Due on Friday 3 July. On Monday 6 of July there will be no exercise session.

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space.

- A filtration is sequence of sigma-algebras $(\mathcal{F}_n)_{n\geq 0}$ with $\mathcal{F}_k \subset \mathcal{F}_{k+1} \subset \mathcal{F}$ holding for all $k \geq 0$.
- A stochastic process adapted to a filtration (\mathcal{F}_k) is a sequence of random variables (X_n) so that X_n is \mathcal{F}_n measurable and $E|X_n| < \infty$.
- Conditional expectation w.r.t. the sigma algebra \mathcal{F}_k of a random variable $X \in L^1(\Omega, \mathcal{F}, \mu)$ is another random variable $Y = E(X|\mathcal{F}_k)$ that satisfies E(YZ) = E(XZ) for all bounded \mathcal{F}_k measurable random variables.
- A martingale is a stochastic process (X_n) such that $E(X_n|\mathcal{F}_m) = X_m$ whenever $m \leq n$.
- Stopping time (relative to a filtration) is a random variable $T: \Omega \to \mathbb{N} \cup \{\infty\}$ such that $\{T \leq m\} \in \mathcal{F}_m$.

Problem 1. Consider a non-negative Radon measure on [0, 1) so that its martingale extension satisfies $L^1 \ell^1 F < \infty$.

- (a) Show that the martingales as defined in the lectures are an instance of the definition of martingale as written above, that is, identify a filtration, a stochastic process and a conditional expectation so that the martingale property from the lecture notes is equivalent with the process you defined being a martingale.
- (b) Let $\lambda > 0$ and $A = \bigcup \{I : F(I) > \lambda\}$. Show that

$$1_A(x) = \sum_{k=0}^{\infty} \sum_{I \in \mathcal{D}_{-k}} 1_I(x) 1_{T(x)=k}(x)$$

where T is a stopping time (referring to the setting from part a).

Problem 2 (Doob's first martingale inequality). Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and (X_n) a martingale.

- (a) Let T be a bounded stopping time. Show that $EX_T = EX_0$.
- (b) Let (X_n) be a non-negative martingale and $\lambda > 0$. Prove that

$$\lambda \mu \left(\max_{0 \le n \le N} X_n > \lambda \right) \le E X_N$$