,h⟩γ′ = lim
ε→0

⟨C−ε +C+εf, h⟩γ′ .

We study (11) for the adapted Haar functions βI of Theorem 41. Note
by anti-symmetry we have ⟨HβI , βI⟩γ′ = 0 for all I and ⟨H1,1⟩γ′ = 0.

Theorem 59. Under the assumptions above, for any interval I ∈ D we
have

⟨H1, βI⟩γ′ = 0.

For any further dyadic interval J ≠ I with ∣I ∣ ≤ ∣J ∣ we have

∣ ⟨HβI , βJ⟩γ′ ∣

≤ C (1 +
min(∣cI − cJ ∣, ∣cI − lJ ∣, ∣cI − rJ ∣)

∣I ∣
)

−1

(1 +
∣cI − cJ ∣

∣J ∣
)

−1

(
∣I ∣

∣J ∣
)

1/2

where cI , rI , lI denote, center, right and left endpoint of I.

Proof. We note that for each small ε we have that

∫

1

0

1

γ(t) − γ(s) ± α(ε, s)
γ′(t)dt

is a winding number and constant in s for fixed sign ±. Approximating
general γ′ by approximations in S∆

k we see that this winding number
is constant in the approximation as the approximation is close enough.
Hence H1 is constant and by construction of βI we have ⟨H1, βI⟩γ′ = 0.

Assume now ∣I ∣ ≤ ∣J ∣ and I ≠ J . Then βJ is constant on I and we may
add a constant c bounded by ∥βJ∥∞ to βJ so that the sum vanishes on
I. By the previous result,

⟨HβI , βJ⟩γ′ = ⟨HβI , βJ + c⟩γ′ .

Taking limit as ε → 0 thanks to disjoint support in s and t and using
again the construction of βI , we write for the last display

∫
0≤t,s<1

∣(
1

γ(t) − γ(s)
−

1

γ(c(I)) − γ(s)
)βI(t)(βJ(s) + c)γ

′(t)γ′(s)∣dtds

(12) ≤ C(∣I ∣∣J ∣)−1/2
∫

supp(βJ+c)
∫
I

∣I ∣

∣γ(t) − γ(s)∣∣γ(c(I)) − γ(s)∣
dtds

If J has distance at least ∣J ∣ from I, then c = 0 and the support βJ is
J and we estimate (12) by

≤ C(∣I ∣∣J ∣)−1/2
∫
J
∫
I

∣I ∣

∣cI − cJ ∣2
dtds = C(

∣I ∣

∣J ∣
)1/2 ∣I ∣∣J ∣

∣cI − cJ ∣2
.
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If the distance of J to I is no larger than ∣J ∣, and I is smaller than J ,
we let J∗ be the interval of length ∣J ∣/2 containing I. If the distance
of I to (J∗)c is at least I, we estimate (12) by

≤ C(∣I ∣∣J ∣)−1/2
∫
J∗c
∫
I

∣I ∣

∣cI − s∣2
dtds = C(

∣I ∣

∣J ∣
)1/2 ∣I ∣

dist(I, (J∗)c)
.

If the distance from I to J is no larger than ∣I ∣, we estimate (12) by

≤ C(∣I ∣∣J ∣)−1/2
∫

(3I)c
∫
I

∣I ∣

∣c(I) − s∣2
dtds

+C(∣I ∣∣J ∣)−1/2
∫

(3I)∖I
∫
I

∣I ∣

∣γ(t) − γ(s)∣∣γ(c(I)) − γ(s)∣
dtds

Both integrals are finite numbers: in particular for the second one we
obtain in the first integral over t a logarithmic singularity, which then
is integrable in s. By scaling, it suffices to estimate the integrals for I
and interval of unit length. Keeping track of scaling factors, we obtain
the bound

≤ C(
∣I ∣

∣J ∣
)1/2

In all three cases, we have obtained the desired bound. �

Theorem 60. Assume γ Lipschitz and chord-arc as above and u, v ∈
S∆
k . Then for a constant depending only on the structural constants of
γ,

⟨Hf,h⟩γ′ ≤ C∥f∥2∥g∥2

Proof. We assume without loss of generality ∥u∥2 = 1 and ∥v∥2 = 1 and
expand f and h into adapted Haar functions an obtain using ⟨H1,1⟩γ′ =

0 and ⟨H1, βI⟩γ′ = 0 and with Theorem 42

⟨Hu, v⟩γ′ = ∑
I,J∈D

⟨u,βI⟩γ′ ⟨HβI , βJ⟩γ′ ⟨v, βJ⟩γ′

≤ ∑
I,J∈D

∣ ⟨u,βI⟩γ′ ∣
2∣ ⟨HβI , βJ⟩γ′ ∣ + ∑

I,J∈D
∣ ⟨v, βJ⟩γ′ ∣

2∣ ⟨HβI , βJ⟩γ′ ∣

≤ C sup
I∈D

∑
J∈D

∣ ⟨HβI , βJ⟩γ′ ∣ + sup
J∈D

∑
I∈D

∣ ⟨HβI , βJ⟩γ′ ∣.

By symmetry it suffices to prove a bound on the first summand of the
last display. Fix I, we aim to prove a bound on

∑
J∈D

∣ ⟨HβI , βJ⟩γ′ ∣ = ∑
k≤0

∑
J∈Dk

∣ ⟨HβI , βJ⟩γ′ ∣.

We fix k and prove a bound on the sum J ∈ Dk. If 2k ≥ ∣I ∣ we have

∑
J∈Dk

∣ ⟨HβI , βJ⟩γ′ ∣ ≤ C(∣I ∣/∣J ∣)1/2
∑
n∈Z

1

1 + n2
≤ C(∣I ∣/∣J ∣)1/2.

If 2k < ∣I ∣ we have

∑
J∈Dk

∣ ⟨HβI , βJ⟩γ′ ∣
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≤ C(∣J ∣/∣I ∣)1/2 ⎛

⎝
∑

n∈Z,∣n∣≤2∣I ∣/∣J ∣

1

1 + ∣n∣
+ ∑
n∈Z,∣n∣>2∣I ∣/∣J ∣

∣J ∣

∣I ∣

1

1 + n2

⎞

⎠

≤ C ∣ log(∣I ∣/∣J ∣)∣(∣I ∣/∣J ∣)1/2.

Adding these estimates over all k gives the desired bound.
�

The operator H extends to a bounded operator on L2. Likewise we
obtain bounded operators

C− =
1

2
1 − iHf

C+ =
1

2
1 + iHf

Applying these to the dense class of Laurent series, one sees the rela-
tions

C2
− = C−

C2
+ = −C+

C−C+ = C+C− = 0

This leads to the relation
H2 = −1

The maps C− and −C+ are projections onto subspaces of L2, however
they are not self adjoint relative to the usual inner product, they only
inherit from H some symmetry relativ to the pairing studied above. Let
E− and E+ be the orthogonal projections onto the same corresponding
spaces. Then we observe

E−C− = C−

C−E = E

and hence
E−C

∗
− = E

Hence
E−(1 +C− −C

∗
−) = E− +C− −E− = C−

E− = C−(1 +C− −C
∗
−)

−1

In the last line we notice that C− −C∗
− has purely imaginary spectrum

and thus the operator in brackets is invertible.
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13. Lecture: Grand embeddings

We consider the setting of Rd. A dyadic cube is a cartesian product of
dyadic intervals of equal length

Q = I1 × ⋅ ⋅ ⋅ × Id

where the dyadic interval Ij is of the form

[2knj,2
k(nj + 1))

with integers k,nj. We write s(Q) for the side-length 2k of Q, and we
write σ(Q) = 2dk for the volume of the cube. We write c(Q) for the
center of Q.
For a dyadic cube Q we define the tree TQ to be the set of all dyadic
cubes R such that R ⊂ Q and we define σ(TQ) = σ(Q). There is a
theory of Lp`q spaces analoguous to the setting on the interval [0,1).
There is also an analoguous theory martingale extension F of a Radon
measure m on Rd.
A continuous variant of the martingale averages is the grand average
embedding. We fix an 0 < ε ≤ 1 and define

F ∗(Q) = σ(Q)−1 sup
f∈AQ

∣m(f)∣,

where AQ is the set of continuous functions f such that

(13) ∣f(x)∣ ≤ (1 + ∣
x − c(Q)

s(Q)
∣)−d−ε

Theorem 61. We have for 1 < p ≤ ∞

Lp`∞F ∗ ≤ C∥m∥p

Proof. By splitting m first into real and imaginary parts and then into
positive and negative parts, and using sub-linearity, we may assume m
is nonnegative. Consider first p = ∞. We have for each Q some f ∈ AQ

F ∗(Q) ≤ Cσ(Q)−1∣m(f)∣ ≤ Cσ(Q)−1∥m∥∞∥f∥1 ≤ C∥m∥∞.

This gives the bound L∞`∞F ∗ ≤ C∥m∥∞. At p = 1, we prove a weak
bound. Fix λ > 0 and consider the collection E ′ of trees TQ where Q is
a maximal dyadic cube with respect to set inclusion such that

∣F (Q)∣ ≥ λσ(Q)

We say that two dyadic cubes Q,Q′ are close, Q ∼ Q′, if the cubes have
same side-length and their dyadic parents are equal or adjacent in the
sense that their closures are not disjoint. Let E ′′ be the set of trees TQ
such that there is Q′ ∈ E ′ with Q′ ∼ Q. As each cube has a bounded
number of close cubes, depending on the dimension, we have

∑
E ′′
σ(TQ) ≤ C∑

E ′
σ(TQ) ≤ Cλ

−1∥m∥1,
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where the last inequality we recall from the martingale setting. It then
suffices to show that for every R ∉ ⋃Q∈E ′′ TQ we have ∣F ∗(R)∣ ≤ Cλ.
There is a partition R of the space Rd containing R and dyadic cubes
R′ not in E ′ which are disjoint from R but have a close cube containing
R. For this we use that all cubes close to a cube containing R cover all
of Rd. We then have for fR ∈ AR

∣m(fR)∣ ≤ ∑
R′∈R

∣m(fR1R′)∣ ≤ ∑
R′∈R

σ(R′)F (R′)∥fR1R′∥∞ ≤

Cλ ∑
R′∈R

∫
R′

∥fR1R′∥∞ dx ≤ Cλ ∑
R′∈R

∫
R′
(1 + ∣x∣/σ(R))−d−1 dx ≤ Cλσ(R)

This shows the weak type inequality. Marcinkiewicz interpolation com-
pletes the proof. �

The grand difference embedding of a Radon measure m on Rd is defined
as

(14) ∆F ∗(Q) = σ(Q)−1 sup
f∈DQ

∣m(f)∣

where DQ is the set of continuously differentiable functions in AQ such
that

∫
Rd
f(x)dx = 0

(15) ∣∇f(x)∣ ≤ s(Q)−1∣1 +
x − c(Q)

s(Q)
∣−d−1−ε.

Note that (15) implies (13) with a possible constant, if we assume that
f tends to zero near ∞. We show this for Q the unit cube of side-length
1, then for ∣x∣ ≥ 1 we have

∣f(x)∣ ≤ ∫
∞

1
∣∇f(rx) ⋅ x∣dr ≤ C ∫

∞

∣x∣
r−1−d−ε dr ≤ C ∣x∣−d−ε,

and for ∣x∣ ≤ 1 we have

∣f(x)∣ ≤ ∫

1
∣x∣

1
∣∇f(rx) ⋅ x∣dr +C ≤ C.

Theorem 62. Let Q,R be two dyadic cubes with s(Q) ≤ s(R) and let
fQ and fR be in DQ and DR respectively. Then

∣ ⟨fR, fQ⟩ ∣ ≤ Cσ(Q)(
s(Q)

s(R)
)1/(d+1+ε)(1 +

∣c(Q) − c(R)∣

s(R)
)−d−ε.

Proof. Assume first ∣c(Q) − c(R)∣ > 2s(R).
We consider a ball B of radius cs(Q) < r < ∣c(Q)−c(R)∣/2 around c(Q)

and write

∫ fR(x)fQ(x)dx

= ∫
B
(fR(x) − fR(c(Q)))fQ(x)dx + ∫

Bc
(fR(x) − fR(c(Q)))fQ(x)dx.
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We estimate the first integral in absolute value by the mean value
theorem by

r sup
y∈B

∣∇fR(y)∣∥fQ∥1

≤ Crs(R)−1(
∣c(Q) − c(R)∣

s(R)
)−d−1−εσ(Q) = C

rs(R)d+εs(Q)d

(c(Q) − c(R))d+1+ε

The second integral we estimate by

∥fR∥1 sup
y∈Bc

∣fQ(y)∣ + ∣fR(c(Q)∣ ∫
Bc

∣fQ(x)∣dx

≤ Cσ(R)(
r

s(Q)
)−d−ε +C(

∣c(Q) − c(R)∣

s(R)
)−d−ε∫

∣y∣>r
(

∣y∣

s(Q)
)−d−ε dy

≤ C
s(R)ds(Q)d+ε

rd+ε

where we estimate the first term sharply and the second term as smaller
than the first. The optimal r to put the two bounds of first and second
integral into equilibrium is

r =
1

2
(c(Q) − c(R))(

∣s(Q)∣

∣s(R)∣
)ε/(d+1+ε)

which we note to satisfy the bounds required earlier. Inserting this r
proves the desired bound of the theorem. In case ∣c(Q)−c(R)∣ < 2s(R),
we do a similar calculation with

r = s(R)(
∣s(Q)∣

∣s(R)∣
)ε/(d+1+ε).

�

Theorem 63. For 1 < p ≤ ∞ there si a constant C such that for all
Radon measures m

Lp`2∆F ∗ ≤ C∥m∥p.

Proof. We first consider the case p = 2. We know that the L2`2 norm
can equivalently be expressed by a square sum, hence it suffices to
bound ∑R σ(R)∣∆F ∗(R)∣2. We estimate this for suitable fR by

(16) C∑
R

σ(R)−1∣m(fR)∣
2 ≤ C∥m∥2∥∑

R

σ(R)−1m(fR)fR∥2.

The square of the second norm is bounded by

∑
Q,R

σ(Q)−1σ(R)−1m(fR)m(fQ) ⟨fR, fQ⟩

≤ 2 ∑
s(Q)≤s(R)

σ(Q)−1σ(R)−1∣m(fR)∣∣m(fQ)∣∣ ⟨fR, fQ⟩ ∣ ≤

⎛

⎝
∑

s(Q)≤s(R)

C

σ(Q)
∣m(fQ)∣

2∣ ⟨fR, fQ⟩ ∣
⎞

⎠

1
2
⎛

⎝
∑

s(Q)≤s(R)

σ(Q)

σ(R)2
∣m(fR)∣

2∣ ⟨fR, fQ⟩ ∣
⎞

⎠

1
2



HARMONIC ANALYSIS SUMMER 2020, PART B 33

To estimate the first factor, we insert the estimate of the previous
theorem and note that for fixed Q

∑
s(Q)≤s(R)

(
s(Q)

s(R)
)ε/(d+1+ε)(1 +

∣c(Q) − c(R)∣

s(R)
)−d−ε ≤ C

by first summing over R of fixed size, recognizing the sum of (1+∣n∣)−d−ε

with n running over the integer lattice, and then summing a geometric
series over the scales. To estimate the second factor, we note similarly
for fixed R

∑
s(Q)≤s(R)

σ(Q)

σ(R)
(
s(Q)

s(R)
)ε/(d+1+ε)(1 +

∣c(Q) − c(R)∣

s(R)
)−d−ε ≤ C

by noticing the sum over (1 + ∣n∣)−d−ε with n running over the lattice
with sidelength s(Q)/s(R), which gives σ(R)/σ(Q) times the value of
the integer lattice, and then summing a geometric series over the scales.
This estimates (16) by

≤ C∥m∥2 (∑
Q

σ(Q)−1∣m(fQ)∣
2)

1/2

Dividing by the square root gives the desired bound at p = 2.
To obtain the bound at p = ∞, we fix a tree TQ and cut a Radon
measure m ∈ L∞ as m =m13Q +m1(3Q)c and correspondingly

∆F ∗(R) = ∆F ∗
3Q(R) +∆F ∗

(3Q)c(R).

For the first part we use the L2 bound

1

σ(Q)
∑
R∈TQ

σ(R)∣∆F ∗
3Q(R)∣2 ≤ C

1

σ(Q)
∥m13Q∥

2
2 ≤ C∥m∥2

∞.

For the second part we use the bound

∣ ⟨m1(3Q)c , fR⟩ ∣ ≤ ∥m∥∞∫
(3Q)c

s(R)d+ε(x − c(R))−d−ε dx

≤ C∥m∥∞σ(R)(s(R)/s(Q))ε

Summing over all R ∈ TQ, first over those cubes of fixed size and then
over all sizes, proves the desired bound.
We turn to the weak endpoint bound at p = 1. We do a Calderon
Zygmund decomposition of m with respect to E ′ as in the proof of
Theorem 61. For each tree TQ ∈ E ′ consider

mQ = (m − c)1Q

with constant C so that mQ(1) = 0. Let also E ′′ as in the proof of
Theorem 61. We need to show for each tree TQ′ that

∑
R∈Q′,R∉⋃E ′′

σ(R)∣∆F ∗
Q(R)∣2 ≤ Cλ2σ(Q′)
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We sum over fixed size of Q first. If s(R) is less than s(Q) then we
note that Q has distance at least s(Q′) from Q′ we obtain

σ(R)∣∆F ∗
Q(R)∣2 ≤ σ(R)−1∥mQ∥

2
1∥fR∥

2
∞

≤ Cλ2σ(R)−1σ(Q)2(s(R)/s(Q′))2d+2ε ≤ Cλ2σ(R)(s(R)/s(Q′))2ε

Summing first over R of fixed scale and then over the scales gives the
desired bound. If s(R) is at least as large as s(Q), we estimate after
subtracting a constant from fR and using the mean value theorem

σ(R)∣∆F ∗
Q(R)∣2 ≤ Cσ(R)−1∥mQ∥

2
1s(Q)2 sup

x∈Q
∣∇fR∣

2

≤ Cσ(R)−1λ2σ(Q)2(1 +
∣c(Q) − c(R)∣

s(R)
)−2(d+1+ε)

Summing first over R of fixed scale and then over the scales gives the
desired bound. This completes the proof of the weak type endpoint at
p = 1 and by marcinkiewicz interpolation completes the proof of the
theorem. �

To see some application of the last theorem, let φ ∶ Rd → C be a function
such that it’s Fourier transform φ̂ is supported in the annulus 1 < ∣ξ∣ < 2
and is rotationally symmetric. Then

∫

∞

0
∣φ̂(tξ)∣2

dt

t

is rotation and dilation invariant and thus a constant outside the origin.
We assume φ is normalized so that this constant is 1. We claim that
for a Schwartz function f we have for all z ∈ Rd

Tf(z) = ∫
Rd
∫
Rd
∫

∞

0
f(x)t−dφ(

y − x

t
)φ(

y − z

t
)dydx

dt

t

and thus T is the identity operator. Taking formally the Fourier trans-
form of the last display, the double convolution turns into double mul-
tiplication and we obtain

T̂ f(ξ) = ∫
∞

0
f̂(ξ)φ̂(tξ)φ̂(tξ)

dt

t
= f̂(ξ),

proving the claim, Any operator of the form

Tf(z) = ∫
Rd
∫
Rd
∫

∞

0
f(x)t−dφ(

y − x

t
)ψ(

y − z

t
)dydx

dt

t

with any functions φ,ψ having integral zero and satisfying the estimates

∣φ(x)∣ ≤ (1 + ∣x∣)−d−ε,

∣∇φ(x)∣ ≤ (1 + ∣x∣)−d−1−ε,

will be bounded in Lp. Namely, consider the pairing

⟨Tf, g⟩ = ∫
Rd
∫

∞

0
(∫

Rd
f(x)t−dφ(

y − x

t
)dx)(∫

Rd
g(z)t−dφ(

y − z

t
)dz)
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The exterior double integral we may split over dyadic cubes, in the
sense that we split the t integral into intervals 2k,2k+1 and if t is in
such an interval we split the y integral over dyadic cubes of side-length
2k. This partitions the integration domain and we may estimate the
last display by

∑
k

∑
s(Q)=2k

σ(Q) sup
2k≤t≤2k+2

sup
x∈Q

(∫
Rd
f(x)t−dφ(

y − x

t
)dx)(∫

Rd
g(z)t−dφ(

y − z

t
)dz)

≤ C∑
k

∑
s(Q)=2k

σ(Q)F ∗(Q)G∗(Q)

which can then be estimated by Hölder’s inequality in the spaces Lp(`2)

and by the embedding theorems.
A typical application is to translation and dilation invariant operators,
such as the Riesz transforms

Ri = ∂i∆
−1/2

of which the Hilbert transform on the real line is a special case. We
may express Rif by the Calderón’s reproducing formula, applying Ri

to φ inside the integral. Both φ and ψ satisfy the requirements listed
as above. Boundedness of the Riesz-transform follows.
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14. The corona theorem

Let H∞(D) in this lecture denote the set of bounded analytic functions
in the unit disc. We know that each such function is harmonic and thus
the harmonic extension of a Radon measure in L∞ on T. This measure
is determined by the radial limits of the function almost everywhere on
T. The space H∞(D) is an algebra of functions, and the corona theo-
rem is motivated by questions on the spectrum of this algebra, which
we will not elaborate here. The name corona appeals to behaviour near
the boundary of the disc.

Theorem 64 (Corona Theorem). Let n ∈ N and δ > 0. There is a
constant C = C(n, δ) such that for all tuples

f1, . . . , fn ∈H
∞(D)

such that for all z in D

δ <
n

∑
m=1

∣fm(z)∣2 < 1

there exist a tuple

g1, . . . , gn ∈H
∞(D)

with ∥gj∥∞ ≤ C for all j and

n

∑
j=1

fjgj = 1.

The fj are called the corona data, the gj are called the corona solution.

Proof. We first reduce to the case when the fj extend analytically to
a disc about the origin of radius larger than 1. Fo the reduction, let
fj be as in the theorem and define fr,j(z) = fj(rz) for r smaller than
1. Assume we can find for each such corona data a solution gr,j as
in the theorem. Pick a sequence r that tends to 1. Pick consecu-
tively subsequences so that for the n-th subsequence the Fourier coeffi-
cients ĝr,j(n), which remain bounded by C(n, δ), converge. Choose the
diagonal subsequence, so that all Taylor coefficients of this diagonal
sequence converge. By dominated convergence applied to the Taylor
series, the functions gr,j converge uniformly on discs of radius smaller
than 1 about the origin. They converge to the limit Taylor series, which
gives bounded analytic functions on the unit disc with uniform bounds
by C(n, δ). By taking limits these functions solve the corona problem
for the original data fj.
Henceforth we assume the functions fj extend to holomorphic functions
on discs of radius slightly larger than 1 around the origin.
Define

hj =
f̄j

∑
n
m=1 ∣fm∣2

.
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Then ∥hi∥∞ ≤ δ−1 and
n

∑
i=1

fihi = 1.

The functions hj satisfy the desired algebraic equation, the desired L∞

bound, and are smooth in the unit disc, but are not analytic.
Other solutions to the algebraic equation are given by adding an anti-
symmetric linear matrix applied to the vector fj

gj = hj +
n

∑
l=1

(wjl −wlj)fl,

as can be seen from
n

∑
j=1

fj
n

∑
l=1

(wjl −wlj)fl = 0.

Such gj will be analytic if

∂z̄wjl = hj∂z̄hl.

Namely, using analyticity of fj, that is ∂z̄fj = 0, we obtain

∂z̄gj = ∂z̄hj +
n

∑
l=1

(∂z̄wjl − ∂z̄wlj)fl

= ∂z̄hj +
n

∑
l=1

hj(∂z̄hl)fl −
n

∑
l=1

hl(∂z̄hj)fl

= ∂z̄hj +
n

∑
l=1

hj(∂z̄hlfl) − ∂z̄hj = 0,

where the second summand is seen to be zero by pulling the sum inside
the differentiation.
Fix j and l and set u = hj∂z̄hl. We seek to find a solution to

∂z̄w = u

with ∥w∥∞ ≤ C(n, δ). This will complete the construction of the Corona
solution.
The above equation is called the d-bar equation, it is closely related to
the more widely known Poisson equation

∆φ = u.

Namely, given a solution φ to the Poisson equation, w = 4∂zφ solves
the d-bar equation.
Recall Green’s identity

∫
U
φ∆ψ − ψ∆φdxdy = ∫

∂U
φ(∇ψ ⋅ n) − ψ(∇φ ⋅ n)dS.

In the case of a disc Dr of radius r about the origin with infinitesimally
small punctured hole at the origin this gives

u(0) = C ∫
Dr

∆u(z)∣log∣z/r∣∣dxdx + ∫
1

0
u(re2πiθ)dθ
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for some constant C. With a right hand side of Poisson’s equation
supported on some disc of radius 1+ε we may solve the Poisson equation
for z in the support of the right-hand-side by

φ(z) = C∬
R2
u(ζ) log ∣z − ζ ∣dξdη

we assume this to be known. A solution to the d-bar equation is then
given by differentiation under the integral sign, so with a possibly dif-
ferent constant,

w(z) = C0∬
R2
u(ζ)

1

z − ζ
dξdη +C1

Where we added a constant so that we may assume w(0) = 0.
While we know that w is bounded on T because it extends smoothly
across T, we do not know that the bound is by a constant depending
only on n and δ.
However, we may prove a slightly weaker bound. Let H1(D) be the
complex Hardy space of analytic functions in the unit disc which are
harmonic extensions of absolutely continuous Radon measures. We
claim that for every v ∈H1(D) we have

(17) ∣ ∫

2π

0
w(e2πiθ)v(e2πiθ)dθ∣ ≤ C(n, δ)∥v∥1

where the integral over the boundary is in the sense of a limit of inte-
grals over smaller radii. This is almost the desired L∞ bound: if we
had this estimate for all harmonic extensions of absolutely continuous
Radon measure, v ∈ L1(T), then we had the desired L∞ bound by the
converse to Hölder’s inequality.
By approximation of an arbitrary v ∈H1(D) by vr(z) = v(rz), we may
again assume that v extends to a disc of radius slightly larger than 1.
Namely, bounds by a constant C(n, δ) on the approximations turn into
the bounds in the limit r → 1, as we know that the limit exists as w
is in L∞. We may also assume that the approximations do not have
zeros on T by avoiding the countably many critical radii of the discrete
zeros of v.
Applying Green’s formula for fixed v of norm 1 we obtain for the left
hand side of (17) up to a constant

∬
D

∆(vw)∣ log ∣z∣∣dxdy.

Note that
∂z∂z̄(vw) = 4∂z(vu) = 4∂z(vhj∂z̄hl)

(18) = 4(∂zv)hj∂z̄hl + 4v(∂zhj)∂z̄hl + 4vhj(∂z∂z̄hl).

We estimate the three terms separately. With a = ∑ ∣fm∣2 and hj = a−1fj
we have for the first term in (18)

(19) 4(∂zv)hja
−1∂zfl − 4∑

m

(∂zv)hja
−2fjfm∂zfm
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We again estimate the terms separately. In the first term we estimate
hj and a−1 by their L∞ bounds and it remains to estimate

(20) ∬
D
(∂zv)(∂zfl)∣ log ∣z∣∣dxdy.

Now we consider for each I ∈ D the region I∗ defined to consist of those
z = re2πiθ such that θ ∈ I and 1 − ∣I ∣ ≤ r < 1 − ∣I ∣/2. For a function f on
the disc, define the embedded function

f∗(I) = sup
z∈I∗

∣f(z)∣

Integrating the logarithm over each of the regions, we estimate (20) by

C∑
D
(∂zv)

∗(I)(∂zfl)
∗(I)∣I ∣ ≤ L1`2(∂zv)

∗L∞`2(∂zfl)
∗.

The second term we bound by the grand embedding theorem, writing
with the Cauchy integral for the derivative

∂zfl(z) = −∫
1

0

fl(e2πiθ)

(z − e2πiθ)2
e2πiθ dθ

and noticing that the kernel satisfies the assumptions of the grand
embedding theorem on the disc relative to I if z ∈ I∗.
To see that (∂zv)∗ satisfies good L1`2 bounds, we cannot apply the
grand embedding theorem directly as this theorem does not apply for
p = 1. The function v is analytic in a neighborhood of the closed unit
disc and does not vanish on the boudnary of the unit disc. It has
finitely many zeros z1, . . . , zN in the unit disc, here we list a zero with
repetition according to its multiplicity. Note that the socalled Blaschke
factor

Bj(z) =
z − zj
1 − zzj

vanishes at zj an takes modulus one on the boundary of the disc, as
there it equals

z − zj
z(z − zj)

.

Hence

v
N

∏
j=1

Bj(z)
−1

is analytic in the unit disc, has no zeroes there, and has the same modu-
lus as v on the boundary of the unit disc. Thanks to non-vanishing, we
may take an analytic square root s of the function on the simply con-
nected disc. This square root is then in L2, as its square is integrable.
We then have

v = s2
N

∏
j=1

Bj(z)

∂zv = 2(∂zs)s
N

∏
j=1

Bj(z) + s
2∂z(

N

∏
j=1

Bj(z))
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Now s is in H2(D), and by the embedding theorems as above (∂zs)∗ is
in L2`2, s∗ is in L2`∞ by the grand embedding applied to the represen-
tation of s by the Poisson kernel, and the product (∏

N
j=1Bj(z))∗ is in

L∞`∞ and (∂z(∏
N
j=1Bj(z)))∗ is in L∞`2. By Hölder, v∗ is in L1(`2) and

thus in the discrete Hardy space, with norm controlled by the complex
Hardy space norm of v. This proves the desired bound on the first term
in (19).
The second term in (19) is estimated similarly, using L∞ bounds for
fj.
The second term in (18) is written as

s2
N

∏
j=1

Bj(z)(∂zhj)∂z̄hl

we then use that the Blaschke factors are bounded, that L2`∞s∗ is
bounded by the grand embedding theorem applied to the representa-
tion of s as Poisson extension, and that L∞`2∂zhj and L∞`2∂z̄hj are
bounded.
Similarly we estimate the third term in (18), where we use

∂z∂z̄hl = ∂z(a
−1∂z̄fl −∑

m

a−2flfm∂z̄fm)

= ∑
m

a−2(∂fm)fm∂z̄fl−∑
m

a−2fl(∂zfm)∂z̄fm+2∑
m
∑
m′
a−3fl(∂zfm′)fm′fm∂z̄fm

Similarly to before we estimate the derivative terms using L∞`2, we
estimate s by L2`∞ and all other terms are bounded. This completes
the proof of (17)
Now (17) defines a bounded linear functional on H1(D). We apply
the Hahn Banach theorem to extend this functional to a functional
on L1(T), with the same bound. Here we use that H1(D) is a closed
subspace of L1(T ). By the Riesz representation theorem, this func-
tional is given by an element w′ ∈ L∞(T), which satisfies the bound
∥w′∥∞ ≤ C(n, δ).
We claim that w′ also solves the d-bar equation. For this we need to
show that w −w′ is analytic in the unit disc.
We have w − w′ ∈ L∞(T), so it has a harmonic extension to the unit
disc. We have

∫

2π

0
(w −w′)e2πinθ dθ = 0

for all n ≥ 0 as e2πinθ is the boundary value of the function zn ∈H1(D)

and w and w′ induce the same functional on H1(D). Hence the Fourier
series of the harmonic extension of w − w′ has only nonnegative fre-
quencies and thus is a Taylor series and thus the harmonic extension
is analytic.
This completes the proof of the theorem.

�
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