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1. Lecture: Harmonic functions on the disc, I

A classical theme in harmonic analysis concerns harmonic functions on
the open unit disc

D = {(x, y) ∈ R2 ∶ x2 + y2 < 1}.
We may identitfy the plane with the complex plane and write

x + iy = z.
We write for a function on the disc u(z) = u(x, y), where one argument
stands for a complex number and two arguments for a pair of real
numbers.
A complex valued function f ∶ D → C is called harmonic, if it is twice
continuously differentiable and

∆u = 0,

where
∆u = ∂2

xu + ∂2
yu = 4∂z∂zu

with

∂zu =
1

2
(∂xu − i∂yu)

∂zu =
1

2
(∂xu + i∂yu).

For each n, both of the functions

u(z) = zn

u(z) = zn

are harmonic since ∂zzn = 0 and conjugation preserves harmonic func-
tions.
In the unit disc, it is natural to pass to polar coordinates. A continuous
function u on the unit disc becomes a continuous function ũ on the half
plane R≥0 ×R

ũ(r, θ) = u(r cos(2πθ), r sin(2πθ))
which is 1 -periodic in θ and constant on the line r = 0. If u is twice
continuously differentiable, we have that ũ is twice continuously differ-
entiable on r > 0. We have

(1) ∆u(r cos(2πθ), r sin(2πθ))
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= ∂2
r ũ(r, θ) + r−1∂rũ(r, θ) + (2πr)−2∂2

θ ũ(r, θ)
and this expression has a continuous extension to r = 0 which is con-
stant on r = 0. We omit the tilde on the u if it is clear form the context
that we use polar coordinates.
Consider the circular averages

a(r) = ∫
1

0
u(r, θ)dθ.

Lemma 0 (Mean value principle). If u is harmonic on the open unit
disc, then its circular average a is constant in r and equal to u(0).

Proof. The function a is twice continuously differentiable for r > 0 and
we have

∂r(r∂ra) = (∂r + r∂2
r )a

∫
1

0
(∂r + r∂2

r)u(r, θ)dθ

= −∫
1

0
(2π)−2r−1∂2

θru(r, θ)dθ = 0.

The last by periodicity of u in θ. Hence

r∂ra = c1,

a = c1 ln r + c2.

If u remains bounded in the disc, then necessarily c1 vanishes and a is
constant. To determine the constant, we let r tend to 0. Since u(r, θ)
tends to u(0) as r → 0 uniformly in θ, we have limr→0 a(r) = u(0), and
we have proven the lemma.

�

Lemma 1. If a real valued harmonic function in the open unit disc
attains a maximum, then it is constant.

Proof. Assume first it attains its maximum at the origin. Fix 0 < r < 1.
We have by pointwise estimation of the integrand

∫
1

0
u(r, θ)dθ ≤ ∫

1

0
u(0)dθ

with equality if and only if we have equality at every point of the
integrand. Here we have used that both integrands are continuous
and for continuous functions the integral is strictly monotone in the
integrand. However, the left hand side is u(0) by the mean value
property and the right hand side is u(0) by direct calculation. So we
have for every θ

u(0) = u(r, θ).
Since r was arbitrary, this shows that u is constant. Now assume u
attains a maximum at some point possibly other than the origin. By
a compactness argument there is a point z of minimal absolute value
where the maximum is attained. Assume to get a contradiction that z is



HARMONIC ANALYSIS SUMMER 2020 3

not zero. We consider a small disc contained in the unit disc centered
at z. By rescaling the small disc to the unit disc and the harmonic
function on the small disc to a harmonic function on the unit disc, we
obtain from the rpevious argument that the function is constant on the
small open disc. The function therefore attains its maximum on a point
with smaller absolute value than z, a contradiction. So the function
attains its maximum at the origin. As we have seen, it is constant. �

Denote the boundary of D, the unit circle, by

T = {(x, y) ∈ R2 ∶ x2 + y2 = 1}.
In polar coordinates, functions on the circle become 1-periodic func-
tions in the angular variable θ. The Wiener algebra on T is the set of
all functions of the form

(2) f(θ) = ∑
n∈Z

cne
2πinθ

with a sequence of complex numbers

(cn)n∈Z ∈ l1(Z),
that is

∑
n∈Z

∣cn∣ < ∞.

The series in (2) is called a Fourier series. Note that an element in
the Wiener algebra is a continuous function by uniform convergence of
this Fourier series. However, it is well known that not every continuous
function can be written in a Fourier series with absolutely summable
coefficients.
The coefficients cn are uniquely determined by f . Namely, computing
the so-called Fourier coefficients f̂(n) of f we obtain

f̂(n) ∶= ∫
1

0
f(θ)e−2πiθ dθ = ∑

m∈Z
cm∫

1

0
e2πimθe−2πinθ dθ = cn.

Here we have commuted integral and summation by uniform conver-
gence of the Fourier series, and we have used that the last integral is
nonzero only if n =m, in which case it is 1. Hence cn can be recovered
from f .
The functions

(3) u(r, θ) = r∣n∣e2πinθ

are harmonic, because they coincide with zn for positive n and with
z−n for negative n.
Given f in the Wiener algebra, consider on D ∪T

(4) u(r, θ) = ∑
n

f̂(n)r∣n∣e2πinθ.

By uniform convergence, the series is a continuous function on the
closed disc D∪T and coincides with f on the boundary T. By uniform
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convergence on compact subdiscs of the series and its second derivative
of D, the function is harmonic in the open unit disc D. We call u as in
(3) the harmonic extension of f on the unit disc.
We now obtain a different representation of this harmonic extension.
With the definition of the Fourier coefficients we have

u(r, θ) = ∑
n

(∫
1

0
f(φ)e−2πiφ dφ)r∣n∣e2πinθ

= ∫
1

0
f(φ)∑

n

e2πi(θ−φ)r∣n∣ dφ = ∫
1

0
f(φ)P (r, θ − φ)dφ

with the Poisson kernel

P (r, θ) = ∑
n

e2πi(θ)r∣n∣ = 1 + ∑
n>0

zn + zn

= Re(1 + 2z

1 − z
) = Re(1 + z

1 − z
) = 1

2
(1 + z
1 − z

+ 1 + z
1 − z

)

= 1 − zz
(1 − z)(1 − z)

= 1 − ∣z∣2
∣1 − z∣2

.

Note that the Poisson kernel is positive in the open unit disc, as evident
from the last expression since ∣z∣ < 1. It is moreover continuous in the
closed unit disc without the point z = 1 and vanishes on the boundary
without the point z = 1. For real z = r we have

P (r,0) = 1 − r2

(1 − r)2
= 1 + r

1 − r
,

which tends to ∞ as r tends to 1.
The Poisson kernel is harmonic in the open unit disc, as the series and
its second derivative converge uniformly on compact subsets. By the
mean value theorem we have

∫
1

0
P (r, θ)dθ = P (0) = 1.

For any positive ε, the Poisson kernel is uniformly continuous on D
without the open ball of radius ε about the point 1, hence

lim
r→1
∫

1−ε

ε
P (r, θ)dθ = ∫

1−ε

ε
lim
r→1

P (r, θ)dθ = 0.

In other words, there is an rε < 1 such that for rε < r < 1 we have

0 < ∫
1−ε

ε
P (r, θ)dθ ≤ ε.

The right hand side of the above formula

(5) u(r, θ) = ∫
1

0
f(φ)P (r, θ − φ)dφ

makes sense for continuous functions. This is used in the following
lemma.
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Lemma 2. Let f be continuous on T. Then there is a continuous
function u on the closed disc which coincides with f on the boundary
of the disc and is harmonic in the open unit disc.

Proof. We define u in the open disc by formula (5). Since the Poisson
kernel is harmonic in the open disc, so is u, as we can see from pulling
the Laplace operator inside the integral. It remains to show that u
extends continuously to the boundary and coincides with f there. We
have to show that for all τ and all η > 0 there is an ε such that for
1 − ε < r < 1 and ∣θ − τ ∣ < ε we have

∣u(r, θ) − f(τ)∣ ≤ η.
Since f is continuous, there is C such that

(6) ∥f∥∞ ∶= sup
θ

∣f(θ)∣ ≤ C

and there is an ε > 0 such that for ∣φ − τ ∣ ≤ 2ε we have

∣f(φ) − f(τ)∣ ≤ η/2
and we have for 1 − ε < r < 1 and ε < ∣φ∣ < 1 − ε that

P (r, φ) ≤ η/(4C).
Then for for 1 − ε < r < 1 and ∣θ − τ ∣ < ε we have

∣u(r, θ) − f(τ)∣ = ∣ ∫
1

0
(f(φ) − f(τ))P (r, θ − φ)dφ∣

= ∣ ∫
1

0
(f(θ − φ) − f(τ))P (r, φ)dφ∣

≤ ∫
ε

−ε
(η/2)P (r, φ)dφ + ∫

1−ε

ε
(2C)P (r, φ)

≤ η/2 + 2C(η/4C) = η.
This completes the proof. �

The following is a uniqueness result for the harmonic extension.

Lemma 3. Consider two functions that are continuous on the closed
unit disc, harmonic on the open unit disc, and coincide on the boundary
of the disc. Then they are equal on the entire closed disc.

Proof. Assume we have two harmonic functions u and v on the open
disc with continuous extensions to the closed disc which coincide on the
boundary. Then u − v is harmonic on the open disc and continuous on
the closed disc and vanishes on the unit circle. Its real part therefore
has a maximum on the closed disc, and this maximum is 0 or else it is
larger than zero and attained at an interior point, and by the maximum
principle u−v is constant, a contradiction to its boundary values being
zero. Arguing similarly for v −u and i(u− v) and −i(u− v) we see that
u − v is zero. �
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1.1. Exercises.

1.1.1. Laplace inpolar coordinates. Prove formula (1).

1.1.2. Non-integrable Fourier series of continuous function. Compute
the Fourier series of the one-periodic function χa which is 1 on the
interval [0, a) and zero on the interval [a,1) for some 0 < a < 1. Show
that the Fourier coefficients of are not absolutely summable.
Prove upper and lower bounds on the Fourier coefficients for small a
of the continuous function f whose derivative is

f ′(x) = χa(x) − χa(x − 0.5)
outside the points of discontinuity of the right hand side.
Take a series of multiples of functions as above to show there is a
continuous functions whose Fourier series is not summable.
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2. Lecture: Harmonic functions on the unit disc, II

For functions in the Wiener algebra, we have two expressions for the
harmonic extension, one by Fourier series and one with the Poisson
integral.
For a continuous function f , we defined the harmonic extension by the
Poisson kernel formula.

u(r, θ) = ∫
1

0
f(φ)P (r, θ − φ)dφ

= ∫
1

0
f(φ)∑

n∈Z
r∣n∣e2πin(θ−φ) dφ

While a continuous function cannot necessarily be written as an ab-
solutely convergemnt Fourier series, the Fourier coefficients are well
defined and one can use them to write the harmonic extension.
For r < 1 we can inter change sum and integration in the previous
display to equate the above with

= ∑
n∈Z

r∣n∣e2πinθ (∫
1

0
f(φ)e−2πinφ dφ)

= ∑
n∈Z

r∣n∣e2πinθf̂(n)

The last sum is absolutely summable for r < 1, but for r = 1 it is
only absolutely summable if the continuous function is in the Wiener
algebra.
The following lemma characterizes those harmonic extensions of con-
tinuous functions, which come form a function in the Wiener algebra.
The Wiener algebra norm of a function f the quantity

∥f∥A1 = ∑
n∈Z

∣f̂(n)∣.

Lemma 4. Let f be in the Wiener algebra on the circle T and let u be
its harmonic extension to the unit disc. Then we have for every r < 1

(7) ∥u(r, .)∥A1 ≤ ∥f∥A1 .

Conversely, let u be a harmonic function in the open unit disc. It coin-
cides with the harmonic extension of a function in the Wiener algebra
if there is a constant C such that for all r < 1

∥u(r, .)∥A1 ≤ C.

Proof. For the first part, consider the harmonic extension u of f and
observe that the Fourier coefficients of u(r, .) are by (4)

r∣n∣f̂(n).
Therefore

∥u(r, .)∥A1 = ∑
n∈Z

r∣n∣∣f̂(n)∣ ≤ ∑
n∈Z

∣f̂(n)∣.

This proves (7).
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Now consider a harmonic function u in the open disc. Define for 0 <
r < 1 the function

fr(θ) = u(r, θ)
in the Wiener algebra. Let r < s and note that we have by applying
the previous computation to the scaled disc of radius s

f̂r(n) = f̂s(n)(r/s)∣n∣.
Define

cn = r−∣n∣f̂r(n),
which by the previous display is independent of 0 < r < 1. We have

∑
n

∣cn∣r∣n∣ ≤ C

for all 0 < r < 1. By monotone convergence, as r → 1, we have

∑
n

∣cn∣ ≤ C.

Define the function
f(θ) ∶= ∑

n∈Z
cne

2πinθ,

which by the previous display is in the Wiener algebra. Then the
harmonic extension of f coincides with u in the open unit disc. �

Having solved the Dirichlet problem for continuous boundary data, we
turn to more general boundary data.
Let C(T) be the linear space of continuous complex valued functions
on the circle T. A Radon measure on the circle is a linear map

m ∶ C(T) → C
satisfying

∣m(f)∣ ≤ C∥f∥∞
for some positive constant C and where ∥f∥∞ was defined in (6). We
define the total mass of m to be

∥m∥M = sup
∥f∥∞≤1

∣m(f)∣.

Given a continuous function g in T, the map

f → ∫
1

0
f(θ)g(θ)dθ

is an example of a Radon measure. We have

∣ ∫
1

0
f(θ)g(θ)dθ∣ ≤ ∥f∥∞∥g∥1

where

∥g∥1 = ∫ ∣g(θ)∣dθ.
Another example of a Radon measure is the map

f → f(0)
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We have
∣f(0)∣ ≤ ∥f∥∞

Let m be a Radon measure on T. Then we can define the Fourier
coefficients

m̂(n) =m(e−2πin.).
As we have ∥e−2πin.∥∞ = 1, the Fourier series of a measure satsifies the
bound:

∣m̂(n)∣ ≤ ∥m∥M1 .

Theorem 5. Let m be a Radon measure on T. The function

(8) u(r, θ) = ∑
n∈Z

m̂(n)r∣n∣e2πinθ

is harmonic in the unit disc and satisfies for all r < 1

∫
1

0
∣u(r, θ)∣dθ = ∥u(r, .)∥1 ≤ ∥m∥M1 .

We call the function u in this theorem the harmonic extension of m
in the disc. In case the measure is integration against a continuous
function g, this definition coincides with the definition of the harmonic
extension of g.

Proof. As the Fourier coefficients of a measure are bounded, the series
(8) converges together with its second derivative uniformly on compact
subsets in the open unit disc. Since all summands are harmonic, the
series is a harmonic function.
We approximate the signum function of u(r, .) by a continuous function
h that is bounded in absolute value by 1,

h(θ) = ∣u(r, θ)∣
u(r, θ)

( ∣u(r, θ)∣
∥u(r, .)∥∞

)
ε

with ε > 0 close to 0. It suffices to prove for all ε,

∫
1

0
u(r, θ)h(θ)dθ ≤ ∥m∥M1 .

Approximating the left hand side by Riemann integrals, it suffices to
show

lim
N→∞

1

N

N

∑
k=1

u(r, k/N)h(k/N) ≤ ∥m∥M1 .

With the definition of u, the left hand side becomes

lim
N→∞

1

N

N

∑
k=1

∑
n∈Z

m(e−2πin.)r∣n∣e2πink/Nh(k/N)

Using linearity and uniform convergence we can interchange the sum
and evaluation of m

= lim
N→∞

m( 1

N

N

∑
k=1

∑
n∈Z

r∣n∣e2πin(k/N−.)h(k/N))
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Using uniform convergence of the Riemann sums we can write this as

=m(∫
1

0
∑
n∈Z

r∣n∣e2πin(θ−.)h(θ)dθ) =m(∫
1

0
P (r, θ − .)h(θ)dθ)

with the Poisson kernel of the previous section. As

∣ ∫
1

0
P (r, θ − .)h(θ)dθ∣

≤ ∫
1

0
∣P (r, θ − .)∣dθ = 1,

we obtain

m(∫
1

0
P (r, θ − .)h(θ)dθ) ≤ ∥m∥M1 ,

which proves the theorem.
�

Theorem 6. Consider a harmonic function u in the open unit disc
such that for all r

∫
1

0
∣u(r, θ)∣dθ ≤ C.

Define for 0 ≤ r < 1 the measure

mr(f) = ∫
1

0
u(r, θ)f(θ)dθ

Then for every f ∈ C(T) the limit

m(f) = lim
r→1

mr(f)

exists and defines a Radon measure m on T with ∥m∥M1 ≤ C.

We call the measure m the weak limit measure of the harmonic func-
tion.

Proof. Note that mr is indeed a Radon measure since u(r, .) ∈ C/(T ).
We have

∣mr(f)∣ ≤ ∥f∥∞∫
1

0
∣u(rθ)∣dθ ≤ C∥f∥∞

Letting r vary, the numbers ∣mr(f)∣ remain bounded, hence there is a
sequence rk → 1 such that

mrkf

converges to a number c. We need to show that mr(f) converges to c
not only along this sequence but genuinely for r → 1.
Let v be the harmonic extension of f , since v(r, .) converges uniformly
to f as r → 1, there is an rε such that for rε < r < 1 we have

∥v(r, .) − f∥∞ ≤ ε.
Let rε < r < 1 and pick k such that r < rk < 1 such that ∣mrk(f) − c∣ < ε.
Then we have

mr(f) = ∫
1

0
u(r, θ)f(θ)dθ
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= ∫
1

0
∫

1

0
P (r/rk, θ − φ)u(rk, φ)f(θ)dφdθ

= ∫
1

0
∫

1

0
u(rk, φ)P (r/rk, φ − θ)f(θ)dθdφ

= ∫
1

0
u(rk, φ)v(r/rk, φ)dφ.

And therefore

∣c −mr(f)∣ ≤ ε + ∣mrk(f) −mr(f)∣

≤ ε + ∣∫
1

0
u(rk, θ)(f(θ) − v(r/rk, θ))dθ∣

≤ ε +Cε.
This proves convergence.
Define a function m ∶ C(T) → C by

m(f) = lim
r→1

mr(f)

The function m is linear since all mr are linear, and we have the bound

∣m(f)∣ ≤ lim sup
r→1

∣mr(f)∣ ≤ C∥f∥∞

Hence m is a Radon measure with the desired bound on the total
mass. �

Theorem 7. The maps in theorems 5 and 6 are inverses of each other,
i.e. the weak limit measure of the harmonic extension of a measure
is the measure itself, and the harmonic extension of the weak limit
measure is the original harmonic function.

Proof. First assume we are given a Radon measure on T.
Now assume we are given a harmonic function u with the bounds of
theorem 6. Let m be the weak limit measure. The harmonic extension
of m satisfies

m(P (r, θ − .) = lim
s→1

ms(P (r, θ − .) = lim
s→1

u(rs, θ) = u(r, θ).

Now assume we are given a Radon measure m on T and let u be the
harmonic extension. Let We have

u(r, θ) = ∑
n∈Z

m̂(n)r∣n∣e2πinθ

=

∑
n∈Z

m(e−2πin.)r∣n∣e2πinθ =m(∑
n∈Z

r∣n∣e2πin(θ−.)).

Here have used uniform absolute convergence of the sum in the last
expression to interchange the sum with evaluation of m. Note the
argument of m in the last expression is the Poisson kernel. Hence we
have

mr(f) = ∫
1

0
m(P (r, θ − .))f(θ)dθ



12 CHRISTOPH THIELE

Using for example Riemann sums as in the proof of Theorem 5 we may
interchange the integral with evaluation of m and obtain, using also
symmetry of the Poisson kernel

mr(f) =m(∫
1

0
P (r, . − θ)f(θ)dθ)

Now the argument of m on the right hand side converges uniformly to
f as r tends to 1, hence

lim
r→1

mr(f) =m(f)

This completes the proof of the theorem.
�

The following theorem gives a simple criterion, when the previous the-
orem can be applied.

Theorem 8. Let u be a positive harmonic function in the unit disc.
Then u is the harmonic extension of some Radon measure with ∥m∥M1 ≤
u(0).

Proof. We check the criterion of Theorem 6. Since u is positive, we
have by the mean value principle

∫
1

0
∣u(r, θ)∣dθ = ∫

1

0
u(r, θ)dθ = u(0)

The theorem follows. �

Some Radon measures are given be integration against a continuous
function. If g is a continuous funcion of the circle, then

m(f) ∶= ∫ f(θ)g(θ)dθ

defines a Radon measure. However, not all Radon measures are of this
form. One example is

m(f) = f(0)
The Fourier series of this measure is constant, m̂(n) = 1, hence its
harmonic extension is the Posson kernel. The Poisson kernel does not
have a continuous extension to the boundary of the disc, hence m is
not given as integration against a continuous function.
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3. Lecture: L2 functions and spectral measures

Let u be harmonic in the unit disc and fr(θ) = u(r, θ).
If u is the harmonic extension of a function in the Wiener algebra, we
have uniformly in 0 ≤ r < 1

∑
n∈Z

∣f̂r(n)∣ ≤ C.

If u is the harmonic extension of a Radon measure, we have uniformly
in 0 < r < 1

∫
1

0
∣fr(θ)∣dθ ≤ C.

In neither situation we have very good information about the quantity
decisive in the other situation. In the first situation we can deduce

sup
θ

∣fr(θ)∣ ≤ C.

and in the second situation we can deduce

sup
n

∣f̂r(n)∣ ≤ C.

but neither of these latter conditions are sufficient to guarantee we are
in the respective situation.
Sometimes it is useful to have necessary and sufficient conditions for
both fr and f̂r to guarantee that one is in the same space.
One example is provided in the next theorem.

Theorem 9. Let u be a harmonic function in the unit disc and fr as
above. Then we have

∑
n∈Z

∣f̂r(n)∣2 = ∫
1

0
∣fr(θ)∣2 dθ.

If and only if this quantity is bounded uniformly in r, u is the harmonic
extension of a Radon measure m on the boundary with

∑
n∈Z

∣m̂(n)∣2 < ∞.

Proof. Let r < s and recall that

f̂r(n) = f̂s(n)(r/s)∣n∣.
The function fs is continuous on T and therfore has bounded Fourier
coefficients, and therefore fr is in the Wiener algebra. Writing fr as
Fourier series, we obtain

∫
1

0
∣fr(θ)∣2 dθ = ∫

1

0
∣ ∑
n∈Z

f̂r(n)e2πinθ∣2 dθ

∫
1

0
∑

n,n′∈Z
f̂r(n)f̂r(n′)e2πi(n−n′)θ dθ = ∑

n∈Z
∣f̂r(n)∣2.

Here we have interchanged sum and integral thanks to the uniform
absolute summability of the integrand.
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Now assume that this quantity is bounded by C uniformly in r. We
have

∫ ∣fr(θ)∣dθ ≤ ∫
1

0
(1 + ∣fr(θ)∣2)dθ ≤ 1 +C.

Hence u is the harmonic extension of a Radon measure m by Theorem
6. The Fourier coefficients of m satisfy

r∣n∣m̂(n) = f̂r(n).
Since

∑
n

∣m̂(n)∣2r2∣n∣ ≤ C

uniformly in r, we have by monotone convergence as r → 1

∑
n

∣m̂(n)∣2 ≤ C.

Now assume conversely that u is the harmonic extension of a measure
m with the last displayed inequality. then

∑
n

∣f̂r(n)∣2 = ∑
n

r2∣n∣∣m̂(n)∣2 ≤ ∑
n

∣m̂(n)∣2 ≤ C.

This completes the proof of the theorem.
�

The theory of Lebesgue integration will allow to equate the quantity

∑
n

∣m̂(n)∣2

in the previous theorem with a square integral over T. We will discuss
this later.
The space H of measures with the norm

∥m∥2 =
√
∑
n∈Z

∣m̂(n)∣2

is a Hilbert space, i.e., a complete normed space with norm coming
from a Hermitian inner product

⟨m,m′⟩ = ∑
n∈Z

m(n)m′(n)

in the sense
∥m∥2

2 = ⟨m,m⟩.
Here the attribute “Hermitian” means sesquilinearity

⟨f + λg, h⟩ = ⟨f, h⟩ + λ⟨g, h⟩

⟨f, g + λh⟩ = ⟨f, g⟩ + λ⟨f, h⟩
for elements f, g, h in H and a complex number λ, and the relation

⟨f, g⟩ = ⟨g, h⟩.
The norm of a Hilbert space satisfies the parallelogram law

2(∥g∥2
2 + ∥h∥2

2) = ∥g + h∥2 + ∥g − h∥2,
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as one can see by writing the norms in terms of the inner product and
use binomial formulas. Conversely a complete normed space with the
parallelogram law is a Hilbert space with the Hermitian form

(9) ⟨g, h⟩ = 1

4
(∥g + h∥2 − ∥g − h∥2 + i∥g + ih∥2 − i∥g − ih∥2)

The proof of this is a bit more involved an left as an exercise.
Equation(9) implies the Cauchy-Schwarz inequality

⟨g, h⟩ ≤ ∥g∥∥h∥
As this inequality is invariant under multiplying g and h by complex
scalars, we may assume the norms of g and h are 1 and the hermitian
product of both on the left hand side is real and positive. Then the
purely imaginary terms on the right hand side of (9) cancel and we
obtain

⟨g, h⟩ ≤ 1

4
∥g + h∥2 ≤ 1

4
(∥g∥ + ∥h∥)2 = 1 = ∥g∥∥h∥.

One other important fact about Hilbert spaces is the following theorem.

Theorem 10. Let H be a Hilbert space and λ ∶ H → C a linear map
that is bounded, i.e. there is a constant C such that

∣λ(f)∣ ≤ C∥f∥
for all f ∈H. Then there is a g ∈H such that

λ(f) = ⟨f, g⟩
for all f ∈H

Proof. If λ is constant 0, then the conclusion holds with g = 0. Assume
λ is not constant zero, then there is a nonempty set

A = {f ∈H ∶ λ(f) = 1}.
By the C-bound on λ, we have

inf
f∈A

∥f∥ ≥ C−1.

Multiplying λ and the desired g by a constant if necessary, we may
assume

inf
f∈A

∥f∥ = 1.

Let fn be a minimzing sequence in A, i.e.,

lim ∥fn∥n = 1.

We compute for large n,n′

∥fn − fn′∥2 = 2∥fn∥2 + 2∥fn′∥2 − ∥fn + fn′∥2

Note that λ(1
2(fn + fn′)) = 1. Hence

∥fn + fn′∥ ≥ 2
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Hence we have for small ε > 0 and sufficiently large n,n′:

∥fn − fn′∥2 ≤ 2(1 + ε) + 2(1 + ε) − 4 = 4ε

This shows that fn is Cauchy in H and by completeness has a limit g.
Then we have

λ(g) = 1 = ⟨g, g⟩
To show

λ(f) = ⟨f, g⟩
it suffices to show this for

f − λ(f)g
and hence, modifying f if necessary, it suffices to show this under the
assumption

λ(f) = 0.

Consider
λ(g + af)

for a complex parameter a. Since g + af ∈ A we have

1 ≤ ∥g + af∥2 = ∥g∥2 + 2Re⟨af, g⟩ + ∥af∥2

We let θ in a = re2πiθ so that Re⟨af, g⟩ = ⟨af, g⟩. Then

1 ≤ 1 + 2r⟨f, g⟩ + r2∥f∥2.

The right hand side must have a minimum at r = 0 and thus

⟨f, g⟩ = 0.

This completes the proof of the theorem. �

Given a bounded linear operator T ∶ H → H, a consequence of the
above is that there is an adjoint operator T ∗ ∶H →H such that for all
f, g

⟨Tf, g⟩ = ⟨f, T ∗g⟩.
(Exercise)
We use a Hilbert space to show a natural occurrence of harmonic ex-
tensions of Radon measures.
A unitary operator U on a Hilbert space is a linear map U ∶ H → H
such that

∥Ux∥ = ∥U∗x∥ = ∥x∥
for all x ∈H. Equivalently U∗ = U−1. The adjoint of a unitary operator
is unitary as well.
For ∣z∣ < 1, a unitary operator U and a vector x ∈H the series

∑
n≥0

znUnx

converges in H (here we have set U0x = x and Un+1x = U(Unx)),
because

∥znUnx∥ = ∣z∣n∥x∥
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which tends to zero exponentially fast in n.
Likewise, the series

∑
n≥0

znU∗nx

converges, and hence the series

(1 + ∑
n≥1

znU∗n + ∑
n≥1

znUn)x

converges. In analogy with prior formulae for the Poisson kernel we
write this as

P (zU∗)x
We claim that for every x ∈H the function

(10) ⟨P (zU∗)x,x⟩
is a nonnegative real harmonic function in the unit disc. That it is
harmonic follows from its representation as Fourier series

⟨x,x⟩ + ∑
n≥1

zn⟨U∗nx,x⟩ + ∑
n≥1

zn⟨Unx,x⟩.

To see positivity for x ≠ 0, note that the operator

V x = ∑
n≥0

znUnx

is an inverse to 1 − zU
(1 − zU)V x = V (1 − zU)x = ∑

n≥0

znUnx − ∑
n≥1

znUnx = z0U0x = x

By computations similar to that of the Poisson kernel, we obtain

⟨P (zU∗)x,x⟩ = ⟨(1 − ∣z∣2)V ∗V x,x⟩,
for example expand the product V ∗V on the right hand side and collect
terms of each order. Set

y = V x,
Then the previous display becomes

(1 − ∣z∣2)⟨y, y⟩ ≥ 0.

Hence there is a Radon measure mx such that

(11) ⟨P (zU∗)x,x⟩ =mx(P (ze−2πi.)
Here we have written with our old convention about radial variables

P (ze−2πiφ) = P (r, θ − φ).
The measure mx is called the spectral measure of U at x.
It is natural to try to define for an arbitrary continuous function f on
the circle

(12) ⟨f(U)x,x⟩ ∶=mx(f)
More precisely, one defines with polarization a form

⟨f(U)x, y⟩ ∶=
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=mx+y(f) −mx−y(f) + imx+iy(f) − imx−iy(f)
that is sesquilinear by the above exercise because the form (12) satisfies
the analogue of the parallelogram law. This sesquilinear form, using
Theorem 10, defines a bounded linear operator f(U).
For two continuous functions f and g on T we have for every x

mx(f + g) =mx(f) +mx(g)
and hence for every x, y

⟨(f + g)(U)x, y⟩ = ⟨f(U)x, y⟩ + ⟨g(U)x, y⟩
and therfore

(f + g)(U) = f(U) + g(U).
We claim that also

(13) (fg)(U) = f(U) ○ g(U),
where ○ denotes composition of operators. To see this we first compute
f(U) for f(z) = zn. We have that mx(f) = m̂(−n) by definition of the
Fourier coefficients. Expanding the Poisson kernel in (11) gives

⟨x,x⟩ + ∑
n≥1

zn⟨U∗nx,x⟩ + ∑
n≥1

zn⟨Unx,x⟩

= m̂x(0) + ∑
n≥1

znm̂x(n) + ∑
n≥1

znm̂x(−n)

Comparing coefficients we have

mx(f) = ⟨Unx,x⟩
Hence,

⟨f(U)x,x⟩ = ⟨Unx,x⟩
and by polarization

⟨f(U)x, y⟩ = ⟨Unx, y⟩
and thus f(U) = Un. Similarly, if f(z) = zn, we obtain f(U) = (U∗)n.
If both f and g are monomials in Z or z, then we obtain (13) by
explicit calculation from the above representation. If both f and g are
Laurent polynomials, that is linear combinations of monomials in z and
monomials in z, then (13) follows by linearity of both sides. Finally,
the Stone-Weierstraß theorem tells us that every continuous function
can be approximated in uniform (L∞) norm by Laurent polynomials, so
(13) follows by such approximation for arbitrary continuous functions
f and g.
Similarly as the product pormula one proves

f(U) = (f(U))∗.
If there is an orthonormal basis of eigenvectors of U (for example if H
is finite dimensional), then one can concude from the sum and product
formula as well as approximation by Stone and Weierstrass that the
basis vectors are also eigenvectors of f(U) and if one eigenvector of U
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has the eigenvalue λ, then necessarily ∣λ∣ = 1 because U is unitary, and
f(U) has the eigenvalue f(λ).
In general, that is in infinte dimensional Hilbert spaces, a unitary op-
erator may not have an orthonormal basis of eigenfunctions. Then one
does not have such an explicit description of f(U) and has to resort to
the represnetation by the spectral measures.

3.1. Exercises. Consider a real complete normed space, that is a real
vector space V with norm ∥.∥ ∶ V → R, that is for all x, y ∈ V and λ ∈ R
we have

∥x + y∥ ≤ ∥x∥ + ∥y∥
∥λx∥ = ∣λ∣∥x∥,

and the metrix d(x, y) = ∥x − y∥ is complete. Show that if the parallel-
ogram law holds, that is for all x, y ∈ V we have

2(x∥2 + ∥y∥2) = ∥x + y∥2 + ∥x − y∥2,

then

⟨x, y⟩ ∶= 1

2
(∥x + y∥2 − ∥x − y∥2)

defines a symmetric scalar product, in particular

⟨x + λy, z⟩ = ⟨x, z⟩ + λ⟨y, z⟩
for all x, y, z ∈ V and λ ∈ R
Hint: First show

⟨x + y, z⟩ + ⟨x − y, z⟩ = 2⟨x, z⟩
then show

⟨x, z⟩ + ⟨y, z⟩ = ⟨x + y, z⟩
and finally

⟨λx, y⟩ = λ⟨x, y⟩
first for integers λ and then for general λ.
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4. Lecture: The dyadic model of harmonic functions

A Radon measure on the circle corresponds to a harmonic function in
the disc with certain estimates.
Each point in the disc comes with a particular Poisson kernel, which
is some weighted average of the measure, with a weight which favors
points on the circle with approximately the same angular variable as
the point of the disc, and approximity measured roughly in terms of
the distance of the point in the disc to the boundary.
We now introduce a discrete version of this harmonic function. We
identify the circle with the interval [0,1) as fundamental domain of
R/Z via the angular variable, functions on the circle become 1-periodic
functions on the real line. In the discrete world, we take averages over
socalled dyadic intervals in [0,1).
A dyadic interval is an interval of the form

[2kn,2k(n + 1))
with integers k and n. The interval is inside the unit interval [0,1)
provided k ≤ 0 and 0 ≤ k < 2−k. We denote by D the set of dyadic
intervals contained in [0,1). We denote by ∣I ∣ the length of the dyadic
interval I, that is the number 2k in the above notation. We denote by
Dk the dyadic intervals in D of length 2k. We denote by c(I) the center
of the interval, 2k(n + 1/2).

Lemma 11. For all x ∈ [0,1) and all integers k ≤ 0 there is a unique
I ∈ Dk with x ∈ I.

Proof. Fix 0 ≤ x < 1 and k a non-positive integer so that

0 ≤ 2−kx < 2−k

with integral bounds on both sides. There is a unique integer n satis-
fying

(14) 0 ≤ n ≤ 2−kx < n + 1 ≤ 2−k,

namely the integer part of 2−kx. However, (14) for an integer n is
equivalent to I = [2kn,2k(n+1)) ∈ Dk and x ∈ I, proving the lemma. �

We write Ix,k for the interval in this lemma. If I ∈ D and

I = [2kn,2k(n + 1)),
we write

Il = [2k−1(2n),2k−1(2n + 1)),
Ir = [2k−1(2n + 1),2k−1(2n + 2)).

The right endpoint of Il is the left endpoint of Ir, so they are disjoint
and their union is the interval between the left endpoint of Il and the
right endpoint of Ir, which is I. In particular, I is the disjoint union
of Il and Ir.
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Lemma 12. If I, J ∈ D and I ∩ J ≠ ∅, then I ⊂ J or J ⊂ I.

Proof. By symmetry between I and J we may assume ∣I ∣ ≤ ∣J ∣. The
number log2(∣J ∣/∣I ∣) is a natural number n. We prove by induction on n
that I ∩J ≠ ∅ implies I ⊂ J . If n = 0, then both intervals have the same
length, say 2k, and we use Lemma 11 to conclude that they are the
same if they have a point x in common. Now assume we have proven
the statement for some n and let log2(∣J ∣/∣I ∣) = n + 1. Consider Jl and
Jr, we have log2(∣Jl∣/∣I ∣) = n and log2(∣Jr∣/∣I ∣) = n and in particular
∣I ∣ ≤ ∣Jl∣ and ∣I ∣ ≤ ∣Jr∣. Let x be a point in the intersection of I and
J . Since J is the union of Jl and Jr, I has a point in common with Jl
or Jr. By induction hypothesis, I is contained in Jl or Jr. But Jl and
Jr are both subsets of J , hence I is a subset of J . This completes the
induction step. �

Definition 13. A martingale on D is a function F ∶ D → C satisfying

∣Il∣F (Il) + ∣Ir∣F (Ir) = ∣I ∣F (I)
A martingale is a discrete version of a harmonic function. The following
is a discrete version of the mean value property.

Lemma 14. Let I ∈ D and let 2k ≤ ∣I ∣. Let F be a martingale. Then

(15) ∑
J∈Dk ∶J⊂I

∣J ∣F (J) = ∣I ∣F (I).

Proof. We have 2k = 2−h∣I ∣ with some nonnegative integer h. We do
induction on h. If h = 0, the sum on the left hand side of (15) consist
of a single summand J = I and the identity is tautological. Assume
we have proven the lemma for some h and consider 2k = 2−h−1∣I ∣. By
Lemma (12), each J on the left hand side of (15) is either contained in
Il or in Ir. By induction hypothesis we have

∑
J∈Dk ∶J⊂I

∣J ∣F (J) = ∑
J∈Dk ∶J⊂Il

∣J ∣F (J) + ∑
J∈Dk ∶J⊂Ir

∣J ∣F (J)

= ∣Il∣F (Il) + ∣Ir∣F (Ir) = ∣I ∣F (I),
the last identity by the martingale property. �

The next theorem will describe a discrete version of harmonic exten-
sion. Given a Radon measure m on [0,1), we would like to define a
martingale, where F (I) is an average of m over I. We have in mind

∣I ∣−1m(1I)
with 1I the characteristic function I, here we identify the function 1I on
[0,1) with a 1-periodic function on R. Only if I = [0,1) is this periodic
extension a continuous function, otherwise the last display is not yet
defined. We will therefore approximate the characteristic function by
continuous functions.
Assume I ∈ D, say

I = [2kn,2k(n + 1))
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with k < 0. We consider the continuous 1-periodic function χI,h map-
ping R→ [0,1] and equal to 1 on the interval [2kn− 2k−h−2,2k(n+ 1) −
2k−h−1) and its periodic copies and supported on the interval [2kn −
2k−h−1,2k(n + 1) − 2k−h−2) and its periodic copies. We further assume

∑
0≤n<2−k

χ[2kn,2k(n+1)),h = 1.

Such a function can for example be constructed as a piecewise linear
spline.

Theorem 15. Let m be a Radon measure on T. Then the limit

(16) F (I) = ∣I ∣−1 lim
l→∞

m(χI,l)

exists and defines a martingale with

(17) ∑
I∈Dk

∣I ∣∣F (I)∣ ≤ C < ∞.

uniformly in k. Moreover, for any I ∈ D and ε > 0 there is J ∈ D with
J ⊂ I and J /⊂ I such that for all k < 0

(18) ∑
K∈Dk ∶K⊂J

∣K ∣∣F (K)∣ ≤ ε.

The bound (17) is a discrete version of the condition

∫ ∣u(r, θ)∣dθ < C < ∞

satisfied by harmonic extensions of a measure. The property (18) is a
technical condition casued by our choice to modify in (16) the charac-
tristic functions on the left side of the boundary points. This choice is
in sync with the choice that dyadic intervals are closed on the left and
open on the right.

Proof. We first show that the limit in (16) exists. We write for l ≥ 1

m(χI,l) =m(χI,0) +
l

∑
h=1

m(χI,l − χI,l−1).

To see that this is Cauchy in l, it suffices to show

∑
1≤h≤H

∣m(χI,h) − χI,h−1)∣ ≤ C < ∞

with constant C independent of H. Choose ∣λh∣ = 1 such that

m(λh(χI,h − χI,h−1)) = ∣m(χI,h) − χI,h−1)∣
We obtain for the left hand side of the previous display

m( ∑
1≤h≤H

λh(χI,h − χI,h−1)) ≤ ∥m∥M1∥ ∑
1≤h≤H

λh(χI,h − χI,h−1)∥∞

However, the summand

(19) λh(χI,h − χI,h−1)
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is non-zero on

(2kn − 2k+h,2kn − 2k+h−2) ∪ (2k(n + 1) − 2k+h,2k(n + 1) − 2k+h−2)
and the periodic copies of these sets. Note the first interval is to the left
of 2kn and the second interval is to the right of 2kn. For two different
values h,h′ these supports are disjoint if h and h′ are more than one
apart. Hence on every point x there are at most two of the functions
(19) that are not zero. Since both functions are bounded in absolute
value by 1, we have that

∥ ∑
1≤h≤H

λh(χI,h) − χI,h−1)∥∞ ≤ 2

Hence the limit in (16) exists.
To prove the martingale property, note that

χIl,h + χIr,h = χI,h+1

Applying m and taking a limit as h → ∞ proves the martingale prop-
erty.
To see (17), we estimate

∑
I∈D∶∣I ∣=2k

∣I ∣∣F (I)∣ ≤ 2 ∑
I∈D∶∣I ∣=2k

∣m(χI,h)∣

for suitably large h. We find suitable numbers λI such that the last
display equals

= 2 ∑
I∈D∶∣I ∣=2k

m(λIχI,h) = 2m( ∑
I∈D∶∣I ∣=2k

λIχI,h)

≤ 2∥m∥M1∥ ∑
I∈D∶∣I ∣=2k

λIχI,hI∥∞.

At every point x at most two of the functions in the sum are nonzero,
and each of the functions is bounded by 1, so we estimate the last
display by

≤ 4∥m∥M1

This proves (17).
To see (18), we assume to get a contradiction that there is I ∈ Dk and
ε > 0 such that for each J ⊂ I, J /⊂ I there is k with

∑
K∈Dk,K⊂J

∣K ∣∣F (K)∣ > ε

Pick such I and ε and J1 = I. Pick k1 such that

∑
K∈Dk1

,K⊂J1

∣K ∣∣F (K)∣ > ε

Pick h1 large enough so that

∑
K∈Dk,K⊂J1

∣m(χK,h1)∣ > ε.
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Pick J2 so that J2 has a parent to the right of the support of all χK,h1 .
Pick k2 and h2 so that

∑
K∈Dk2

,K⊂J2

∣m(χK,h2)∣ > ε

Now iterate this procedure, and note that all functions χ... in the sum
J

∑
j=1

∑
K∈Dkj

,K⊂Jj
∣m(χK,hj)∣ > Jε

are disjointly supported. Pick suitable λj so that

m(
J

∑
j=1

∑
K∈Dkj

,K⊂Jj
λjχK,hj)∣ > Jε

Since the argument of m is bounded by 2 in ∞-norm, we have

∥m∥M1 ≥ Jε
this is a contradiction for large enough J .

�

The next theorem is the dyadic version of Theorem 6.

Theorem 16. Consider a martingale F such that there is a constant
C < ∞ such that for all k ≤ 0 we have (17). Define

mk(f) = ∑
I∈Dk

∣I ∣F (I)f(c(I))

Then the limit
m(f) ∶= lim

k→−∞
mk(f)

exists and defines a Radon measure.

Proof. We have

∣mk(f)∣ ≤ ∑
I∈Dk

∣I ∣∣F (I)∣∥f∥∞ ≤ C∥F ∥∞

by (17). We claim that for every f the limit limk→−∞mk(f) exists. Let
ε > 0. As f is uniformly continuous, we may choose k small enough
that for all intervals I of length at most 2k and all x, y ∈ I we have

∣f(x) − f(y)∣ ≤ ε
Then for k′ < k, we have using that every I ′ ∈ Dk is contained in a
unique I ∈ /Ddk by Lemmas 11 and 12

∣mk(f) −mk′(f)∣ ≤
∣ ∑
I∈Dk

(∣I ∣F (I)f(c(I)) − ∑
I′∈Dk′ ,I

′⊂I
∣I ′∣F (I ′)f(c(I ′)∣)

The difference between f(c(I ′)) and f(c(I)) for every pair I ′ ⊂ I is at
most ε. Using the discrete mean value property 14 we estimate this by

≤ ∑
I∈Dk

∑
I′∈Dk′ ∶I′⊂I

ε∣I ′∣∣F (I ′)∣ = ∑
I′∈Dk′

ε∣I ′∣∣F (I ′)∣ ≤ εC.
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This shows that the limit limk→−∞mk(f) exists. The function m is
linear and bounded using linearity and the uniform bound on the mk.

�
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5. Lecture: Martingales and spectral resolution

Theorem 15 produced for each Radon measure on T a martingale

(20) F (I) = ∣I ∣−1 lim
h→∞

m(χI,h)

which satisfies for each k

(21) ∑
I∈Dk

∣I ∣∣F (I)∣ ≤ C

for some C independent of k and the technical condition that for all
I ∈ D and al ε > 0 there is a J ∈ D with J ⊂ I and J /⊂ I such that for
all k

(22) ∑
K∈Dk ∶K⊂J

∣K ∣∣F (K)∣ ≤ ε

Conversely, Theorem 16 produced for every martingale satisfying a
uniform bound (21) for all k a Radon measure

(23) m(f) = lim
k→−∞

∑
I∈Dk

f(c(I))∣I ∣F (I)

The next theorem show that the maps of the two theorems are inverse
of each other.

Theorem 17. If m is a Radon measure on T and F the martingale
extension (20), then m and F satisfy (23). If F is a martingale satis-
fying (21) and (22) and m is its weak limit (23), then m and F satisfy
(20).

Proof. Let m be a Radon measure on T and F the martingale extension
(20). Fix f and let ε > 0. It suffices to show that there is a constant C
such that for sufficiently small k we have

∣m(f) − ∑
I∈Dk

f(c(I))∣I ∣F (I)∣ ≤ Cε

Let k be sufficiently small so that ∣f(x) − f(y)∣ ≤ ε for ∣x − y∣ ≤ 2k+2.
Then for sufficiently large h,

∣m(f) − ∑
I∈Dk

f(c(I))∣I ∣F (I)∣

≤ ε + ∣m(f) − ∑
I∈Dk

f(c(I)))m(χI,h)∣ = ε + ∣m(f − ∑
I∈Dk

f(c(I))χI,h)∣

But we have
∥f − ∑

I∈Dk

f(c(I))χI,h∥∞ ≤ 2ε

because for fixed x

∣f(x) − ∑
I∈Dk

f(c(I))χI,h(x)∣

≤ ∑
I∈Dk

χI,h(x)∣f(x) − f(c(I))∣ ≤ 3ε
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The last inequality between the two lines following from the fact that
χI,h(x) is boudned by 1 and non-zero only if I is equal to or neighboring
to Ix,k. We obtain the desired

∣m(f) − ∑
I∈Dk

f(c(I))∣I ∣F (I)∣ ≤ 3ε∥m∥M1

Now let F be a martingale satisfying (21) and (22). Let m be the weak
limit in (23).
We compute for large h and small k

∣∣I ∣F (I) −m(χI,h)∣ ≤ ε + ∣∣I ∣F (I) − ∑
K∈Dk

∣K ∣F (K)χI,h(c(K))∣

Replacing χI,h(c(K)) by the indicator 1K⊂I , we have by the martingale
property

∣I ∣F (I) − ∑
K∈Dk

∣K ∣F (K)1K⊂I = 0.

For most K, we have that χI,h(c(K)) is 1K⊂I . Possible exceptions are
those K that are contained in J ∪ J ′ with

J = [c(I) − ∣I ∣2−1 − ∣I ∣2−h−1, c(I) − ∣I ∣2−1)
J ′ = [c(I) + ∣I ∣2−1 − ∣I ∣2−h−1, c(I) + ∣I ∣2−1).

here we assumed that k si small enough so that 2k < 2−h−1.
We thus obtain

∣∣I ∣F (I) −m(χI,h)∣ ≤ ε + 2 ∑
K∈Dk ∶K⊂J

∣K ∣∣F (K)∣ + 2 ∑
K∈Dk ∶K⊂J ′

∣K ∣∣F (K)∣

By property (18), the last display is bounded by 3ε for sufficiently large
h. In the limit, we obtain the desired (20) �

Consider a unitary operator U and recall the spectral measures mx

defined by
mx(P (ze−2πi.) = ⟨P (zU∗)x,x⟩

and the operator f(U) for continuous function f on T defined by

(24) ⟨f(U)x, y⟩ = 1

4
(mx+y(f) −mx−y(f) + imx+iy(f) − imx−iy(f)).

Putting f = χI,h and taking the linit as h→∞, which exists by Theorem
(15) for the right-hand-side, we obtain the limit

lim
h→∞

⟨χI,h(U)x, y⟩

this is a sesquilinear form since each ⟨χI,h(U)x, y⟩ is sesquilinear, so we
obtain an operator 1I(U) ∶H →H defined by

⟨1I(U)x, y⟩ ∶= lim
h→∞

⟨χI,h(U)x, y⟩.

Since the operators χI,h(U) are self adjoint and bounded, so are the
operators 1I(U).
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Let I and J be two disjoint dyadic intervals. Since 1I1J = 0, we expect
1I(U) ○ 1J(U) = 0. However, we have proven the product formula only
for contiunuosu functions, hence we argue carefully. We have

⟨1I(U) ○ 1J(U)x, y⟩ = ⟨1J(U)x,1I(U)y⟩
Assume without loss of generality that J is to the left of I. Fix ε > 0
and let h be large enough so that

∣⟨χJ,h(U)x,1I(U)y⟩ − ⟨1J(U)x,1I(U)y⟩∣ ≤ ε.
Pick l large enough so that χJ,h is supported to the left to χI,l and

∣⟨χJ,h(U)x,1I(U)y⟩ − ⟨χJ,h(U)x,χI,l(U)y⟩∣ ≤ ε
Since

⟨χJ,h(U)x,χI,l(U)y⟩ = ⟨(χI,lχJ,h)(U)x, y⟩ = 0,

we have
⟨1J(U)x,1I(U)y⟩∣ ≤ 2ε.

Since ε and x and y were arbitrary, 1I(U)○1J(U) = 0. Taking adjoints,
we conclude 1J(U) ○ 1I(U) = 0.
Now let I ⊂ J with I strictly smaller than J . As 1I1J = 1I , we expect
1I(U) ○ 1J(U) = 1I(U) and provide an argument similar to the above.
By standard properties of dyadic intervals we have I ⊂ Jl or I ⊂ Jr. In
the first case let h be large enough such that

∣⟨χJ,h(U)x,1I(U)y⟩ − ⟨1J(U)x,1I(U)y⟩∣ ≤ ε.
and let l be large enough such that χI,l is supported on the set where
χJ,h is equal to one and

∣⟨χJ,h(U)x,1I(U)y⟩ − ⟨χJ,h(U)x,χI,l(U)y⟩∣ ≤ ε
Since

⟨χJ,h(U)x, ⟨χI,l(U)y⟩ = ⟨χJ,hχI,l(U)x, y⟩ = ⟨χI,l(U)x, y⟩
and ε and x, y were arbitrary we obtain

1J(U) ○ 1I(U) = 1I(U).
If I ⊂ Jr, we may similarly first choose the approximation of 1I and
then the approximation of 1J to make sure that χJ,hχI,l = χI,l and we
obtain again 1J(U) ○ 1I(U) = 1I(U).
Using the martingale property we obtain

1I(U) = 1Il(U) + 1Ir(U)
composing with 1Il(U) gives

1Il(U) ○ 1I(U) = 1Il(U) ○ 1Il(U) + 1Il(U) ○ 1Ir(U)
and by the previous observations

1Il(U) = 1Il(U) ○ 1Il(U)
Similarly 1Ir(U) = 1Ir(U)○1Ir(U). Since every interval other than [0,1)
is left or right half of some other interval, we obtain that every 1I(U)
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with [0,1) ≠ I is idempotent and self adjoint, and hence a projection
operator.
In particular, we note for such projection operators

∥1I(U)x∥2 = ⟨1I(U)x,1I(U)x⟩ = ⟨1I(U)x,x⟩ ≤ ∥1I(U)x∥∥x∥
We conclude

∥1I(U)x∥ ≤ ∥x∥,
this is clear if ∥1I(U)x∥ is zero, otherwise we divide the previous display
by ∥1I(U)x∥.
For I = [0,1) we observe that 1I constant eqaul to 1 and hence

⟨1I(U)x,x⟩ =mx(1) =mx(P (0)) = ⟨P (0)x,x⟩ = ⟨x,x⟩
Hence 1[0,1) is the identity operator and in particular also a projection.
Using Theorem 16 to associate with mx a martingale Fx and Theorem
7, we conclude for each k

⟨f(U)x,x⟩ =mx(f) = lim
k→−∞

∑
I∈Dk

∣I ∣Fx(I)f(c(I))

= lim
k→−∞

∑
I∈Dk

⟨1I(U)x,x⟩f(c(I)) = lim
k→−∞

⟨ ∑
I∈Dk

f(c(I))1I(U)x,x⟩

Indeed, this convergence is in operator norm.

∥T ∥op = sup
∥x∥=1

∥Tx∥

Theorem 18 (Spectral resolution). For a unitary operator, we have

f(U) = lim
k→−∞

∑
I∈Dk

f(c(I))1I(U)

In the sense
lim
k→−∞

∥f(U) − ∑
I∈Dk

f(c(I))1I(U)∥op.

Proof. Let x be of norm one, then we have for k′ < k by the martingale
property

∥( ∑
I∈Dk

f(c(I))1I(U) − ∑
I′∈Dk′

f(c(I ′))1I′(U))x∥2

= ∥( ∑
I∈Dk

∑
I′∈Dk′ ∶I′⊂I

(f(c(I)) − f(c(I ′))1I(U))x∥2

By orthogonality of the projections, expaning the inner product, and
by unioform contonity of f ,

= ∑
I∈Dk

∑
I′∈Dk′ ∶I′⊂I

∥(f(c(I)) − f(c(I ′))1I(U)x∥2

≤ ε ∑
I∈Dk

∑
I′∈Dk′ ∶I′⊂I

∥1I(U))x∥2

= ε∥ ∑
I∈Dk

∑
I′∈Dk′ ∶I′⊂I

1I(U))x∥2

= ε∥x∥2 = ε
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Hence the sequence∑I∈Dk
f(c(I))1I(U) is Cauchy in the operator norm.

That it converges to f(U) follows form the weak calculations in ahead
of stating the theorem.

�

In particular, since for f(θ) = e2πiθ we have f(U) = U
U = lim

k→−∞
e2πic(I)1I(U)

We make the following observation in finite dimensional Hilbert spaces.

Theorem 19. Let U be a unitary operator on a finite dimensional
Hilbert space H. Then there exists a basis of H consisting of eigenvec-
tors of H.

Proof. For each interval I ∈ D, pick xI = 0 if 1I(U) = 0 and otherwise
pick xI in the range of 1I(U), that is x = 1I(U)x.
The collection

Ak = {xI ∶ I ∈ Dk, xI ≠ 0}
consists of pairwise orthogonal vectors since for I, I ′ disjoint we have

⟨xI , xI′⟩ = ⟨1I(U)xI ,1I′(U)xI′⟩ = 0

Therefore, these vectors are linearly independent,from

∑
I∈Ak

λIxI ≠ 0

we conclude by pairing with xJ that λJ = 0. Hence there are at most
as many vectors in Ak as the dimension of H.
The cardinality of Ak is weakly increasing as k → −∞ as for each
1I(U) ≠ 0 we have by the martingale property that 1Il(U) ≠ 0 or
1Ir(U) ≠ 0. Since the cardinality of Ak is bounded, it stabilizes at
a certain k0, so the cardinality is constant for each k ≥ k0 Thus we have
for each ∣I ∣ ≤ 2k0 with 1I(U) ≠ 0 that precisely one of 1Il(U) ≠ 0 or
1Ir(U) ≠ 0 holds. More precisely, we have by the martingale property
1I(U) = 1Il(U) or 1I(U) = 1Ir(U).
Enumerate the intervals in Ak0 as J1, . . . , Jn. For each n and each k < k0

there is a unique interval Jk,n ∈ Ak such that

1Jn(U) = 1Jk,n(U)

. For fixed n, the sequence of closed intervals Jk,n has unique intersec-
tion point θn.
Let f(θ) = e2πiθ We have

U = lim
k→−∞

∑
I∈Dk

f(c(I))1I(U)

= lim
k→−∞

∑
n

f(c(Jk,n))1In(U)

= ∑
n

f(θn)1In(U) + lim
k→−∞

∑
n

(f(c(Jk,n)) − f(θn))1In(U)
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The limit in the last display tends to zero as for sufficiently large k by
continuity of f , similarly to thre proof of the last theorem.
Hence

f(U)x = ∑
n

f(θn)1In(U)x

Thus on the range of each 1In(U), U acts as a multiplication by the
constant (eigenvalue) f(θn). The projections 1In are pairwise orthogo-
nal, and the sum is the identity, therefore the sum of ranges spans all
of H. Picking an orthonormal basis for each range, the union of these
bases is an orthonormal basis of eigenvectors of U .

�
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6. Lecture: Decomposition theorems

Consider the space S∆(T) of finite linear combinations of characteristic
functions of dyadic intervals in D. Decomposing all dyadic intervals in
such a linear combination into small intervals of equal length, we may
assume that such as function is of the form

f = ∑
I∈Dk

fI1I

for some k and some coefficients fI . Write S∆
k for the set of functions

of this form. The largest k such that f ∈ S∆
k is called the scale of

f . By the martingale property, for f ∈ S∆
k and any martingale F , the

sequence
lim
l→−∞

∑
I∈Dl

∣I ∣F (I)f(c(I))

stabilizes once l ≤ k. In particular, the sequence converges. We write
m(f) for the limit if F is the martingale extension of a Radon measure
m. The functional m(f) is linear in f .

Lemma 20. For every Radon measure m on T with martingale exten-
sion F we have

∥m∥M1 = sup
f∈S∆(T)∶∥f∥∞≤1

m(f).

Proof. Let ε > 0 be given. Pick g ∈ C(T) with ∥g∥∞ = 1 such that

∥m∥M1 ≤ ε + ∣m(g)∣.
Pick further k small enough so that

∣m(g)∣ ≤ ε + ∣ ∑
I∈Dk

∣I ∣F (I)g(c(I))∣.

Then define f ∈ S∆
k such that fI ∶= g(c(I)) on intervals I ∈ Dk and note

∥f∥∞ ≤ ∥g∥∞ = 1,

∥m∥M1 ≤ 2ε + ∣m(f)∣.
Since ε was arbitrary,

∥m∥M1 ≤ sup
f∈S∆(T)∶∥f∥∞≤1

∣m(f)∣.

To see the reverse inequality, let again ε > 0 be given. and let f ∈ S∆(T)
be given with ∥f∥∞ ≤ 1. Observe that for sufficiently large k and h

∣m(f)∣ = ∣ ∑
I∈Dk

∣I ∣F (I)f(c(I))∣ ≤ ε + ∣ ∑
I∈Dk

m(χI,h)f(c(I))∣

≤ ε + ∥m∥M1∥ ∑
I∈Dk

χI,hf(c(I))∥∞

≤ ε + ∥m∥M1∥f∥∞∥ ∑
I∈Dk

χI,h∥∞ = ε + ∥m∥M1 .

Since f and ε were arbitrary, this shows the reverse inequality. �
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We have the following consequence of the previous lemma.

Lemma 21. Two Radon measures m1,m2 are equal, if for every f ∈
S∆(T) we have m1(f) =m2(f).

Proof. Consider the Radon measure m = m1 −m2. Then m(f) = 0 for
all f ∈ S∆(T). By the previous lemma, ∥m∥M1 = 0 and hence m = 0
and m1 =m2. �

In what follows, we pass to the real setting. A Radon measure m
is called real if for all real valued f ∈ S∆(T) we have that m(f) is
real. For a Radon measure m, define for real functions f the real part
m1(f) ∶= Re(m(f)) and the imaginary part m2(f) ∶= Im(m(f)) and
extend m1 and m2 to complex valued functions by linearity. Then m1

and m2 are real and we have m =m1(f)+im2(f). The measures m1 and
m2 are the unique real Radon measures such that m =m1(f)+ im2(f).
Our next goal is to decompose a real Radon measure into positive and
negative part.
A Radon measure m is positive if for all nonnegative real f ∈ S∆(T)
we have m(f) ≥ 0. Note that for a positive Radon measure we have for
all ∥f∥∞ ≤ 1

∣m(f)∣ = ∣ lim
k→−∞

∑
I∈Dk

∣I ∣F (I)f(c(I))∣ ≤ lim
k→−∞

∑
I∈Dk

∣I ∣F (I)∣ =m(1)

and thus m(1) = ∥m∥M1 . Recall that a characteristic function is a
function that only takes values 0 and 1.

Definition 22. Two Radon measures are called mutually singular,
m1 ⊥ m2, if for every ε > 0 there exist two characteristic functions
χ1 and χ2 in S∆ with χ1 + χ2 = 1 such that for every f ∈ S∆ we have

∣m2(fχ1)∣ ≤ ε∥f∥∞,

∣m1(fχ2)∣ ≤ ε∥f∥∞.

Lemma 23. Let m1,m2 be mutually singular and m = m1 +m2. Let
ε > 0 be given. Pick χ1 and χ2 as in the definition of mutual singularity.
Then we have for j = 1,2 and every f ∈ S∆,

∣m(fχj) −mj(fχj)∣ ≤ ε∥f∥∞
∣mj(fχj) −mj(f)∣ ≤ ε∥f∥∞

Moreover, we have
∥m∥M1 = ∥m1 −m2∥M1

Proof. Assume without loss of generality j = 1. The first inequality
follows from

m(fχ1) −m1(fχ1) =m2(fχ1),
while the second inequality follows from

m1(fχ1) −m1(f) =m1(fχ2).
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To see the last inequality, pick ε > 0. Let f with ∥f∥∞ = 1 such that

∥m∥M1 ≤ ∣m(f)∣ + ε = ∣m(fχ1) +m(fχ2)∣ + ε

≤ ∣m1(fχ1) + ∣m2(fχ2)∣ + 3ε ≤ ∣(m1 −m2)(fχ1 − fχ2)∣ + 5ε.

As χ1 and χ2 have disjoint support, we have

∥fχ1 + fχ2∥∞ = ∥fχ1 − fχ2∥∞ = 1

As ε was arbitrary, we conclude

∥m∥M1 ≤ ∥m1 −m2∥M1

The reverse inequality follows by the same argument applied to −m2

in place of m2. This completes the proof of the lemma. �

We have the following decomposition theorem.

Theorem 24. Any real Radon measure m can be decomposed as

m =m+ −m−

with two unique mutually singular positive measures m+ and m−.

Proof. Let F be the martingale extension of m. Define for positive
f ∈ S∆:

m+(f) = lim
k→−∞

∑
I∈Dk ∶F (I)≥0

∣I ∣F (I)f(c(I))

m−(f) = − lim
k→−∞

∑
I∈Dk ∶F (I)<0

∣I ∣F (I)f(c(I))

To see existence of the limits of these positive sequences, we establish
that the sequences are eventually monotone increasing and bounded.
Monotonicity follows by the martingale property

F (I)1F (I)≥0 = F (Il)1F (I)≥0 + F (Ir)1F (I)≥0

≤ F (Il)1F (Il)≥0 + F (Ir)1F (Ir)≥0.

Hence, once k is smaller than the scale of f , both sequences in these
limits are monotone increasing. Both sequences are bounded by

∑
I∈Dk

∣I ∣∣F (I)∣∥f∥∞ ≤ ∥m∥M1∥f∥∞

hence the limits exists and are bounded by the right-hand-side of the
last display. By linearity, the limits defining m+ and m− continue to
exist for f ∈ S∆ that is not necessarily positive, and thus we obtain
positive Radon measures m+ and m− with m = m+ −m−. To see that
the measures m+ and m− are mutually singular, let ε > 0 be given. Pick
h small enough so that

∥m∥M1 − ε ≤ ∑
I∈Dh∶F (I)≥0

∣I ∣∣F (I)∣
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Let χ+ be the characteristic function of the union of those I ∈ Dh with
F (I) ≥ 0 and let χ+ + χ− = 1. Then

∥m∥M1 − ε ≤ ∑
I∈Dh

∣I ∣F (I)χ+(c(I) − ∑
I∈Dh

∣I ∣F (I)χ−(c(I).

Note that for k < h the right hand side is by the martingale identity
equal to

∑
J⊂I ∶F (J)≥0,F (I)≥0

∣J ∣F (J) + ∑
J⊂I ∶F (J)≤0,F (I)≥0

∣J ∣F (J)

− ∑
J⊂I ∶F (J)≤0,F (I)≤0

∣J ∣F (J) − ∑
J⊂I ∶F (J)≥0,F (I)≤0

∣J ∣F (J),

where in each sum it is understood that J ∈ Dk, I ∈ Dh. By collecting
positive and negative terms, we see that this is equal to

∑
J

∣J ∣∣F (J)∣ − 2 ∑
J⊂I ∶F (J)≤0,F (I)≥0

∣J ∣∣F (J)∣ − 2 ∑
J⊂I ∶F (J)≥0,F (I)≤0

∣J ∣∣F (J)∣

As the first term is bounded by ∥m∥M1 , we have

∑
J⊂I ∶F (J)≤0,F (I)≥0

∣J ∣∣F (J)∣ + ∑
J⊂I ∶F (J)≥0,F (I)≤0

∣J ∣∣F (J)∣ ≤ ε.

Hence for f ∈ S∆ with ∥f∥∞ ≤ 1 and k smaller than h and smaller than
the scale of f

m+(fχ−) ≤ ∑
J⊂I ∶F (J)≥0,F (I)<I

∣J ∣∣F (J)∣ ≤ 2ε

and similarly
m−(fχ+) ≤ 2ε.

This proves that m+ and m1 are mutually singular.
To prove uniqueness, let m̃+, m̃− be a different mutually singular pair
of positive measures with m = m̃+ − m̃−. It suffices to show that for
every ε > 0 we have ∥m̃+ −m+∥M1 ≤ Cε.
Let ε > 0 be given and define χ+ and χ− as above so that

∥m∥M1 − ε ≤m(χ+ − χ−)
Observe by positivity the following two inequalities:

m̃+(χ+ − χ−) ≤ m̃+(χ+),
−m̃−(χ+ − χ−) ≤ m̃−(χ−).

Adding the last two and inserting into the previous gives

∥m∥M1 − ε ≤ m̃+(χ+) − m̃−(χ−) ≤ ∥m̃+∥M1 + ∥m̃−∥M1 = ∥m∥M1

All inequalities must be sharp within ε, so that

m̃+(χ+) ≥ ∥m̃+∥ − ε
Testing χ+ + λfχ− for ∣λ∣ = 1 and any ∥f∥ ≤ 1 and using the first
inequality gives

∣m̃+(fχ−)∣ ≤ ε
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and similar
∣(m − m̃+)fχ+∣ = ∣m̃−(fχ+)∣ ≤ ε

The measure m+ satisfies the same estimates, we see that

∣(m+ − m̃+)f ∣ ≤ ∣(m+ − m̃+)(fχ+)∣ + ∣(m+ − m̃+)(fχ−)∣ ≤ 4ε.

This proves uniqueness.
�

Define a partial order on real measures by m ≤ m̃ if for all nonnegative
functions m1(f) ≤m2(f). In particular, for positive and negative part
of m,

m− ≤m ≤m+,

and for any positive measure m we have 0 ≤m.

Lemma 25. If m ≤ m̃, then m+ ≤ m̃+ and m− ≥ m̃−.

Proof. By additivity, it suffices to prove the first inequality. Recall

mk(f) = ∑
I∈Dk ∶F (I)≥0

∣I ∣F (I)f(c(I))

from the proof of the previous lemma. It suffices to prove (mk)+ ≤
(m̃m)+ for every k. But m ≤ m̃ implies F (I) ≤ F̃ (I), from which the
desired estimates follows. �

Lemma 26. Consider two positive measures m1 and m2. Then the
limit

lim
N→∞

(m1 −Nm2)+
exists and is a positive measure.

The limit measure is called the singular part of m1 relative to m2.

Proof. The sequence is monotone decreasing seqeunce of positive mea-
sures. Hence for each nonnegative f ∈ S∆ the sequence

(m1 −Nm2)+(f)
is a decreasing sequence of nonnegative numbers and thus converges.
The limit defines a positive measure . �

A frequent example concerns m2 the Lebesgue measure, when the limit
of the theorem is called genuinely the singular part of m1.

m2(f) = ∫ f(θ)dθ

If m1 is integration against a real continuous function, then for suffi-
ciently largeN the measurem1−Nm−2 is integration against a negative
continuous function, which is the negative of a positive measure and
thus has vanishing positive part. Hence the singular part of m1 is zero.
However the singular part of m1 the Dirac delta is m1 itself:

(m1 −Nm2)+(f) = lim
k→∞

2kF ([0,2k))f(2k−1)
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= lim
k→∞

(1 −N2k)f(2k−1) = f(0).
The measure

m1 − lim
N→∞

(m1 −Nm2)+
is called the absolutely continuous part of m1 relative to m2.



38 CHRISTOPH THIELE

7. Lecture: Martingale average convergence

We consider the singular and absolutely continuous part of a positive
Radon measure on [0,1) with respect to Lebesgue measure

1(f) = ∫
1

0
1(x)f(x)dx.

We call a positive measure singular or absolutely continuous respec-
tively if it is its own singular or absolutely continuous part. In this
section, we study possible limits limk→−∞F (Ix,k) and will establish a
connection between such limits and the absolutely continuous part of
a measure.
For a Radon measurem and x ∈ [0,1) define the dyadic Hardy-Littlewood
maximal function

Mm(x) = sup
k≤0

∣F (Ix,k)∣

Ifm is positive, we can omit the absolute value signs. The valueMm(x)
may be infinite for some x.
We will in this section denote by F,F1 etc. the martingale extensions
of m,m1 etc.

Theorem 27. Let m be a positive Radon measure on [0,1) . Let N > 0
and let I be the collection of maximal (with respect to set inclusion)
dyadic intervals such that F (I) > N . Then

{x ∶Mm(x) > N} ⊂ ⋃I,

∑
I∈I

∣I ∣ ≤ ∥m∥M1

N
.

Proof. If Mm(x) > N , then there is an interval Ix,k with F (Ix,k) > N .
There is a maximal such interval, wich will be in I. This proves the
first claim. To see the second claim, it suffices to show for every finite
subcollection I ′ of I that

∑
I∈I′

∣I ∣ ≤ ∥m∥M1

N
.

Let f be the sum of characteristic functions of intervals in I ′, then
f ∈ S∆ . Moreover, f is a characteristic function, because the intervals
in I, none of which can be contained in another by maximality, are all
disjoint. We obtain

∥m∥M1 ≥m(f) = ∑
I∈I′

m(1I) = ∑
I∈I′

∣I ∣F (I) ≥ ∑
I∈I′

∣I ∣N.

This proves the theorem. �

Definition 28. We say a property holds for almost every x ∈ [0,1),
if for every ε > 0 there exists a collection of dyadic intervals I with
∑I ∣I ∣ ≤ ε such that the property holds for all x not in the set ⋃I.
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Theorem 29. Let m be a positive Radon measure on [0,1). Then for
almost every x ∈ [0,1) we have Mm(x) < ∞.

Proof. For N > ∥m∥M1/ε consider the collection I of maximal (with
respect to set inclusion) dyadic intervals such that ∣F (I)∣ > N . By the
previous theorem,

∑
I∈I

∣I ∣ ≤ ∥m∥M1/N ≤ ε

Now assume Mm(x) = ∞, then there exists an x with x ∈ I such that
F (I) > N and hence x is contained in the union of I. This proves the
theorem. �

Theorem 30. A positive Radon measure m on [0,1) is absolutely con-
tinuous if and only if for all δ > 0 there exists ε > 0 such that whenever
I is a collection of intervals with

∑
I∈I

∣I ∣ ≤ ε

then

∑
I∈I

∣I ∣∣F (I)∣ ≤ δ

Proof. First assume m is absolutely continuous. Let δ be given. By
approximating the nonnegative sum

∑
I∈I

∣I ∣∣F (I)∣

by finite subsums, it suffices to prove the statement of the theorem for
finite sets I. Let 2k0 be the smallest length of an interval in the finite
set I. As m is absolutely continuous, its singular part vanishes. Hence

lim
N→∞

lim
k→−∞

∑
I∈Ik ∶∣F (I)∣−N>0

∣I ∣∣F (I) −N ∣ = 0

Pick N large enough so that

lim
k→−∞

∑
I∈Ik ∶∣F (I)∣>N

∣I ∣∣F (I) −N ∣ ≤ δ/4

Pick k < k0 small enough so that

∑
I∈Ik ∶∣F (I)∣>N

∣I ∣∣F (I) −N ∣ ≤ δ/2

Pick ε < δ/(2N). Then

∑
I∈I

∣I ∣∣F (I)∣ ≤ ∑
I∈Dk,I⊂⋃I

∣I ∣∣F (I)∣

≤ ∑
I∈Dk,I⊂⋃I,

∣I ∣N + ∑
I∈Dk,I⊂⋃I,F (I)>N

∣I ∣∣F (I) −N ∣ ≤ Nε + δ/2 ≤ δ

This proves the only if part theorem.
To see the if part, assume the δ-ε condition of the theorem is satisfied.
Let δ > 0 and pick ε > 0 as in the condition of the theorem. Let N large
enough so that for the collection I of maximal dyadic intervals with
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F (I) > N satisfies ∑I ∣I ∣ < ε. Then we have for N ′ > N and k small
enough

∥m∥sg ≤ ∥(m−N)+∥ ≤ δ+ ∑
I∈Ik ∶∣F (I)∣−N>0

∣I ∣∣F (I)−N ∣ ≤ δ+∑
I

∣I ∣F (I) ≤ 2δ.

As δ was arbitrary, we conclude msg = 0. This completes the proof of
the theorem. �

Theorem 31. Let m be a positive Radon measure and F its martingale
extension. Fix 0 ≤ a < b and ε > 0. Then there exists I ⊂ D and k0 < 0
such that

∑
I∈I

∣I ∣ ≤ ε,

and for all x ∉ ⋃I we have F (Ix,k) < b for all k < k0 or we have
F (Ix,k) ≥ b for all k < k0.

Proof. Let I0 be the set of maximal dyadic intervals I such that F (I) ≥
b. Then by the argument of the previous theorem

∑
I∈I0

∣I ∣ ≤ ∥m∥M1

b
< ∞.

Now assume we have defined Ij for some j ≥ 0. Let Jj+1 be the set
of maximal dyadic intervals J such that J ⊂ I for some I ∈ Im and
F (J) < a.
Similarly let Ij+1 be the set of maximal dyadic intervals I such that
I ⊂ J for some J ∈ Jj+1 and F (I) ≥ b. By disjointness of the intervals
in Jj+1

∑
J∈Jj+1

∣J ∣ ≤ ∑
I∈Ij

∣I ∣.

Further, we have by the bounds on the martingale values F (I) and
F (J) and by the martingale identity

b ∑
I∈Ij+1

∣I ∣ ≤ ∑
I∈Ij+1

F (I)∣I ∣ ≤ ∑
J∈Jj+1

F (J)∣J ∣ < a ∑
J∈Jj+1

∣I ∣.

Hence

∑
I∈Ij+1

∣I ∣ < b
a
∑

J∈Jj+1

∣J ∣.

Iterating this inequality gives

∑
I∈Ij

∣I ∣ ≤ (a
b
)j ∑

I∈I0

∣I ∣

For j large enough. We obtain

∑
I∈Ij

∣I ∣ ≤ ε
2
.
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The finitely many collections Ii and Ji for i ≤ j may be infinite, albeit
their sums of length of intervals is finite. Pick therefore respective finite
subcollections Ĩi and J̃i such that

j

∑
i=0

∑
I∈Ij∖Ĩj

∣I ∣ +
j

∑
i=1

∑
J∈Jj∖J̃j

∣J ∣ ≤ ε
2
.

Pick k0 such that 2k0 is smaller than the length of any interval on the

collections Ĩi or all J̃i with i ≤ j.
Assume

x ∉ ⋃Ij ∪
j

⋃
i=0

Ij ∖ Ĩj ∪
j

⋃
i=1

Jj ∖ J̃j

where we call the collection of all intervals on the right hand side I
and note ∑I ∣I ∣ < ε.
Then by the nesting of our collections of sets, one of the following three
possibilities attains: First, we may have

x ∉ ⋃I0

In this case FIx,k ≤ b for all k ≤ 0. Second, we may have for some
0 ≤ i < j

x ∈ ⋃Ii ∖⋃Ji+1

and hence

x ∈ ⋃ Ĩi ∖⋃Ji+1

In this case, there is a k0 ≤ k1 so that the interval Ix,k1 is in Ĩi and we
have FIx,k ≤ b for all k ≤ k1.
In the third case, we have for some 1 ≤ i ≤ j

x ∈ ⋃Jj ∖⋃Ii
and hence

x ∈ ⋃J̃j ∖⋃Ii
In this case there is a k0 ≤ k1 such that the interval Ix,k1 is in Ji and
we have FIx,k ≥ a for all k ≤ k1. In all three cases we have proven the
theorem.

�

Theorem 32. Let m be Radon on [0,1) and F its martingale exten-
sion. Let ε > 0. Then there exist I ⊂ D with ∑I∈I ∣I ∣ ≤ ε and k ≤ 0 such
that for all k′, k′′ < k and all x ∉ ⋃I we have

∣F (Ix,k′) − F (Ix,k′′)∣ ≤ 2ε.

Proof. Pick N large enough such that Ĩ, the set of maximal dyadic
intervals I such that F (I) > N , satisfies

∑
Ĩ

∣I ∣ ≤ ∥m∥M1

N
≤ ε

2
.
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For every integre 0 ≤ n ≤ N/ε, we pick In and kn so that

∑
I∈In

∣I ∣ ≤ ε−n−2

and for all x ∉ ⋃In we have F (Ix,k) < (n + 1)ε for all k < kn or we

have F (Ix,k) ≥ nε for all k < kn. Let I = Ĩ ∪ ⋃0≤n≤N/ε In. By adding a
geometric series we have

∑
I∈I

∣I ∣ ≤ ε

Define further

k = min
0≤n≤N/ε

kn.

Let x ∉ ⋃I. As x is not in Ĩ, we have for every k ≤ 0 that

0 ≤ F (Ix,k) ≤ N

Let n be the maximal integer such that

nε ≤ F (Ix,k′)

for all k′ < k. By the previous display, n ≤ N/ε. As x is not in In+1, we
have

F (Ix,k′) ≤ (n + 2)ε
for all k′ < k. Given two k′, k′′ < k, we conclude

∣F (Ix,k′) − F (Ix,k′′)∣ ≤ 2ε.

This proves the theorem. �

Theorem 33. Let m be positive Radon measure with martingale ex-
tension F . Then the limit

lim
k→−∞

F (Ix,k)

exists almost everywhere.

Proof. Let ε > 0 be given. We apply Theorem 32 to m consecutively
with parameters ε2−j to obtain exceptional sets Ij. Setting I = ⋃j Ij,
we obtain by summing a geometric series sumI ∣I ∣⟨ε.Moreover, we have
convergence of the limits limk→−∞F (Ix,k) for every x ∉ ⋃Ij. This
proves the theorem. �

Theorem 34. Let m1 and m2 be absolutely continuous and assume
for all ε > 0 there exists a collection I of dyadic intervals such that
∑I ∣I ∣ ≤ ε and x /∈ ⋃I

lim
k→∞

∣F1(Ix,k) − F2(Ix,k∣ = 0

Then m1 =m2.
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Proof. By considering m2 −m1 if necessary, we may assume m1 = 0.
Let ε > 0. Pick δ small and a collection I and a k such that ∑I∈I ∣I ∣ ≤ δ
and for all k′, k′′ ≤ k and all x ∉ ⋃I we have

∣F2(Ix,k′) − F2(Ix,k′′ ∣ ≤ ε.
As F2(Ix,k′′) converges to 0 as k′′ → −∞, we have for all x ∉ ⋃ I

F2(Ix,k′) ≤ ε
Now let for small k′

∥m2∥M1 ≤ ε + ∑
I∈Dk′

∣I ∣∣F2(I)∣ ≤ ∑
I∈Dk′I /⊂I

∣I ∣∣F2(I)∣ + ∑
I∈Dk′I⊂I

∣I ∣∣F2(I)∣

The first summand on the right-hand-side is bounded by ε because w
ecan bound F (I) by ε. The second summand is bounded by ε, provided
δ is small enough since m2 is absolutely continuous. As ε was arbitrary,
we conclude ∥m2∥M1 = 0 and hence m2 = 0.

�

Absolutely continuous measures are represented by their ”always ev-
erywhere” boundary values. This leads to the theory of Lebesgue inte-
grable (L1) functions.

Theorem 35. Let m be a singular positive Radon measure on [0,1).
Then for almost every x in [0,1) we have

lim
k→∞

F (Ix,k) = 0

Proof. Let ε > 0 be given and pick N sufficiently large so that for the set
I1 of maximal dyadic intervals such that F (I) > N so that ∑I1

∣I ∣ ≤ ε.
As m is absolutely continuous, m = (m −N)+ for all N and we have

lim
k→−∞

∑
I∈Dk ∶F (I)>N

F (I)∣I ∣ = ∥m∥M1

lim
k→−∞

∑
I∈Dk ∶F (I)<N

F (I)∣I ∣ = 0

Pick k0 small enough so that for all k < k0

∑
I∈Dk ∶F (I)<N

F (I)∣I ∣ ≤ ε2

Pick I2 be the maximal collection of dyadic intervals of length at most
2k0 such that F (I) > ε We claim

∑
I2

∣I ∣ ≤ ε

It suffices to prove the claim for a finite sub-collection I ′2 of I2, Let 2k1

be the smallest scale of this finest sub-collection. By the martingale
identity we have

ε∑
I′2

∣I ∣ ≤ ∑
I′2

∣I ∣F (I) = ∑
I∈Dk1

I⊂⋃I′2
∣I ∣F (I) ≤ ε2
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This proves the claim. It follows that for I = I1∪I2 we have ∑I ∣I ∣ ≤ 2ε.
For x ∉ ⋃I, we have for all k ≤ k0

F (Ix, k) ≤ ε.
Repeat this argument with ε2−j fro all j ≥ 0. The union of exceptional
sets is smaller than 4ε , while outside the exceptional set we have

lim
k→∞

F (Ix,k) = 0

This proves the theorem.
�

7.1. Exercise. Let m,m′ be Radon and F , G their martingale exten-
sion. Assume m absolutely continuous and let G be bounded martin-
gale, i.e.

∥G∥∞ = sup
I∈D

∣G(I)∣ < ∞.

Then
lim
k→−∞

∑
∣I ∣=2k

∣I ∣F (I)G(I)

exists.
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